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1. Introduction

Let φ(x) be a cubic, monic and irreducible polynomial in x with rational integer coef-
ficients and three real roots. We fix one of these roots and denote it by θ . Set K = Q(θ),
and let EK be the unit group of K and E+

K the subgroup of EK which consists of units with

norm +1. By Dirichlet’s unit theorem, E+
K is generated by two units and so is Z[θ ] ∩ E+

K .

Hereafter we denote the latter by E+
θ . It is difficult to determine the generators of E+

θ even
though that problem is important for number theory. In this paper, for given a, b, c, d ∈ Z,
we shall find conditions under which E+

θ = 〈aθ + b, cθ + d〉. As a result, we shall obtain

new infinite families of Z[θ ] with explicit generators of E+
θ , which will give useful examples

for further study.
In 1972, Stender[6] found families of φ(x) such that E+

θ = 〈θ + b, θ + d〉 for rational
integers b, d with 2 ≤ b ≤ d − 3 by using Berwick’s theorem[1]. In 1979, Thomas [7]
found families of φ(x) such that E+

θ = 〈aθ + 1, θ + d〉 and 〈aθ + 1, cθ + 1〉 for rational
integers a, c, d with a ≥ 4 and some other conditions by using the continued fraction ex-
pansion of a certain conjugate of θ . In 1995, Grundman [3] modified Thomas’s technique
for determining fundamental systems of units, and determined all a with |a| > 1 such that

E+
θ = 〈aθ + 1, 2θ + 3〉 for some totally real number θ of degree 3, and found families of

φ(x) for each a. We shall further utilize this method under a more general condition that
aθ + b, cθ + d ∈ E+

θ .

THEOREM 1. For rational integers a, b, c and d , assume the following conditions:
1. |ad − bc| > max{|a|, |c|}, 2 ≤ |a| < |b| and 2 ≤ |c| < |d|,
2. there exist rational integers e, f and g such that

b3 − eab2 + f a2b − ga3 = 1 , d3 − ecd2 + f c2d − gc3 = 1 , (1)
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3.∣∣∣∣φ′
(

− b

a

)∣∣∣∣ > max

{∣∣φ′′(− b
a

)∣∣
6a2|g| +

(
1

3a2|g|
)2

+ 3|g|
|a| ,

∣∣φ′′(− b
a

)∣∣
2

+ 1 + 2|a|
}
, (2)

∣∣∣∣φ′
(

− d

c

)∣∣∣∣ > max

{∣∣φ′′(− d
c

)∣∣
6c2|g| +

(
1

3c2|g|
)2

+ 3|g|
|c| ,

∣∣φ′′(− d
c

)∣∣
2

+ 1 + 2|c|
}
, (3)

∣∣∣∣e − d

c
− 2

b

a

∣∣∣∣ > 4 max{|a|, |c|} , (4)

∣∣∣∣e − b

a
− 2

d

c

∣∣∣∣ > 4 max{|a|, |c|} , (5)

where we put φ(x) = x3 + ex2 + f x + g .
Then φ(x) is irreducible and has three real roots. Let θ be a root of φ(x). Then E+

θ is
generated by aθ + b and cθ + d .

If d = 0, then we can get the following theorem.

THEOREM 2. For rational integers a, b and c, assume the following conditions:
1. 2 ≤ |a| < |b| and |c| = 1,
2. there exist rational integers e and f such that

b3 − eab2 + f a2b + ca3 = 1 , (6)

and

±e + f �= 1 , (7)

3. ∣∣∣∣φ′
(

− b

a

)∣∣∣∣ >
∣∣φ′′(− b

a

)∣∣
2

+ 1 + 2|a| , (8)

∣∣∣∣e − b

a

∣∣∣∣ > 4|a| , (9)

and ∣∣∣∣e − 2
b

a

∣∣∣∣ > 5

2
, (10)

where we put φ(x) = x3 + ex2 + f x − c.

Then φ(x) is irreducible and has three real roots. Let θ be a root of φ(x). Then E+
θ is

generated by aθ + b and cθ .
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THEOREM 3. For rational integers a, b, c and d , assume that

|ad − bc| > max

{
|ac|,

∣∣∣∣3bda
∣∣∣∣,
∣∣∣∣3bdc

∣∣∣∣
}
, |ac| ≥ 2

and there exist rational integers e, f and g which satisfy (1). Then we can explicitly construct
infinitely many cubic irreducible polynomials φ(x) such that E+

θ = 〈aθ + b, cθ + d〉, where
θ is a root of φ(x).

REMARK 1. When D := ac(ad − bc) �= 0, we see that the simultaneous diophan-

tine equations (1) is solvable if and only if D gcd(ac, ad + bc) | a3(d3 − 1) − c3(b3 − 1),
D gcd(ac, bd) | a2b(d3 − 1) − c2d(b3 − 1) and D gcd(ac, bd, ad + bc) | ab2(d3 − 1) −
cd2(b3 − 1). Then, the simultaneous congruences

D(ad + bc)e ≡ a3(d3 − 1)− c3(b3 − 1) , Dbde ≡ a2b(d3 − 1)− c2d(b3 − 1) (mod Dac)

have a solution e ∈ Z, and we may put

f = a3(d3 − 1)− c3(b3 − 1)−D(ad + bc)e

Dac
, g = a2b(d3 − 1)− c2d(b3 − 1)−Dbde

Dac
.

