On Totally Real Cubic Orders Whose Unit Groups are of Type $\langle a \theta+b, c \theta+d\rangle$

Kenji MINEMURA

Nagoya University
(Communicated by A. Mizutani)

1. Introduction

Let $\phi(x)$ be a cubic, monic and irreducible polynomial in x with rational integer coefficients and three real roots. We fix one of these roots and denote it by θ. Set $K=\mathbf{Q}(\theta)$, and let E_{K} be the unit group of K and E_{K}^{+}the subgroup of E_{K} which consists of units with norm +1 . By Dirichlet's unit theorem, E_{K}^{+}is generated by two units and so is $\mathbf{Z}[\theta] \cap E_{K}^{+}$. Hereafter we denote the latter by E_{θ}^{+}. It is difficult to determine the generators of E_{θ}^{+}even though that problem is important for number theory. In this paper, for given $a, b, c, d \in \mathbf{Z}$, we shall find conditions under which $E_{\theta}^{+}=\langle a \theta+b, c \theta+d\rangle$. As a result, we shall obtain new infinite families of $\mathbf{Z}[\theta]$ with explicit generators of E_{θ}^{+}, which will give useful examples for further study.

In 1972, Stender[6] found families of $\phi(x)$ such that $E_{\theta}^{+}=\langle\theta+b, \theta+d\rangle$ for rational integers b, d with $2 \leq b \leq d-3$ by using Berwick's theorem[1]. In 1979, Thomas [7] found families of $\phi(x)$ such that $E_{\theta}^{+}=\langle a \theta+1, \theta+d\rangle$ and $\langle a \theta+1, c \theta+1\rangle$ for rational integers a, c, d with $a \geq 4$ and some other conditions by using the continued fraction expansion of a certain conjugate of θ. In 1995, Grundman [3] modified Thomas's technique for determining fundamental systems of units, and determined all a with $|a|>1$ such that $E_{\theta}^{+}=\langle a \theta+1,2 \theta+3\rangle$ for some totally real number θ of degree 3 , and found families of $\phi(x)$ for each a. We shall further utilize this method under a more general condition that $a \theta+b, c \theta+d \in E_{\theta}^{+}$.

THEOREM 1. For rational integers a, b, c and d, assume the following conditions:

1. $|a d-b c|>\max \{|a|,|c|\}, 2 \leq|a|<|b|$ and $2 \leq|c|<|d|$,
2. there exist rational integers e, f and g such that

$$
\begin{equation*}
b^{3}-e a b^{2}+f a^{2} b-g a^{3}=1, \quad d^{3}-e c d^{2}+f c^{2} d-g c^{3}=1 \tag{1}
\end{equation*}
$$

3.

$$
\begin{align*}
\left\lvert\, \begin{array}{l}
\phi^{\prime}\left(-\frac{b}{a}\right) \left\lvert\,>\max \left\{\frac{\left|\phi^{\prime \prime}\left(-\frac{b}{a}\right)\right|}{6 a^{2}|g|}+\left(\frac{1}{3 a^{2}|g|}\right)^{2}+\frac{3|g|}{|a|}, \frac{\left|\phi^{\prime \prime}\left(-\frac{b}{a}\right)\right|}{2}+1+2|a|\right\}\right. \\
\left|\phi^{\prime}\left(-\frac{d}{c}\right)\right|>\max \left\{\frac{\left|\phi^{\prime \prime}\left(-\frac{d}{c}\right)\right|}{6 c^{2}|g|}+\left(\frac{1}{3 c^{2}|g|}\right)^{2}+\frac{3|g|}{|c|}, \frac{\left|\phi^{\prime \prime}\left(-\frac{d}{c}\right)\right|}{2}+1+2|c|\right\} \\
\\
\left|e-\frac{d}{c}-2 \frac{b}{a}\right|>4 \max \{|a|,|c|\}
\end{array}\right. \tag{2}\\
\left|e-\frac{b}{a}-2 \frac{d}{c}\right|>4 \max \{|a|,|c|\} \tag{3}
\end{align*}
$$

where we put $\phi(x)=x^{3}+e x^{2}+f x+g$.
Then $\phi(x)$ is irreducible and has three real roots. Let θ be a root of $\phi(x)$. Then E_{θ}^{+}is generated by $a \theta+b$ and $c \theta+d$.

If $d=0$, then we can get the following theorem.
THEOREM 2. For rational integers a, b and c, assume the following conditions:

1. $2 \leq|a|<|b|$ and $|c|=1$,
2. there exist rational integers e and f such that

$$
\begin{equation*}
b^{3}-e a b^{2}+f a^{2} b+c a^{3}=1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\pm e+f \neq 1 \tag{7}
\end{equation*}
$$

3.

$$
\begin{gather*}
\left|\phi^{\prime}\left(-\frac{b}{a}\right)\right|>\frac{\left|\phi^{\prime \prime}\left(-\frac{b}{a}\right)\right|}{2}+1+2|a| \tag{8}\\
\left|e-\frac{b}{a}\right|>4|a| \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|e-2 \frac{b}{a}\right|>\frac{5}{2} \tag{10}
\end{equation*}
$$

where we put $\phi(x)=x^{3}+e x^{2}+f x-c$.
Then $\phi(x)$ is irreducible and has three real roots. Let θ be a root of $\phi(x)$. Then E_{θ}^{+}is generated by $a \theta+b$ and $c \theta$.

THEOREM 3. For rational integers a, b, c and d, assume that

$$
|a d-b c|>\max \left\{|a c|,\left|\frac{3 b d}{a}\right|,\left|\frac{3 b d}{c}\right|\right\}, \quad|a c| \geq 2
$$

and there exist rational integers e, f and g which satisfy (1). Then we can explicitly construct infinitely many cubic irreducible polynomials $\phi(x)$ such that $E_{\theta}^{+}=\langle a \theta+b, c \theta+d\rangle$, where θ is a root of $\phi(x)$.