Moreover, all solutions of (1) are given by

e + t
ac

gcd(ac, bd, ad + bc)
, f + t

ad + bc

gcd(ac, bd, ad + bc)
, g + t

bd

gcd(ac, bd, ad + bc)

with t ∈ Z.

REMARK 2. When G := gcd(ac, bd, ad + bc), if rational integers e, f and g satisfy
(1), then for any rational integer t ,

e′ = e + ac

G
t , f ′ = f + ad + bc

G
t , g ′ = g + bd

G
t

also satisfy (1) by Remark 1. For these rational integers, we define φ(x) = x3+e′x2+f ′x+g ′.
Then we have∣∣∣∣φ′

(
− b

a

)∣∣∣∣=
∣∣∣∣3
(

− b

a

)2

+ 2

(
e + ac

G
t

)(
− b

a

)
+ f + ad + bc

G
t

∣∣∣∣=
∣∣∣∣ad − bc

G
t

∣∣∣∣+O(1) ,

∣∣∣∣φ′′
(

− b

a

)∣∣∣∣=
∣∣∣∣6
(

− b

a

)
+ 2

(
e + ac

G
t

)∣∣∣∣=2

∣∣∣∣acG t
∣∣∣∣+O(1) ,

∣∣∣∣φ′
(

− d

c

)∣∣∣∣=
∣∣∣∣3
(

− d

c

)2

+ 2

(
e + ac

G
t

)(
− d

c

)
+ f + ad + bc

G
t

∣∣∣∣ =
∣∣∣∣ad − bc

G
t

∣∣∣∣+O(1) ,

∣∣∣∣φ′′
(

− d

c

)∣∣∣∣=
∣∣∣∣6
(

− d

c

)
+ 2

(
e + ac

G
t

)∣∣∣∣=2

∣∣∣∣acG t
∣∣∣∣+O(1) .
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Hence if |ad − bc| > max
{|ac|, ∣∣3bd

a

∣∣, ∣∣ 3bd
c

∣∣}, then we can find infinitely many rational inte-

gers t for which e′, f ′ and g ′ satisfy (2)–(5) or (7)–(10). Therefore, we can obtain infinitely

many polynomials φ(x) such that E+
θ = 〈aθ + b, cθ + d〉 (See Examples 1 and 2 below).

REMARK 3. If the discriminant of φ(x) is square-free, then Z[θ ] coincides with the

ring of integers of K (cf. [2] chap. 4 Corollary 4.4.7) and E+
θ = E+

K . If the discriminant of
φ(x) is perfect square, then K/Q is a Galois extension.

REMARK 4. Thomas [7] studied on φ(x) such that E+
θ = 〈aθ + 1, θ + d〉 with some

conditions. In other words, he investigated 〈θ, aθ + b〉 for b ≡ 1 (mod a). Therefore Theorem
2 is an extension of Thomas’s work (see Example 2 below).

REMARK 5. To prove Theorem 2, we use Theorem T (See section 2), in which the case

e + f = 1 is excluded. In this case we are not sure whether E+
θ = 〈aθ + b, θ〉 or not. But

Thomas [7] gave families of φ(x) such that E+
θ = 〈−θ + 1, θ〉, which are examples for the

case e + f = 1.

REMARK 6. Stender [6], Watabe [8] and Minemura [5] studied in the case |a| =
1, |c| = 1.

We give examples for b �≡ 1 (mod a), in which there has been no example until now.
The following is an example of Theorem 1.

EXAMPLE 1. Put a = 7, b = 11, c = 7 and d = 43. Then for each t ∈ Z, the integers
e = 49t + 39, f = 378t + 251 and g = 473t + 302 satisfy (1). And if

t �= 0,−1

hold, then φ(x) = x3 + ex2 + f x + g is irreducible and has three real roots. Let θ be a root
of φ(x). Then E+

θ = 〈7θ + 11, 7θ + 43〉 holds.

The following is an example of Theorem 2.

EXAMPLE 2. For r �= −1, 0, put a = r2 + r + 1, b = (a2 + a+ 1)r , c = 1 and d = 0.

Then for each t ∈ Z, the integers e = r − 1 + at, f = −a2r2 − a2 − r2 + bt and g = −1
satisfy (6). And if

|t − 2r| ≥ 5 , |t − r| ≥ 3

hold, then φ(x) = x3 + ex2 + f x − 1 is irreducible and has three real roots. Let θ be a root
of φ(x). Then E+

θ = 〈aθ + b, θ〉 holds.

2. Preliminaries

Before we prove our theorems, we give some notations which are used throughout this

paper. For a cubic irreducible polynomial φ(x) = x3 + ex2 + f x+ g ∈ Z[x] which has three
real roots, setK = Q(θ)where θ is one of the three roots of φ(x). LetEK be the unit group of
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K and E+
K the subgroup of EK which consists of units of norm +1 and set E+

θ = Z[θ ] ∩E+
K .