REMARK 1. When $D:=a c(a d-b c) \neq 0$, we see that the simultaneous diophantine equations (1) is solvable if and only if $D \operatorname{gcd}(a c, a d+b c) \mid a^{3}\left(d^{3}-1\right)-c^{3}\left(b^{3}-1\right)$, $D \operatorname{gcd}(a c, b d) \mid a^{2} b\left(d^{3}-1\right)-c^{2} d\left(b^{3}-1\right)$ and $D \operatorname{gcd}(a c, b d, a d+b c) \mid a b^{2}\left(d^{3}-1\right)-$ $c d^{2}\left(b^{3}-1\right)$. Then, the simultaneous congruences
$D(a d+b c) e \equiv a^{3}\left(d^{3}-1\right)-c^{3}\left(b^{3}-1\right), D b d e \equiv a^{2} b\left(d^{3}-1\right)-c^{2} d\left(b^{3}-1\right)(\bmod \operatorname{Dac})$ have a solution $e \in \mathbf{Z}$, and we may put

$$
f=\frac{a^{3}\left(d^{3}-1\right)-c^{3}\left(b^{3}-1\right)-D(a d+b c) e}{D a c}, g=\frac{a^{2} b\left(d^{3}-1\right)-c^{2} d\left(b^{3}-1\right)-D b d e}{D a c} .
$$

Moreover, all solutions of (1) are given by

$$
e+t \frac{a c}{\operatorname{gcd}(a c, b d, a d+b c)}, \quad f+t \frac{a d+b c}{\operatorname{gcd}(a c, b d, a d+b c)}, \quad g+t \frac{b d}{\operatorname{gcd}(a c, b d, a d+b c)}
$$

with $t \in \mathbf{Z}$.
REMARK 2. When $G:=\operatorname{gcd}(a c, b d, a d+b c)$, if rational integers e, f and g satisfy (1), then for any rational integer t,

$$
e^{\prime}=e+\frac{a c}{G} t, \quad f^{\prime}=f+\frac{a d+b c}{G} t, \quad g^{\prime}=g+\frac{b d}{G} t
$$

also satisfy (1) by Remark 1. For these rational integers, we define $\phi(x)=x^{3}+e^{\prime} x^{2}+f^{\prime} x+g^{\prime}$. Then we have

$$
\begin{aligned}
& \left|\phi^{\prime}\left(-\frac{b}{a}\right)\right|=\left|3\left(-\frac{b}{a}\right)^{2}+2\left(e+\frac{a c}{G} t\right)\left(-\frac{b}{a}\right)+f+\frac{a d+b c}{G} t\right|=\left|\frac{a d-b c}{G} t\right|+O(1) \\
& \left|\phi^{\prime \prime}\left(-\frac{b}{a}\right)\right|=\left|6\left(-\frac{b}{a}\right)+2\left(e+\frac{a c}{G} t\right)\right|=2\left|\frac{a c}{G} t\right|+O(1) \\
& \left|\phi^{\prime}\left(-\frac{d}{c}\right)\right|=\left|3\left(-\frac{d}{c}\right)^{2}+2\left(e+\frac{a c}{G} t\right)\left(-\frac{d}{c}\right)+f+\frac{a d+b c}{G} t\right|=\left|\frac{a d-b c}{G} t\right|+O(1), \\
& \left|\phi^{\prime \prime}\left(-\frac{d}{c}\right)\right|=\left|6\left(-\frac{d}{c}\right)+2\left(e+\frac{a c}{G} t\right)\right|=2\left|\frac{a c}{G} t\right|+O(1)
\end{aligned}
$$

Hence if $|a d-b c|>\max \left\{|a c|,\left|\frac{3 b d}{a}\right|,\left|\frac{3 b d}{c}\right|\right\}$, then we can find infinitely many rational integers t for which e^{\prime}, f^{\prime} and g^{\prime} satisfy (2)-(5) or (7)-(10). Therefore, we can obtain infinitely many polynomials $\phi(x)$ such that $E_{\theta}^{+}=\langle a \theta+b, c \theta+d\rangle$ (See Examples 1 and 2 below).

REMARK 3. If the discriminant of $\phi(x)$ is square-free, then $\mathbf{Z}[\theta]$ coincides with the ring of integers of K (cf. [2] chap. 4 Corollary 4.4.7) and $E_{\theta}^{+}=E_{K}^{+}$. If the discriminant of $\phi(x)$ is perfect square, then K / \mathbf{Q} is a Galois extension.

Remark 4. Thomas [7] studied on $\phi(x)$ such that $E_{\theta}^{+}=\langle a \theta+1, \theta+d\rangle$ with some conditions. In other words, he investigated $\langle\theta, a \theta+b\rangle$ for $b \equiv 1(\bmod a)$. Therefore Theorem 2 is an extension of Thomas's work (see Example 2 below).

REmARK 5. To prove Theorem 2, we use Theorem T (See section 2), in which the case $e+f=1$ is excluded. In this case we are not sure whether $E_{\theta}^{+}=\langle a \theta+b, \theta\rangle$ or not. But Thomas [7] gave families of $\phi(x)$ such that $E_{\theta}^{+}=\langle-\theta+1, \theta\rangle$, which are examples for the case $e+f=1$.

Remark 6. Stender [6], Watabe [8] and Minemura [5] studied in the case $|a|=$ $1,|c|=1$.

We give examples for $b \not \equiv 1(\bmod a)$, in which there has been no example until now. The following is an example of Theorem 1.

Example 1. Put $a=7, b=11, c=7$ and $d=43$. Then for each $t \in \mathbf{Z}$, the integers $e=49 t+39, f=378 t+251$ and $g=473 t+302$ satisfy (1). And if

$$
t \neq 0,-1
$$

hold, then $\phi(x)=x^{3}+e x^{2}+f x+g$ is irreducible and has three real roots. Let θ be a root of $\phi(x)$. Then $E_{\theta}^{+}=\langle 7 \theta+11,7 \theta+43\rangle$ holds.

The following is an example of Theorem 2.
EXAMPLE 2. For $r \neq-1,0$, put $a=r^{2}+r+1, b=\left(a^{2}+a+1\right) r, c=1$ and $d=0$. Then for each $t \in \mathbf{Z}$, the integers $e=r-1+a t, f=-a^{2} r^{2}-a^{2}-r^{2}+b t$ and $g=-1$ satisfy (6). And if

$$
|t-2 r| \geq 5, \quad|t-r| \geq 3
$$

hold, then $\phi(x)=x^{3}+e x^{2}+f x-1$ is irreducible and has three real roots. Let θ be a root of $\phi(x)$. Then $E_{\theta}^{+}=\langle a \theta+b, \theta\rangle$ holds.