Let θ(i) (i = 0, 1, 2) be the conjugates of θ over Q. And let

θ(0) > θ(1) > θ(2) ,

which is also assumed in Theorem G and Theorem T below which are the bases of our
theorems. For i, i ′, i ′′ ∈ {0, 1, 2}, i �= i ′ �= i ′′ �= i, m, n ∈ Z, m > 0, n ≥ 0, let
−θ(i) = [ki,0, ki,1, · · · ] be the continued fraction expansions of −θ(i) and pi,n

qi,n
the nth princi-

pal convergents of −θ(i), and define

λi := 1

|θ(i′) − θ(i
′′)| ,

δi := λi(λi′ + λi′′) ,

Mi,n := 
ki,n+1 − 2λiqi,n+1� ,
Ni := 
λi(|θ(i′)| + |θ(i′′)|)� ,

ηi,m,n := mqi,nθ
2 +m(qi,ne − pi,n)θ −

⌊mgqi,n
θ(i)

⌋
,

Ci := { η ∈ Z[θ ] : η(i) > 1, |η(i′)| < 1 and |η(i′′)| < 1} ,
and if Mi,n ≥ 1, we define

Si,n := { γ ∈ Ci ∩ EK : γ = (−1)i(ηi,m,n + l)

with 1 ≤ m ≤ Mi,n, −Ni ≤ l < Ni, m, l ∈ Z} ,
where 
α� means the least integer which is greater than or equal to α, and �α
 means the
greatest integer which is less than or equal to α.

The following three theorems are the bases of our theorems.

THEOREM B (Berwick [1]). 1. There exists a unit in each Ci (i = 0, 1, 2).

2. There exists a unit εi ∈ Ci such that ε(i)i ≤ η(i) for every unit η ∈ Ci . Moreover,
any two of the three units ε0, ε1, ε2 form a fundamental system of units for Z[θ ].

We call εi in Theorem B the fundamental Ci unit.

THEOREM G (Grundman [3]). Let θ(0) > θ(1) > θ(2). Suppose δi < 1
2 . If there exists

an integer ni such that

ki,ni+1 ≤ 1

2
qi,ni+1 and Si,ni �= ∅ ,

then (−1)i(ηi,mi ,ni + li ) is the fundamental Ci unit, where

mi := min{ m : (−1)i(ηi,m,ni + l) ∈ Si,ni for some l } ,
li := min{ l : (−1)i(ηi,mi ,ni + l) ∈ Si,ni } .
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REMARK 7. Grundman [3] stated the theorem only for i = 1, 2, but the proof still goes
through for i = 0.

THEOREM T (Thomas [7]). Let θ(0) > θ(1) > θ(2). Suppose g = ±1, (e + f, g) �=
(1,−1).

(a) If 1 < θ(1) < θ(0) and (θ(0)− θ(1))(1 + gθ(2)) > 2, then −gθ−1 is the fundamental
C2 unit.

(b) If θ(2) < −1, 1 < θ(0) and θ(0) > |θ(2)|, then gθ−1 is the fundamental C1 unit.

3. Proof of Theorems 1, 2 and 3

In this section, we shall prove Theorems 1, 2 and 3. First, we shall show that if the
assumptions in Theorem 1 or 2 hold, then φ(x) is irreducible and has three real roots. We use
the following elementary lemma all over our proofs.

LEMMA 1. For real numbers α, β and γ , if α = β + γ and |β| > |γ |, then sgn(α) =
sgn(β).

Now by φ
(− b

a

) = − 1
a3 , if |a| and

∣∣φ′(− b
a

)∣∣ are sufficiently large, then we have a real

root of φ(x) nearby − b
a

. Indeed we have the following lemma.

LEMMA 2. If 2 ≤ |a| < |b|, (1) and (2) hold, then there exists at least one root of
φ(x) in (

− b

a
− 1

3a2|g| ,−
b

a
+ 1

3a2|g|
)
.

PROOF. Let y be an indeterminate. Then we have

φ

(
−b
a

+ y

)
= φ

(
−b
a

)
+ φ′

(
−b
a

)
y + φ′′(− b

a

)
2

y2 + y3

= φ′
(

−b
a

)
y + φ′′(− b

a

)
2

y2 + y3 − 1

a3 .

Let |y| = 1
3a2|g | and let β and γ be the first term and the remains of the above respectively.

By (2), we have

|β| − |γ | ≥ 1

3a2|g|
{ ∣∣∣∣φ′

(
−b
a

)∣∣∣∣−
(

1

3a2|g|
) ∣∣φ′′ (− b

a

)∣∣
2

−
(

1

3a2|g|
)2

− 3|g|
|a|

}

> 0 .

Hence by Lemma 1 the signs of φ
(− b

a
± 1

3a2|g |
)

are equal to those of ±φ′(− b
a

)
respectively.
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So we have

φ

(
− b

a
+ 1

3a2|g|
)
φ

(
− b

a
− 1

3a2|g|
)
< 0 ,

and this completes the proof of Lemma 2. �

Hereafter, let θ1 be a root of φ(x) which satisfies the condition of Lemma 2, and fix it.
Then Lemma 2 means ∣∣∣∣θ1 + b

a

∣∣∣∣ < 1

3a2|g| . (11)

Similarly, we shall obtain the second real root θ2 nearby − d
c

. Indeed, if 2 ≤ |c| < |d| and (3)
hold, then there exists a real root θ2 of φ(x) such that∣∣∣∣θ2 + d

c

∣∣∣∣ < 1

3c2|g| (12)

by Lemma 2. On the other hand, if d = 0, then we have the following lemma.