2. Preliminaries

Before we prove our theorems, we give some notations which are used throughout this paper. For a cubic irreducible polynomial $\phi(x)=x^{3}+e x^{2}+f x+g \in \mathbf{Z}[x]$ which has three real roots, set $K=\mathbf{Q}(\theta)$ where θ is one of the three roots of $\phi(x)$. Let E_{K} be the unit group of
K and E_{K}^{+}the subgroup of E_{K} which consists of units of norm +1 and set $E_{\theta}^{+}=\mathbf{Z}[\theta] \cap E_{K}^{+}$. Let $\theta^{(i)}(i=0,1,2)$ be the conjugates of θ over \mathbf{Q}. And let

$$
\theta^{(0)}>\theta^{(1)}>\theta^{(2)},
$$

which is also assumed in Theorem G and Theorem T below which are the bases of our theorems. For $i, i^{\prime}, i^{\prime \prime} \in\{0,1,2\}, i \neq i^{\prime} \neq i^{\prime \prime} \neq i, m, n \in \mathbf{Z}, m>0, n \geq 0$, let $-\theta^{(i)}=\left[k_{i, 0}, k_{i, 1}, \cdots\right]$ be the continued fraction expansions of $-\theta^{(i)}$ and $\frac{p_{i, n}}{q_{i, n}}$ the nth principal convergents of $-\theta^{(i)}$, and define

$$
\begin{aligned}
\lambda_{i} & :=\frac{1}{\left|\theta^{\left(i^{\prime}\right)}-\theta^{\left(i^{\prime \prime}\right)}\right|}, \\
\delta_{i} & :=\lambda_{i}\left(\lambda_{i^{\prime}}+\lambda_{i^{\prime \prime}}\right) \\
M_{i, n} & :=\left\lceil k_{i, n+1}-2 \lambda_{i} q_{i, n+1}\right\rceil, \\
N_{i} & :=\left\lceil\lambda_{i}\left(\left|\theta^{\left(i^{\prime}\right)}\right|+\left|\theta^{\left(i^{\prime \prime}\right)}\right|\right)\right\rceil, \\
\eta_{i, m, n} & :=m q_{i, n} \theta^{2}+m\left(q_{i, n} e-p_{i, n}\right) \theta-\left\lfloor\frac{m g q_{i, n}}{\theta^{(i)}}\right\rfloor, \\
C_{i} & :=\left\{\eta \in \mathbf{Z}[\theta]: \eta^{(i)}>1,\left|\eta^{\left(i^{\prime}\right)}\right|<1 \text { and }\left|\eta^{\left(i^{\prime \prime}\right)}\right|<1\right\},
\end{aligned}
$$

and if $M_{i, n} \geq 1$, we define

$$
\begin{aligned}
S_{i, n} & :=\left\{\gamma \in C_{i} \cap E_{K}: \gamma=(-1)^{i}\left(\eta_{i, m, n}+l\right)\right. \\
& \text { with } \left.1 \leq m \leq M_{i, n},-N_{i} \leq l<N_{i}, m, l \in \mathbf{Z}\right\}
\end{aligned}
$$

where $\lceil\alpha\rceil$ means the least integer which is greater than or equal to α, and $\lfloor\alpha\rfloor$ means the greatest integer which is less than or equal to α.

The following three theorems are the bases of our theorems.
THEOREM B (Berwick [1]). 1. There exists a unit in each $C_{i}(i=0,1,2)$.
2. There exists a unit $\varepsilon_{i} \in C_{i}$ such that $\varepsilon_{i}^{(i)} \leq \eta^{(i)}$ for every unit $\eta \in C_{i}$. Moreover, any two of the three units $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}$ form a fundamental system of units for $\mathbf{Z}[\theta]$.
We call ε_{i} in Theorem B the fundamental C_{i} unit.
Theorem G (Grundman [3]). Let $\theta^{(0)}>\theta^{(1)}>\theta^{(2)}$. Suppose $\delta_{i}<\frac{1}{2}$. If there exists an integer n_{i} such that

$$
k_{i, n_{i}+1} \leq \frac{1}{2} q_{i, n_{i}+1} \quad \text { and } \quad S_{i, n_{i}} \neq \emptyset
$$

then $(-1)^{i}\left(\eta_{i, m_{i}, n_{i}}+l_{i}\right)$ is the fundamental C_{i} unit, where

$$
\begin{aligned}
m_{i} & :=\min \left\{m:(-1)^{i}\left(\eta_{i, m, n_{i}}+l\right) \in S_{i, n_{i}} \text { for some } l\right\}, \\
l_{i} & :=\min \left\{l:(-1)^{i}\left(\eta_{i, m_{i}, n_{i}}+l\right) \in S_{i, n_{i}}\right\}
\end{aligned}
$$

REMARK 7. Grundman [3] stated the theorem only for $i=1,2$, but the proof still goes through for $i=0$.

THEOREM T (Thomas [7]). Let $\theta^{(0)}>\theta^{(1)}>\theta^{(2)}$. Suppose $g= \pm 1,(e+f, g) \neq$ $(1,-1)$.
(a) If $1<\theta^{(1)}<\theta^{(0)}$ and $\left(\theta^{(0)}-\theta^{(1)}\right)\left(1+g \theta^{(2)}\right)>2$, then $-g \theta^{-1}$ is the fundamental C_{2} unit.
(b) If $\theta^{(2)}<-1,1<\theta^{(0)}$ and $\theta^{(0)}>\left|\theta^{(2)}\right|$, then $g \theta^{-1}$ is the fundamental C_{1} unit.

3. Proof of Theorems $\mathbf{1 , 2}$ and 3

In this section, we shall prove Theorems 1, 2 and 3. First, we shall show that if the assumptions in Theorem 1 or 2 hold, then $\phi(x)$ is irreducible and has three real roots. We use the following elementary lemma all over our proofs.

Lemma 1. For real numbers α, β and γ, if $\alpha=\beta+\gamma$ and $|\beta|>|\gamma|$, then $\operatorname{sgn}(\alpha)=$ $\operatorname{sgn}(\beta)$.

Now by $\phi\left(-\frac{b}{a}\right)=-\frac{1}{a^{3}}$, if $|a|$ and $\left|\phi^{\prime}\left(-\frac{b}{a}\right)\right|$ are sufficiently large, then we have a real root of $\phi(x)$ nearby $-\frac{b}{a}$. Indeed we have the following lemma.

Lemma 2. If $2 \leq|a|<|b|$, (1) and (2) hold, then there exists at least one root of $\phi(x)$ in

$$
\left(-\frac{b}{a}-\frac{1}{3 a^{2}|g|},-\frac{b}{a}+\frac{1}{3 a^{2}|g|}\right) .
$$

Proof. Let y be an indeterminate. Then we have

$$
\begin{aligned}
\phi\left(-\frac{b}{a}+y\right) & =\phi\left(-\frac{b}{a}\right)+\phi^{\prime}\left(-\frac{b}{a}\right) y+\frac{\phi^{\prime \prime}\left(-\frac{b}{a}\right)}{2} y^{2}+y^{3} \\
& =\phi^{\prime}\left(-\frac{b}{a}\right) y+\frac{\phi^{\prime \prime}\left(-\frac{b}{a}\right)}{2} y^{2}+y^{3}-\frac{1}{a^{3}}
\end{aligned}
$$

Let $|y|=\frac{1}{3 a^{2}|g|}$ and let β and γ be the first term and the remains of the above respectively. By (2), we have

$$
\begin{aligned}
|\beta|-|\gamma| & \geq \frac{1}{3 a^{2}|g|}\left\{\left|\phi^{\prime}\left(-\frac{b}{a}\right)\right|-\left(\frac{1}{3 a^{2}|g|}\right) \frac{\left|\phi^{\prime \prime}\left(-\frac{b}{a}\right)\right|}{2}-\left(\frac{1}{3 a^{2}|g|}\right)^{2}-\frac{3|g|}{|a|}\right\} \\
& >0
\end{aligned}
$$

Hence by Lemma 1 the signs of $\phi\left(-\frac{b}{a} \pm \frac{1}{3 a^{2}|g|}\right)$ are equal to those of $\pm \phi^{\prime}\left(-\frac{b}{a}\right)$ respectively.