LEMMA 3. If 2 ≤ |a| < |b|, (6) and (9) hold, then there exists a real root θ2 of φ(x)
such that

|θ2| < 1

4|a| .

PROOF. By (6) we have f = b
a

(
e − b

a

)+ g a
b

+ 1
a2b

. Therefore we have

φ(x) = x3 + ex2 +
(
b

a

(
e − b

a

)
+ g

a

b
+ 1

a2b

)
x + g

=
(
e − b

a

)
x

(
x + b

a

)
+ x3 + b

a
x2 +

(
g
a

b
+ 1

a2b

)
x + g .

Hence we have

φ

(
± 1

4|a|
)

= ±
(
e − b

a

)
1

4|a|
(

± 1

4|a| + b

a

)

± 1

64|a3| + b

16a3
±
(
g
a

b
+ 1

a2b

)
1

4|a| + g

respectively. Let β and γ be the first term and the remains of the right-hand side respectively.
By (9), |g| = 1 and 2 ≤ |a| < |b|, we have

|β| − |γ | > 4|a| 1

4|a|
(

− 1

4|a| + |b|
|a|
)

− 1

64|a3| − |b|
16|a3| − 1

4|b| − 1

4|a3b| − 1

>
|b|
|a| − 1

4|a| − |b|
16|a3| − 1

2|a| − 1

> 0 .
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Hence by Lemma 1 the sign of φ
( ± 1

4|a|
)

is equal to that of β. Therefore we have φ
( +

1
4|a|
)
φ
(− 1

4|a|
)
< 0, and hence we obtain Lemma 3. �

From the above, we can obtain the third real root θ3 of φ(x), and fix it. Next we shall
show the roots θ1, θ2 and θ3 are sufficiently far from each other.

LEMMA 4. If the assumptions in Theorem 1 hold, then we have




|θ1 − θ2|> 2

3 min{|a|, |c|} ,

|θ2 − θ3|> 4 max{|a|, |c|} − 1

2
,

|θ3 − θ1|> 4 max{|a|, |c|} − 1

2
.

PROOF. By Lemma 2, (12), |ad − bc| > max{|a|, |c|}, 2 ≤ |a| and 2 ≤ |c|, we have

|θ1 − θ2| =
∣∣∣∣
(
θ1 + b

a

)
−
(
θ2 + d

c

)
−
(
b

a
− d

c

)∣∣∣∣
>

∣∣∣∣ba − d

c

∣∣∣∣− 1

3a2|g| − 1

3c2|g|
>

max{|a|, |c|}
|ac| − 1

3a2 − 1

3c2

≥ 2

3 min{|a|, |c|} .

By θ1 + θ2 + θ3 = −e and (5), we have

|θ2 − θ3| = |e+ θ1 + 2θ2|

=
∣∣∣∣e +

(
θ1 + b

a

)
+ 2

(
θ2 + d

c

)
− b

a
− 2

d

c

∣∣∣∣
>

∣∣∣∣e − b

a
− 2

d

c

∣∣∣∣− 1

3a2|g| − 2

3c2|g|
> 4 max{|a|, |c|} − 1

2
.

Similarly by (4), we have

|θ3 − θ1| > 4 max{|a|, |c|} − 1

2
.

Hence we obtain Lemma 4. �
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LEMMA 5. If the assumptions in Theorem 2 hold, then we have


|θ1 − θ2|> 1 ,

|θ2 − θ3|> 4|a| − 1

2
,

|θ3 − θ1|> 53

24
.

PROOF. We have

|θ1 − θ2| =
∣∣∣∣
(
θ1 + b

a

)
− θ2 − b

a

∣∣∣∣
>

∣∣∣∣−ba
∣∣∣∣− 1

3a2
− 1

4|a|
>

|b| − 1

|a|
≥ 1

by Lemma 2, Lemma 3 and 2 ≤ |a| < |b|,
|θ2 − θ3| = |e+ θ1 + 2θ2|

=
∣∣∣∣e +

(
θ1 + b

a

)
+ 2θ2 − b

a

∣∣∣∣
>

∣∣∣∣e − b

a

∣∣∣∣− 1

3a2 − 1

2|a|
> 4|a| − 1

2

by θ1 + θ2 + θ3 = −e and (9), and

|θ1 − θ3| = |e + 2θ1 + θ2|

=
∣∣∣∣e + 2

(
θ1 + b

a

)
+ θ2 − 2

b

a

∣∣∣∣
>

∣∣∣∣e − 2
b

a

∣∣∣∣− 2

3a2 − 1

4|a|
>

53

24

by (10). Hence we obtain Lemma 5. �

By (11), (12) or Lemma 3, θ1 and θ2 are not rational integers. On the other hand, by (1),
we have

(aθ1 + b)(aθ2 + b)(aθ3 + b) = b3 − eab2 + f a2b − ga3 = 1 .
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If θ3 is a rational integer, then we have aθ3 + b = ±1. Hence we have

1

2
≥ 1

|a| =
∣∣∣∣θ3 + b

a

∣∣∣∣ =
∣∣∣∣(θ3 − θ1)+

(
θ1 + b

a

)∣∣∣∣ > |θ3 − θ1| − 1

3a2|g| ,

which contradicts to Lemma 4 or 5. Thus θ3 is not a rational integer as well as θ1 and θ2.
These imply φ(x) is irreducible and has three real roots. ThereforeK = Q(θ) is a totally real
cubic field. Hence by (1) we have

NK/Q(aθ + b) = 1 and NK/Q(cθ + d) = 1,

i.e., aθ + b, cθ + d ∈ E+
θ .

Next we shall show that aθ+b and cθ+d generateE+
θ . First we recall θ(0) > θ(1) > θ(2).

Using this, we define integers i, i ′ and i ′′ by θ1 = θ(i), θ2 = θ(i
′) and θ3 = θ(i

′′) respectively.
In order to prove that they generateE+

θ , we shall show that (−1)i(aθ+b)−1 is the fundamental
Ci unit by using Theorem G. To prove this, at first, we shall determine ni in Theorem G (see
(13) below), next check the conditions in Theorem G (see (14), Lemmas 7 and 9 below), and
finally determinemi, li in Theorem G (see Lemma 8 below). If 2 ≤ |c| < |d|, then the above

argument implies that (−1)i
′
(cθ + d)−1 is also the fundamental Ci′ unit. If d = 0, then we

shall also get a same result by using Theorem T.
We assume 2 ≤ |a| < |b|, (1) and (2) hold. For i defined above, by Lemma 2, we have∣∣−θ(i) − b

a

∣∣ < 1
3a2|g | <

1
2a2 . Hence there exists a natural number ni such that

pi,ni = sgn(−θ(i))|b| = sgn(a)b and qi,ni = |a| . (13)

by the well known fact on the continued fraction (cf. [4] chap.X Theorem 184). And we have

ki,ni+1 <
1

2
qi,ni+1 (14)

by qi,ni+1 = qi,ni ki,ni+1 + qi,ni−1 and qi,ni = |a| ≥ 2.

LEMMA 6. If the assumptions in Theorem 1 or 2 hold, then we have

ki,ni+1 > 3|a| .

PROOF. Note that the minimal polynomial of −θ(i) is −φ(−x). By (11), Lemma 4 or 5,

−φ(−x) is a monotone function between −θ(i) and b
a

, where we use the following elementary
fact: if u < v are two consecutive real roots of an equation of degree 3 with real coefficients
and w is the extreme point between them, then we have

2u+ v

3
≤ w ≤ u+ 2v

3
.
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Hence we have

qi,ni pi,ni−1 − pi,ni qi,ni−1 = |a|pi,ni−1 − sgn(a)bqi,ni−1

= sgn

(
−θ(i) − b

a

)

= sgn

(
φ

(
−b
a

))
sgn

(
φ′
(

−b
a

))

= sgn(−a)sgn

(
φ′
(

−b
a

))
. (15)

We put S = ∣∣aφ′ (− b
a

)∣∣ − 3qi,ni−1

|a| . Then S is a rational integer. Indeed, by |a|φ′ (− b
a

) =
|a|
(

3 b
2

a2 − 2e b
a

+ f
)

≡ 3b2

|a| (mod 1), we have

S = sgn

(
φ′
(

−b
a

))
|a|φ′

(
−b
a

)
− 3qi,ni−1

|a|

≡ sgn

(
φ′
(

−b
a

))
3b2

|a| − 3qi,ni−1

|a| (mod 1)

≡ 3
sgn
(
φ′(− b

a

))
b2 − qi,ni−1

|a| (mod 1).

Hence it is sufficient to show sgn
(
φ′( − b

a

))
b2 ≡ qi,ni−1 (mod a). This is equivalent to

qi,ni−1b ≡ sgn
(
φ′(− b

a

))
(mod a) by (1), and holds by (15). Therefore S is a rational integer.

Moreover by (2), we have S > 3|a|. By (15), the following holds for an indeterminate T :

− sgn(a)bT + pi,ni−1

|a|T + qi,ni−1
= −b

a
− |a|pi,ni−1 − sgn(a)bqi,ni−1

|a|(|a|T + qi,ni−1)

= −b
a

+ sgn
(
φ′ (− b

a

))
a(|a|T + qi,ni−1)

.

Hence we have

−φ
(

− sgn(a)bT + pi,ni−1

|a|T + qi,ni−1

)

= −φ
(

−b
a

)
− φ′

(
−b
a

)(
sgn
(
φ′(− b

a

))
a(|a|T + qi,ni−1)

)
− φ′′ (− b

a

)
2

(
sgn
(
φ′(− b

a

))
a(|a|T + qi,ni−1)

)2

−
(

sgn
(
φ′(− b

a

))
a(|a|T + qi,ni−1)

)3

= 1

a3(|a|T + qi,ni−1)2

{
(|a|T + qi,ni−1)

2 − a2
∣∣∣∣φ′
(

−b
a

)∣∣∣∣ (|a|T + qi,ni−1)
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− aφ′′(− b
a

)
2

− sgn
(
φ′(− b

a

))
|a|T + qi,ni−1

}

= 1

a3(|a|(S + τ )+ qi,ni−1)2

{
(|a|τ − 2qi,ni−1)(|a|(S + τ )+ qi,ni−1)

− aφ′′(− b
a

)
2

− sgn
(
φ′ (− b

a

))
|a|(S + τ )+ qi,ni−1

}

where we put T = S + τ . Now let τ be either 0 or 2 and put

β = (|a|τ − 2qi,ni−1)(|a|(S + τ )+ qi,ni−1) and γ = −aφ
′′ (− b

a

)
2

− sgn
(
φ′(− b

a

))
|a|(S + τ )+ qi,ni−1

.