So we have

$$
\phi\left(-\frac{b}{a}+\frac{1}{3 a^{2}|g|}\right) \phi\left(-\frac{b}{a}-\frac{1}{3 a^{2}|g|}\right)<0
$$

and this completes the proof of Lemma 2.
Hereafter, let θ_{1} be a root of $\phi(x)$ which satisfies the condition of Lemma 2, and fix it. Then Lemma 2 means

$$
\begin{equation*}
\left|\theta_{1}+\frac{b}{a}\right|<\frac{1}{3 a^{2}|g|} \tag{11}
\end{equation*}
$$

Similarly, we shall obtain the second real root θ_{2} nearby $-\frac{d}{c}$. Indeed, if $2 \leq|c|<|d|$ and (3) hold, then there exists a real root θ_{2} of $\phi(x)$ such that

$$
\begin{equation*}
\left|\theta_{2}+\frac{d}{c}\right|<\frac{1}{3 c^{2}|g|} \tag{12}
\end{equation*}
$$

by Lemma 2. On the other hand, if $d=0$, then we have the following lemma.
Lemma 3. If $2 \leq|a|<|b|$, (6) and (9) hold, then there exists a real root θ_{2} of $\phi(x)$ such that

$$
\left|\theta_{2}\right|<\frac{1}{4|a|}
$$

Proof. By (6) we have $f=\frac{b}{a}\left(e-\frac{b}{a}\right)+g \frac{a}{b}+\frac{1}{a^{2} b}$. Therefore we have

$$
\begin{aligned}
\phi(x) & =x^{3}+e x^{2}+\left(\frac{b}{a}\left(e-\frac{b}{a}\right)+g \frac{a}{b}+\frac{1}{a^{2} b}\right) x+g \\
& =\left(e-\frac{b}{a}\right) x\left(x+\frac{b}{a}\right)+x^{3}+\frac{b}{a} x^{2}+\left(g \frac{a}{b}+\frac{1}{a^{2} b}\right) x+g
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\phi\left(\pm \frac{1}{4|a|}\right)= & \pm\left(e-\frac{b}{a}\right) \frac{1}{4|a|}\left(\pm \frac{1}{4|a|}+\frac{b}{a}\right) \\
& \pm \frac{1}{64\left|a^{3}\right|}+\frac{b}{16 a^{3}} \pm\left(g \frac{a}{b}+\frac{1}{a^{2} b}\right) \frac{1}{4|a|}+g
\end{aligned}
$$

respectively. Let β and γ be the first term and the remains of the right-hand side respectively. $\operatorname{By}(9),|g|=1$ and $2 \leq|a|<|b|$, we have

$$
\begin{aligned}
|\beta|-|\gamma| & >4|a| \frac{1}{4|a|}\left(-\frac{1}{4|a|}+\frac{|b|}{|a|}\right)-\frac{1}{64\left|a^{3}\right|}-\frac{|b|}{16\left|a^{3}\right|}-\frac{1}{4|b|}-\frac{1}{4\left|a^{3} b\right|}-1 \\
& >\frac{|b|}{|a|}-\frac{1}{4|a|}-\frac{|b|}{16\left|a^{3}\right|}-\frac{1}{2|a|}-1 \\
& >0
\end{aligned}
$$

Hence by Lemma 1 the sign of $\phi\left(\pm \frac{1}{4|a|}\right)$ is equal to that of β. Therefore we have $\phi(+$ $\left.\frac{1}{4|a|}\right) \phi\left(-\frac{1}{4|a|}\right)<0$, and hence we obtain Lemma 3.

From the above, we can obtain the third real root θ_{3} of $\phi(x)$, and fix it. Next we shall show the roots θ_{1}, θ_{2} and θ_{3} are sufficiently far from each other.

Lemma 4. If the assumptions in Theorem 1 hold, then we have

$$
\left\{\begin{array}{l}
\left|\theta_{1}-\theta_{2}\right|>\frac{2}{3 \min \{|a|,|c|\}} \\
\left|\theta_{2}-\theta_{3}\right|>4 \max \{|a|,|c|\}-\frac{1}{2} \\
\left|\theta_{3}-\theta_{1}\right|>4 \max \{|a|,|c|\}-\frac{1}{2}
\end{array}\right.
$$

Proof. By Lemma 2, (12), $|a d-b c|>\max \{|a|,|c|\}, 2 \leq|a|$ and $2 \leq|c|$, we have

$$
\begin{aligned}
\left|\theta_{1}-\theta_{2}\right| & =\left|\left(\theta_{1}+\frac{b}{a}\right)-\left(\theta_{2}+\frac{d}{c}\right)-\left(\frac{b}{a}-\frac{d}{c}\right)\right| \\
& >\left|\frac{b}{a}-\frac{d}{c}\right|-\frac{1}{3 a^{2}|g|}-\frac{1}{3 c^{2}|g|} \\
& >\frac{\max \{|a|,|c|\}}{|a c|}-\frac{1}{3 a^{2}}-\frac{1}{3 c^{2}} \\
& \geq \frac{2}{3 \min \{|a|,|c|\}}
\end{aligned}
$$

By $\theta_{1}+\theta_{2}+\theta_{3}=-e$ and (5), we have

$$
\begin{aligned}
\left|\theta_{2}-\theta_{3}\right| & =\left|e+\theta_{1}+2 \theta_{2}\right| \\
& =\left|e+\left(\theta_{1}+\frac{b}{a}\right)+2\left(\theta_{2}+\frac{d}{c}\right)-\frac{b}{a}-2 \frac{d}{c}\right| \\
& >\left|e-\frac{b}{a}-2 \frac{d}{c}\right|-\frac{1}{3 a^{2}|g|}-\frac{2}{3 c^{2}|g|} \\
& >4 \max \{|a|,|c|\}-\frac{1}{2} .
\end{aligned}
$$

Similarly by (4), we have

$$
\left|\theta_{3}-\theta_{1}\right|>4 \max \{|a|,|c|\}-\frac{1}{2}
$$

Hence we obtain Lemma 4.

Lemma 5. If the assumptions in Theorem 2 hold, then we have

$$
\left\{\begin{array}{l}
\left|\theta_{1}-\theta_{2}\right|>1 \\
\left|\theta_{2}-\theta_{3}\right|>4|a|-\frac{1}{2} \\
\left|\theta_{3}-\theta_{1}\right|>\frac{53}{24}
\end{array}\right.
$$

Proof. We have

$$
\begin{aligned}
\left|\theta_{1}-\theta_{2}\right| & =\left|\left(\theta_{1}+\frac{b}{a}\right)-\theta_{2}-\frac{b}{a}\right| \\
& >\left|-\frac{b}{a}\right|-\frac{1}{3 a^{2}}-\frac{1}{4|a|} \\
& >\frac{|b|-1}{|a|} \\
& \geq 1
\end{aligned}
$$

by Lemma 2, Lemma 3 and $2 \leq|a|<|b|$,

$$
\begin{aligned}
\left|\theta_{2}-\theta_{3}\right| & =\left|e+\theta_{1}+2 \theta_{2}\right| \\
& =\left|e+\left(\theta_{1}+\frac{b}{a}\right)+2 \theta_{2}-\frac{b}{a}\right| \\
& >\left|e-\frac{b}{a}\right|-\frac{1}{3 a^{2}}-\frac{1}{2|a|} \\
& >4|a|-\frac{1}{2}
\end{aligned}
$$

by $\theta_{1}+\theta_{2}+\theta_{3}=-e$ and (9), and

$$
\begin{aligned}
\left|\theta_{1}-\theta_{3}\right| & =\left|e+2 \theta_{1}+\theta_{2}\right| \\
& =\left|e+2\left(\theta_{1}+\frac{b}{a}\right)+\theta_{2}-2 \frac{b}{a}\right| \\
& >\left|e-2 \frac{b}{a}\right|-\frac{2}{3 a^{2}}-\frac{1}{4|a|} \\
& >\frac{53}{24}
\end{aligned}
$$

by (10). Hence we obtain Lemma 5.
By (11), (12) or Lemma 3, θ_{1} and θ_{2} are not rational integers. On the other hand, by (1), we have

$$
\left(a \theta_{1}+b\right)\left(a \theta_{2}+b\right)\left(a \theta_{3}+b\right)=b^{3}-e a b^{2}+f a^{2} b-g a^{3}=1
$$

If θ_{3} is a rational integer, then we have $a \theta_{3}+b= \pm 1$. Hence we have

$$
\frac{1}{2} \geq \frac{1}{|a|}=\left|\theta_{3}+\frac{b}{a}\right|=\left|\left(\theta_{3}-\theta_{1}\right)+\left(\theta_{1}+\frac{b}{a}\right)\right|>\left|\theta_{3}-\theta_{1}\right|-\frac{1}{3 a^{2}|g|}
$$

which contradicts to Lemma 4 or 5 . Thus θ_{3} is not a rational integer as well as θ_{1} and θ_{2}. These imply $\phi(x)$ is irreducible and has three real roots. Therefore $K=\mathrm{Q}(\theta)$ is a totally real cubic field. Hence by (1) we have

$$
N_{K / \mathbf{Q}}(a \theta+b)=1 \quad \text { and } \quad N_{K / \mathbf{Q}}(c \theta+d)=1
$$

i.e., $a \theta+b, c \theta+d \in E_{\theta}^{+}$.

Next we shall show that $a \theta+b$ and $c \theta+d$ generate E_{θ}^{+}. First we recall $\theta^{(0)}>\theta^{(1)}>\theta^{(2)}$. Using this, we define integers i, i^{\prime} and $i^{\prime \prime}$ by $\theta_{1}=\theta^{(i)}, \theta_{2}=\theta^{\left(i^{\prime}\right)}$ and $\theta_{3}=\theta^{\left(i^{\prime \prime}\right)}$ respectively. In order to prove that they generate E_{θ}^{+}, we shall show that $(-1)^{i}(a \theta+b)^{-1}$ is the fundamental C_{i} unit by using Theorem G. To prove this, at first, we shall determine n_{i} in Theorem G (see (13) below), next check the conditions in Theorem G (see (14), Lemmas 7 and 9 below), and finally determine m_{i}, l_{i} in Theorem G (see Lemma 8 below). If $2 \leq|c|<|d|$, then the above argument implies that $(-1)^{i^{\prime}}(c \theta+d)^{-1}$ is also the fundamental $C_{i^{\prime}}$ unit. If $d=0$, then we shall also get a same result by using Theorem T.

We assume $2 \leq|a|<|b|$, (1) and (2) hold. For i defined above, by Lemma 2, we have $\left|-\theta^{(i)}-\frac{b}{a}\right|<\frac{1}{3 a^{2}|g|}<\frac{1}{2 a^{2}}$. Hence there exists a natural number n_{i} such that

$$
\begin{equation*}
p_{i, n_{i}}=\operatorname{sgn}\left(-\theta^{(i)}\right)|b|=\operatorname{sgn}(a) b \quad \text { and } \quad q_{i, n_{i}}=|a| \tag{13}
\end{equation*}
$$

by the well known fact on the continued fraction (cf. [4] chap.X Theorem 184). And we have

$$
\begin{equation*}
k_{i, n_{i}+1}<\frac{1}{2} q_{i, n_{i}+1} \tag{14}
\end{equation*}
$$

by $q_{i, n_{i}+1}=q_{i, n_{i}} k_{i, n_{i}+1}+q_{i, n_{i}-1}$ and $q_{i, n_{i}}=|a| \geq 2$.
Lemma 6. If the assumptions in Theorem 1 or 2 hold, then we have

$$
k_{i, n_{i}+1}>3|a|
$$

Proof. Note that the minimal polynomial of $-\theta^{(i)}$ is $-\phi(-x)$. By (11), Lemma 4 or 5 , $-\phi(-x)$ is a monotone function between $-\theta^{(i)}$ and $\frac{b}{a}$, where we use the following elementary fact: if $u<v$ are two consecutive real roots of an equation of degree 3 with real coefficients and w is the extreme point between them, then we have

$$
\frac{2 u+v}{3} \leq w \leq \frac{u+2 v}{3}
$$

Hence we have

$$
\begin{align*}
q_{i, n_{i}} p_{i, n_{i}-1}-p_{i, n_{i}} q_{i, n_{i}-1} & =|a| p_{i, n_{i}-1}-\operatorname{sgn}(a) b q_{i, n_{i}-1} \\
& =\operatorname{sgn}\left(-\theta^{(i)}-\frac{b}{a}\right) \\
& =\operatorname{sgn}\left(\phi\left(-\frac{b}{a}\right)\right) \operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right) \\
& =\operatorname{sgn}(-a) \operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right) \tag{15}
\end{align*}
$$