By ||a|τ − 2qi,ni−1| > 1 and (2), we have

|β| > |a|S > |a|
(∣∣∣∣aφ′

(
−b
a

)∣∣∣∣− 3

)
> |a|

∣∣∣∣φ′
(

−b
a

)∣∣∣∣ ,
hence we have

|β| − |γ | > |a|
( ∣∣∣∣φ′

(
−b
a

)∣∣∣∣−
∣∣φ′′ (− b

a

)∣∣
2

− 1

)
> 0 .

By Lemma 1, we have

sgn

(
−φ

(
− sgn(a)b(S + τ )+ pi,ni−1

|a|(S + τ )+ qi,ni−1

))
= sgn

(
a(|a|τ − 2qi,ni−1)

)

=
{

sgn(a) if τ = 2 ,

−sgn(a) if τ = 0 .

Thus we have

φ

(
− sgn(a)bS + pi,ni−1

|a|S + qi,ni−1

)
φ

(
− sgn(a)b(S + 2)+ pi,ni−1

|a|(S + 2)+ qi,ni−1

)
< 0 .

Hence −φ(−x) has a root between
sgn(a)bS+pi,ni−1

|a|S+qi,ni−1
and

sgn(a)b(S+2)+pi,ni−1

|a|(S+2)+qi,ni−1
. It coincides with

−θ(i) by (11), Lemma 4 or 5. This means S + 2 ≥ ki,ni+1 ≥ S. Hence we have ki,ni+1 >

3|a|. �

LEMMA 7. If the assumptions in Theorem 1 or 2 hold, then we have

(−1)i(aθ + b)−1 ∈ Si,ni .
PROOF. It is sufficient to show that (−1)i(aθ + b)−1 ∈ Ci and it can be expressed as

(−1)i(ηi,|a|,ni + l) such that |a| < Mi,ni and −Ni ≤ l < Ni . By the proof of Lemma 6 and



ON TOTALLY REAL CUBIC ORDERS 405

the definition of i, we have

sgn(aθ(i) + b) = sgn

(
φ′
(

−b
a

))
= (−1)i .

Hence by (11), we have 0 < (−1)i(aθ(i) + b) < 1, and by Lemma 4 or 5, we have |aθ(i′) +
b| > 1, |aθ(i′′) + b| > 1, i.e., (−1)i(aθ + b)−1 ∈ Ci . Next, we shall show |a| < Mi,ni .
We have qi,ni+1 = ki,ni+1|a| + qi,ni−1 < |a|(ki,ni+1 + 1) by (13) and qi,ni−1 < |a|, and

λi = 1
|θ(i′)−θ(i′′)| = 1

|θ2−θ3| <
1

4 max{|a|,|c|}− 1
2
< 2

7|a| by Lemma 4 or 5. Hence we have

Mi,ni = 
ki,ni+1 − 2λiqi,ni+1�

≥
⌈
ki,ni+1 − 4

7
(ki,ni+1 + 1)

⌉

=
⌈

3ki,ni+1 − 4

7

⌉

≥
⌈

9|a| − 1

7

⌉
> |a|

by Lemma 6. Finally, we shall show −Ni ≤ l < Ni . By elementary calculation and (1), we

have (aθ + b)−1 = a2θ2 + (a2e − ab)θ + a3g+1
b

. On the other hand, by (13) we have

ηi,|a|,ni = |a|qi,ni θ2 + |a|(qi,ni e − pi,ni )θ −
⌊ |a|gqi,ni

θ (i)

⌋

= a2θ2 + (a2e − ab)θ −
⌊

ga2

θ(i)

⌋
.

Hence we have

l = (aθ + b)−1 − ηi,|a|,ni

= a3g + 1

b
+
⌊
a2g
θ(i)

⌋

=
⌊
a2g

(
a

b
+ 1

θ(i)

)
+ 1

b

⌋
.

Now by (11), we have ∣∣∣∣a2g
(
a

b
+ 1

θ(i)

)∣∣∣∣ = |a2g|
∣∣ b
a

+ θ(i)
∣∣∣∣ b

a

∣∣∣∣θ(i)∣∣ <
1

2
.

Hence by
∣∣ 1
b

∣∣ < 1
2 , we have

l = 0 or − 1 .

By the definition of Ni , we have 1 ≤ Ni . Hence we have −Ni ≤ l < Ni . This completes the
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proof of Lemma 7. �

Let us determine mi and li in Theorem G.

LEMMA 8. If the assumptions in Theorem 1 or 2 hold, then we have

mi = |a| and li = (aθ + b)−1 − ηi,|a|,ni .