We put $S=\left|a \phi^{\prime}\left(-\frac{b}{a}\right)\right|-\frac{3 q_{i, n_{i}-1}}{|a|}$. Then S is a rational integer. Indeed, by $|a| \phi^{\prime}\left(-\frac{b}{a}\right)=$ $|a|\left(3 \frac{b^{2}}{a^{2}}-2 e \frac{b}{a}+f\right) \equiv \frac{3 b^{2}}{|a|}(\bmod 1)$, we have

$$
\begin{aligned}
S & =\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right)|a| \phi^{\prime}\left(-\frac{b}{a}\right)-\frac{3 q_{i, n_{i}-1}}{|a|} \\
& \equiv \operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right) \frac{3 b^{2}}{|a|}-\frac{3 q_{i, n_{i}-1}}{|a|}(\bmod 1) \\
& \equiv 3 \frac{\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right) b^{2}-q_{i, n_{i}-1}}{|a|}(\bmod 1)
\end{aligned}
$$

Hence it is sufficient to show $\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right) b^{2} \equiv q_{i, n_{i}-1}(\bmod a)$. This is equivalent to $q_{i, n_{i}-1} b \equiv \operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right)(\bmod a)$ by (1), and holds by (15). Therefore S is a rational integer. Moreover by (2), we have $S>3|a|$. By (15), the following holds for an indeterminate T :

$$
\begin{aligned}
-\frac{\operatorname{sgn}(a) b T+p_{i, n_{i}-1}}{|a| T+q_{i, n_{i}-1}} & =-\frac{b}{a}-\frac{|a| p_{i, n_{i}-1}-\operatorname{sgn}(a) b q_{i, n_{i}-1}}{|a|\left(|a| T+q_{i, n_{i}-1}\right)} \\
& =-\frac{b}{a}+\frac{\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right)}{a\left(|a| T+q_{i, n_{i}-1}\right)} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
-\phi(& \left.-\frac{\operatorname{sgn}(a) b T+p_{i, n_{i}-1}}{|a| T+q_{i, n_{i}-1}}\right) \\
= & -\phi\left(-\frac{b}{a}\right)-\phi^{\prime}\left(-\frac{b}{a}\right)\left(\frac{\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right)}{a\left(|a| T+q_{i, n_{i}-1}\right)}\right)-\frac{\phi^{\prime \prime}\left(-\frac{b}{a}\right)}{2}\left(\frac{\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right)}{a\left(|a| T+q_{i, n_{i}-1}\right)}\right)^{2} \\
& -\left(\frac{\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right)}{a\left(|a| T+q_{i, n_{i}-1}\right)}\right)^{3} \\
= & \frac{1}{a^{3}\left(|a| T+q_{i, n_{i}-1}\right)^{2}}\left\{\left(|a| T+q_{i, n_{i}-1}\right)^{2}-a^{2}\left|\phi^{\prime}\left(-\frac{b}{a}\right)\right|\left(|a| T+q_{i, n_{i}-1}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{a \phi^{\prime \prime}\left(-\frac{b}{a}\right)}{2}-\frac{\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right)}{|a| T+q_{i, n_{i}-1}}\right\} \\
=\frac{1}{a^{3}\left(|a|(S+\tau)+q_{i, n_{i}-1}\right)^{2}}\{ & \left(|a| \tau-2 q_{i, n_{i}-1}\right)\left(|a|(S+\tau)+q_{i, n_{i}-1}\right) \\
& \left.-\frac{a \phi^{\prime \prime}\left(-\frac{b}{a}\right)}{2}-\frac{\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right)}{|a|(S+\tau)+q_{i, n_{i}-1}}\right\}
\end{aligned}
$$

where we put $T=S+\tau$. Now let τ be either 0 or 2 and put
$\beta=\left(|a| \tau-2 q_{i, n_{i}-1}\right)\left(|a|(S+\tau)+q_{i, n_{i}-1}\right) \quad$ and $\quad \gamma=-\frac{a \phi^{\prime \prime}\left(-\frac{b}{a}\right)}{2}-\frac{\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right)}{|a|(S+\tau)+q_{i, n_{i}-1}}$.
By $\left||a| \tau-2 q_{i, n_{i}-1}\right|>1$ and (2), we have

$$
|\beta|>|a| S>|a|\left(\left|a \phi^{\prime}\left(-\frac{b}{a}\right)\right|-3\right)>|a|\left|\phi^{\prime}\left(-\frac{b}{a}\right)\right|
$$

hence we have

$$
|\beta|-|\gamma|>|a|\left(\left|\phi^{\prime}\left(-\frac{b}{a}\right)\right|-\frac{\left|\phi^{\prime \prime}\left(-\frac{b}{a}\right)\right|}{2}-1\right)>0
$$

By Lemma 1, we have

$$
\begin{aligned}
\operatorname{sgn}\left(-\phi\left(-\frac{\operatorname{sgn}(a) b(S+\tau)+p_{i, n_{i}-1}}{|a|(S+\tau)+q_{i, n_{i}-1}}\right)\right) & =\operatorname{sgn}\left(a\left(|a| \tau-2 q_{i, n_{i}-1}\right)\right) \\
& = \begin{cases}\operatorname{sgn}(a) & \text { if } \tau=2 \\
-\operatorname{sgn}(a) & \text { if } \tau=0\end{cases}
\end{aligned}
$$

Thus we have

$$
\phi\left(-\frac{\operatorname{sgn}(a) b S+p_{i, n_{i}-1}}{|a| S+q_{i, n_{i}-1}}\right) \phi\left(-\frac{\operatorname{sgn}(a) b(S+2)+p_{i, n_{i}-1}}{|a|(S+2)+q_{i, n_{i}-1}}\right)<0
$$

Hence $-\phi(-x)$ has a root between $\frac{\operatorname{sgn}(a) b S+p_{i, n_{i}-1}}{|a| S+q_{i, n_{i}-1}}$ and $\frac{\operatorname{sgn}(a) b(S+2)+p_{i, n_{i}-1}}{|a|(S+2)+q_{i, n_{i}-1}}$. It coincides with $-\theta^{(i)}$ by (11), Lemma 4 or 5 . This means $S+2 \geq k_{i, n_{i}+1} \geq S$. Hence we have $k_{i, n_{i}+1}>$ $3|a|$.