PROOF. By Lemma 7,m = |a| and l = (aθ+b)−1 −ηi,|a|,ni imply (−1)i(ηi,m,ni + l) ∈
Si,ni . Hence it is sufficient to prove that there exists no other pair (m, l) with 1 ≤ m ≤ |a|
such that (−1)i(ηi,m,ni + l) ∈ Si,ni . By (13), for any m and l we have

(aθ + b)(ηi,m,ni + l)

= (aθ + b)

(
m|a|θ2 +m(|a|e− sgn(a)b)θ −

⌊
mg|a|
θ(i)

⌋
+ l

)

=
(
m|a|−ga3 − 1

ab
+ a

(
−
⌊
mg|a|
θ(i)

⌋
+ l

))
θ − gma|a| + b

(
−
⌊
mg|a|
θ(i)

⌋
+ l

)

= Aθ + m

|a| + bA

a

where A = m|a|−ga3−1
ab

+ a
(− ⌊mg |a|

θ(i)

⌋+ l
)
. We note that A ∈ Z by (1). If A �= 0, then we

have

NK/Q

(
Aθ + m

|a| + bA

a

)
= A3NK/Q

(
θ −

(
−b
a

− m

A|a|
))

= −A3φ

(
−b
a

− m

A|a|
)
,

and hence we have

A3 +m|a|aφ′
(

−b
a

)
A2 − m2a

2
φ′′
(

−b
a

)
A+ a

|a|m
3 −∆Na

3 = 0 , (16)

where ∆N = NK/Q
(
Aθ + m

|a| + bA
a

)
. This also holds for A = 0. If ηi,m,ni + l is a unit,

then Aθ + m
|a| + bA

a
is also a unit because aθ + b is a unit. So we set ∆N = ±1 and regard

the left-hand side of (16) as a polynomial in A, and denote it by ψ(A). To prove Lemma
8, we may show that there exist no integral roots of ψ(A) with 1 ≤ m ≤ |a| for which
(−1)i(ηi,m,ni + l) ∈ Ci other than A = 0 with m = |a| and ∆N = 1. For that, we are going
to see

ψ(1)ψ(−1) > 0 , |ψ(±1)| > |ψ(0)| (17)

and

ψ

(
−m|a|aφ′

(
−b
a

)
+ 1

)
ψ

(
−m|a|aφ′

(
−b
a

)
− 1

)
< 0 . (18)
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If (17) holds, then ψ(A) = 0 has only one root out of (−1, 1). Moreover, if (18) holds, then
the root is in (

−m|a|aφ′
(

−b
a

)
− 1,−m|a|aφ′

(
−b
a

)
+ 1

)
.

If φ′′(− b
a

) �= 0, then we have
∣∣φ′′ (− b

a

)∣∣ = 2
|a| |ae− 3b| ≥ 2

|a| , and hence∣∣∣∣ψ
(

−m|a|aφ′
(

−b
a

))∣∣∣∣ =
∣∣∣∣12m3|a|3φ′

(
−b
a

)
φ′′
(

−b
a

)
+ a

|a|m
3 −∆Na

3
∣∣∣∣

≥
∣∣∣∣a2φ′

(
−b
a

)∣∣∣∣− 2|a|3

> 0

by (2). Therefore the root is not an integer because −m|a|aφ′ (− b
a

)
is a unique integer in the

above interval. If φ′′ (− b
a

) = 0 and ψ
(−m|a|aφ′ (− b

a

)) = 0, then we have e = 3 b
a

, m = |a|
and∆N = 1. Hence by (1) we have

−m|a|aφ′
(

−b
a

)
= −a3

(
−3b2

a2 + f

)
= a

(
b2 − ga3 + 1

b

)
.

On the other hand by the definition of A, we have

A = a

(
−ga3 + 1

b
−
⌊

ga2

θ(i)

⌋
+ l

)
.

Hence l must be equal to b2+⌊ ga2

θ(i)

⌋
. Then we have ηi,|a|,ni + l = (aθ+b)2. By Lemma 2, we

have |aθ(i) + b| < 1, and hence (−1)i(ηi,|a|,ni + l) �∈ Ci . Hence there exist no integral roots

of ψ(A) with 1 ≤ m ≤ |a| for which (−1)i(ηi,m,ni + l) ∈ Ci other than A = 0. Therefore
Lemma 8 holds. Now we shall show (17) and (18). Let δ be either 0 or 1. We have

ψ

(
−m|a|aφ′

(
−b
a

)
δ ± 1

)

=
(

−m|a|aφ′
(

−b
a

)
δ ± 1

){
±(−1)δm|a|aφ′

(
−b
a

)
− m2a

2
φ′′
(

−b
a

)
+ 1

}
+ ψ(0) .

Put
β = ±(−1)δm|a|aφ′

(
−b
a

)
and γ = −m

2a

2
φ′′
(

−b
a

)
+ 1 + ψ(0) .

By (2) and 1 ≤ m ≤ |a|, we have

|β| − |γ | − |ψ(0)| > ma2
(∣∣∣∣φ′

(
−b
a

)∣∣∣∣− m

2|a|
∣∣∣∣φ′′

(
−b
a

)∣∣∣∣− 1

ma2 − 2m2

a2 − 2|a|
m

)
> 0 .
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Hence by
∣∣−m|a|aφ′ (− b

a

)
δ ± 1

∣∣ ≥ 1 and Lemma 1, we have |ψ(±1)| > |ψ(0)| and

sgn

(
ψ

(
−m|a|aφ′

(
−b
a

)
δ ± 1

))

= sgn

{(
−m|a|aφ′

(
−b
a

)
δ ± 1

)(
±(−1)δm|a|aφ′

(
−b
a

))}

=
{±1 if δ = 1 ,

sgn
(
aφ′(− b

a

))
if δ = 0 .