LEmma 7. If the assumptions in Theorem 1 or 2 hold, then we have

$$
(-1)^{i}(a \theta+b)^{-1} \in S_{i, n_{i}}
$$

PROOF. It is sufficient to show that $(-1)^{i}(a \theta+b)^{-1} \in C_{i}$ and it can be expressed as $(-1)^{i}\left(\eta_{i,|a|, n_{i}}+l\right)$ such that $|a|<M_{i, n_{i}}$ and $-N_{i} \leq l<N_{i}$. By the proof of Lemma 6 and
the definition of i, we have

$$
\operatorname{sgn}\left(a \theta^{(i)}+b\right)=\operatorname{sgn}\left(\phi^{\prime}\left(-\frac{b}{a}\right)\right)=(-1)^{i}
$$

Hence by (11), we have $0<(-1)^{i}\left(a \theta^{(i)}+b\right)<1$, and by Lemma 4 or 5 , we have $\mid a \theta^{\left(i^{\prime}\right)}+$ $b\left|>1,\left|a \theta^{\left(i^{\prime \prime}\right)}+b\right|>1\right.$, i.e., $(-1)^{i}(a \theta+b)^{-1} \in C_{i}$. Next, we shall show $| a \mid<M_{i, n_{i}}$. We have $q_{i, n_{i}+1}=k_{i, n_{i}+1}|a|+q_{i, n_{i}-1}<|a|\left(k_{i, n_{i}+1}+1\right)$ by (13) and $q_{i, n_{i}-1}<|a|$, and $\lambda_{i}=\frac{1}{\left|\theta^{\left(i^{\prime}\right)}-\theta^{\left(i^{\prime \prime}\right)}\right|}=\frac{1}{\left|\theta_{2}-\theta_{3}\right|}<\frac{1}{4 \max \{|a|,|c|\}-\frac{1}{2}}<\frac{2}{7|a|}$ by Lemma 4 or 5 . Hence we have

$$
\begin{aligned}
M_{i, n_{i}} & =\left\lceil k_{i, n_{i}+1}-2 \lambda_{i} q_{i, n_{i}+1}\right\rceil \\
& \geq\left\lceil k_{i, n_{i}+1}-\frac{4}{7}\left(k_{i, n_{i}+1}+1\right)\right\rceil \\
& =\left\lceil\frac{3 k_{i, n_{i}+1}-4}{7}\right\rceil \\
& \geq\left\lceil\frac{9|a|-1}{7}\right\rceil \\
& >|a|
\end{aligned}
$$

by Lemma 6. Finally, we shall show $-N_{i} \leq l<N_{i}$. By elementary calculation and (1), we have $(a \theta+b)^{-1}=a^{2} \theta^{2}+\left(a^{2} e-a b\right) \theta+\frac{a^{3} g+1}{b}$. On the other hand, by (13) we have

$$
\begin{aligned}
\eta_{i,|a|, n_{i}} & =|a| q_{i, n_{i}} \theta^{2}+|a|\left(q_{i, n_{i}} e-p_{i, n_{i}}\right) \theta-\left\lfloor\frac{|a| g q_{i, n_{i}}}{\theta^{(i)}}\right\rfloor \\
& =a^{2} \theta^{2}+\left(a^{2} e-a b\right) \theta-\left\lfloor\frac{g a^{2}}{\theta^{(i)}}\right\rfloor
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
l & =(a \theta+b)^{-1}-\eta_{i,|a|, n_{i}} \\
& =\frac{a^{3} g+1}{b}+\left\lfloor\frac{a^{2} g}{\theta^{(i)}}\right\rfloor \\
& =\left\lfloor a^{2} g\left(\frac{a}{b}+\frac{1}{\theta^{(i)}}\right)+\frac{1}{b}\right\rfloor .
\end{aligned}
$$

Now by (11), we have

$$
\left|a^{2} g\left(\frac{a}{b}+\frac{1}{\theta^{(i)}}\right)\right|=\left|a^{2} g\right| \frac{\left|\frac{b}{a}+\theta^{(i)}\right|}{\left|\frac{b}{a}\right|\left|\theta^{(i)}\right|}<\frac{1}{2}
$$

Hence by $\left|\frac{1}{b}\right|<\frac{1}{2}$, we have

$$
l=0 \quad \text { or }-1
$$

By the definition of N_{i}, we have $1 \leq N_{i}$. Hence we have $-N_{i} \leq l<N_{i}$. This completes the
proof of Lemma 7.
Let us determine m_{i} and l_{i} in Theorem G.
LEmma 8. If the assumptions in Theorem 1 or 2 hold, then we have

$$
m_{i}=|a| \quad \text { and } \quad l_{i}=(a \theta+b)^{-1}-\eta_{i,|a|, n_{i}}
$$

Proof. By Lemma 7, $m=|a|$ and $l=(a \theta+b)^{-1}-\eta_{i,|a|, n_{i}}$ imply $(-1)^{i}\left(\eta_{i, m, n_{i}}+l\right) \in$ $S_{i, n_{i}}$. Hence it is sufficient to prove that there exists no other pair (m, l) with $1 \leq m \leq|a|$ such that $(-1)^{i}\left(\eta_{i, m, n_{i}}+l\right) \in S_{i, n_{i}}$. By (13), for any m and l we have

$$
\begin{aligned}
(a \theta+ & +b)\left(\eta_{i, m, n_{i}}+l\right) \\
& =(a \theta+b)\left(m|a| \theta^{2}+m(|a| e-\operatorname{sgn}(a) b) \theta-\left\lfloor\frac{m g|a|}{\theta^{(i)}}\right\rfloor+l\right) \\
& =\left(m|a| \frac{-g a^{3}-1}{a b}+a\left(-\left\lfloor\frac{m g|a|}{\theta^{(i)}}\right\rfloor+l\right)\right) \theta-g m a|a|+b\left(-\left\lfloor\frac{m g|a|}{\theta^{(i)}}\right\rfloor+l\right) \\
& =A \theta+\frac{m}{|a|}+\frac{b A}{a}
\end{aligned}
$$

where $A=m|a| \frac{-g a^{3}-1}{a b}+a\left(-\left\lfloor\frac{m g|a|}{\theta^{(i)}}\right\rfloor+l\right)$. We note that $A \in \mathbf{Z}$ by (1). If $A \neq 0$, then we have

$$
N_{K / \mathbf{Q}}\left(A \theta+\frac{m}{|a|}+\frac{b A}{a}\right)=A^{3} N_{K / \mathbf{Q}}\left(\theta-\left(-\frac{b}{a}-\frac{m}{A|a|}\right)\right)=-A^{3} \phi\left(-\frac{b}{a}-\frac{m}{A|a|}\right)
$$