These mean that (17) and (18) hold. This completes the proof of Lemma 8. �

LEMMA 9. If the assumptions in Theorem 1 or 2 hold, then we have δi < 1
2 .

PROOF. By Lemma 4 or 5 and |a| ≥ 2, we have

δi = 1

|θ(i′) − θ(i
′′)|
(

1

|θ(i) − θ(i
′)| + 1

|θ(i) − θ(i
′′)|
)

= 1

|θ2 − θ3|
(

1

|θ1 − θ2| + 1

|θ1 − θ3|
)

<




1

4 max{|a|, |c|} − 1
2

(
3

2
min{|a|, |c|} + 1

4 max{|a|, |c|} − 1
2

)
if 2 ≤ |c| < |d|

1

4|a| − 1
2

(
1 + 24

53

)
if |c| = 1, d = 0

<
1

2
. �

Hence by (14), Lemmas 7,8,9 and Theorem G, (−1)i(aθ + b)−1 is the fundamental Ci unit.
On the other hand, if 2 ≤ |c| < |d|, then c and d satisfy the same conditions with respect to a

and b; therefore (−1)i
′
(cθ + d)−1 is also the fundamental Ci′ unit. Hence, by Theorem B, we

have E+
θ = 〈aθ + b, cθ + d〉 and this completes the proof of Theorem 1. Finally, we shall

show that (−1)i
′
(cθ)−1 = −(−1)i

′
gθ−1 is the fundamental Ci′ unit if d = 0. If a, b, c, d

and φ(x) satisfy the assumptions in Theorem 2, then so do −a, b,−c, d and −φ(−x), and

the last polynomial has three real roots −θ(0) < −θ(1) < −θ(2). Hence we may assume that

|θ(2)| < θ(0) and 1 < θ(0) without loss of generality. Now we use Theorem T to determine

the fundamental Ci′ unit. If 1 < θ(1), then i ′ = 2, i.e. θ(2) = θ(i
′) = θ2. Hence, by Lemma 5,

we have

(θ(0) − θ(1))(1 + gθ(2)) = |θ3 − θ1|(1 + gθ2)

>
53

24

(
1 − 1

4|a|
)

> 2 .
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Hence −gθ−1 is the fundamental C2 unit. Next suppose θ(1) ≤ 1. By Lemmas 2 and 5, we
have |θ1| > 1 and

|θ3| = | − e − θ1 − θ2|

>

∣∣∣∣e − b

a

∣∣∣∣− 1

3a2
− 1

4|a|
> 1 .

Therefore the absolute values of two of three roots : θ(2) < θ(1) < θ(0) are greater than 1.

Hence we have θ(2) < −1 and i ′ = 1, i.e., θ(1) = θ(i
′) = θ2. By Theorem B and Theorem T,

we obtain E+
θ = 〈aθ + b, cθ〉. This completes the proof of Theorem 2.

In the end we shall prove Theorem 3. By Remark 2, we can construct infinitely many
polynomials which satisfy (1)–(5) or (6)–(10) using a polynomial φ(x)which satisfies (1). Let
Φ(x) be a cubic monic polynomial in x. Then the following two statements are equivalent:

1. Φ(x) satisfies (1),

2. Φ
( − b

a

) = (− 1
a

)3, Φ
( − d

c

) = (− 1
c

)3.
Now for a rational integer n, put A = a,B = an + b,C = c,D = cn + d and Φ(x) =
φ(x + n). Then Φ(x) is a cubic monic polynomial in x and satisfies the second condition
of the above for A,B,C,D. And let θ be a root of φ(x) and put Θ = θ − n. Then Θ
is a root of Φ(x) and AΘ + B = aθ + b,CΘ + D = cθ + d . Hence we may assume
|a| < |b| and |c| < |d| without loss of generality. This completes the proof of Theorem 3 for
|a| ≥ 2, |c| ≥ 2. Next suppose |c| = 1 and put n = −cd . Then D = 0 and |B| = |ad − bc|.
Hence if |c| = 1, we may assume d = 0 without loss of generality. Suppose d = 0 and put

A = bc, B = ac,C = c,D = 0 and Φ(x) = −cφ( 1
x

)
x3. Then Φ(x) satisfies the second

condition of the above for A,B,C,D and Θ = 1
θ

is a root of Φ(x). Furthermore we have

〈AΘ + B,CΘ +D〉 =
〈
bc

1

θ
+ ac, c

1

θ

〉
= 〈aθ + b, cθ〉 ,

|A| ≶ |B| ⇔ |a| ≷ |b| .
Hence if |c| = 1, we may consider a,−acd+ b (we again note that its absolute value is equal
to |ad − bc|),c, 0 instead of a, b, c, d and assume |a| < |ad − bc| without loss of generality.
This completes the proof of Theorem 3 for |a| ≥ 2 and |c| = 1.
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