and hence we have

$$
\begin{equation*}
A^{3}+m|a| a \phi^{\prime}\left(-\frac{b}{a}\right) A^{2}-\frac{m^{2} a}{2} \phi^{\prime \prime}\left(-\frac{b}{a}\right) A+\frac{a}{|a|} m^{3}-\Delta_{N} a^{3}=0 \tag{16}
\end{equation*}
$$

where $\Delta_{N}=N_{K / \mathbf{Q}}\left(A \theta+\frac{m}{|a|}+\frac{b A}{a}\right)$. This also holds for $A=0$. If $\eta_{i, m, n_{i}}+l$ is a unit, then $A \theta+\frac{m}{|a|}+\frac{b A}{a}$ is also a unit because $a \theta+b$ is a unit. So we set $\Delta_{N}= \pm 1$ and regard the left-hand side of (16) as a polynomial in A, and denote it by $\psi(A)$. To prove Lemma 8, we may show that there exist no integral roots of $\psi(A)$ with $1 \leq m \leq|a|$ for which $(-1)^{i}\left(\eta_{i, m, n_{i}}+l\right) \in C_{i}$ other than $A=0$ with $m=|a|$ and $\Delta_{N}=1$. For that, we are going to see

$$
\begin{equation*}
\psi(1) \psi(-1)>0, \quad|\psi(\pm 1)|>|\psi(0)| \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi\left(-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right)+1\right) \psi\left(-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right)-1\right)<0 \tag{18}
\end{equation*}
$$

If (17) holds, then $\psi(A)=0$ has only one root out of $(-1,1)$. Moreover, if (18) holds, then the root is in

$$
\left(-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right)-1,-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right)+1\right) .
$$

If $\phi^{\prime \prime}\left(-\frac{b}{a}\right) \neq 0$, then we have $\left|\phi^{\prime \prime}\left(-\frac{b}{a}\right)\right|=\frac{2}{|a|}|a e-3 b| \geq \frac{2}{|a|}$, and hence

$$
\begin{aligned}
\left|\psi\left(-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right)\right)\right| & \left.=\left.\left|\frac{1}{2} m^{3}\right| a\right|^{3} \phi^{\prime}\left(-\frac{b}{a}\right) \phi^{\prime \prime}\left(-\frac{b}{a}\right)+\frac{a}{|a|} m^{3}-\Delta_{N} a^{3} \right\rvert\, \\
& \geq\left|a^{2} \phi^{\prime}\left(-\frac{b}{a}\right)\right|-2|a|^{3} \\
& >0
\end{aligned}
$$

by (2). Therefore the root is not an integer because $-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right)$ is a unique integer in the above interval. If $\phi^{\prime \prime}\left(-\frac{b}{a}\right)=0$ and $\psi\left(-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right)\right)=0$, then we have $e=3 \frac{b}{a}, m=|a|$ and $\Delta_{N}=1$. Hence by (1) we have

$$
-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right)=-a^{3}\left(-\frac{3 b^{2}}{a^{2}}+f\right)=a\left(b^{2}-\frac{g a^{3}+1}{b}\right) .
$$

On the other hand by the definition of A, we have

$$
A=a\left(-\frac{g a^{3}+1}{b}-\left\lfloor\frac{g a^{2}}{\theta^{(i)}}\right\rfloor+l\right) .
$$

Hence l must be equal to $b^{2}+\left\lfloor\frac{g a^{2}}{\theta^{(i)}}\right\rfloor$. Then we have $\eta_{i,|a|, n_{i}}+l=(a \theta+b)^{2}$. By Lemma 2, we have $\left|a \theta^{(i)}+b\right|<1$, and hence $(-1)^{i}\left(\eta_{i,|a|, n_{i}}+l\right) \notin C_{i}$. Hence there exist no integral roots of $\psi(A)$ with $1 \leq m \leq|a|$ for which $(-1)^{i}\left(\eta_{i, m, n_{i}}+l\right) \in C_{i}$ other than $A=0$. Therefore Lemma 8 holds. Now we shall show (17) and (18). Let δ be either 0 or 1 . We have

$$
\begin{aligned}
& \psi\left(-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right) \delta \pm 1\right) \\
& =\left(-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right) \delta \pm 1\right)\left\{ \pm(-1)^{\delta} m|a| a \phi^{\prime}\left(-\frac{b}{a}\right)-\frac{m^{2} a}{2} \phi^{\prime \prime}\left(-\frac{b}{a}\right)+1\right\}+\psi(0)
\end{aligned}
$$

Put

$$
\beta= \pm(-1)^{\delta} m|a| a \phi^{\prime}\left(-\frac{b}{a}\right) \quad \text { and } \quad \gamma=-\frac{m^{2} a}{2} \phi^{\prime \prime}\left(-\frac{b}{a}\right)+1+\psi(0)
$$

By (2) and $1 \leq m \leq|a|$, we have

$$
|\beta|-|\gamma|-|\psi(0)|>m a^{2}\left(\left|\phi^{\prime}\left(-\frac{b}{a}\right)\right|-\frac{m}{2|a|}\left|\phi^{\prime \prime}\left(-\frac{b}{a}\right)\right|-\frac{1}{m a^{2}}-\frac{2 m^{2}}{a^{2}}-\frac{2|a|}{m}\right)
$$

$$
>0 .
$$

Hence by $|-m| a\left|a \phi^{\prime}\left(-\frac{b}{a}\right) \delta \pm 1\right| \geq 1$ and Lemma 1, we have $|\psi(\pm 1)|>|\psi(0)|$ and

$$
\begin{aligned}
\operatorname{sgn} & \left(\psi\left(-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right) \delta \pm 1\right)\right) \\
& =\operatorname{sgn}\left\{\left(-m|a| a \phi^{\prime}\left(-\frac{b}{a}\right) \delta \pm 1\right)\left(\pm(-1)^{\delta} m|a| a \phi^{\prime}\left(-\frac{b}{a}\right)\right)\right\} \\
& = \begin{cases} \pm 1 & \text { if } \delta=1, \\
\operatorname{sgn}\left(a \phi^{\prime}\left(-\frac{b}{a}\right)\right) & \text { if } \delta=0 .\end{cases}
\end{aligned}
$$

These mean that (17) and (18) hold. This completes the proof of Lemma 8.
Lemma 9. If the assumptions in Theorem 1 or 2 hold, then we have $\delta_{i}<\frac{1}{2}$.
Proof. By Lemma 4 or 5 and $|a| \geq 2$, we have

$$
\begin{aligned}
\delta_{i} & =\frac{1}{\left|\theta^{\left(i^{\prime}\right)}-\theta^{\left(i^{\prime \prime}\right)}\right|}\left(\frac{1}{\left|\theta^{(i)}-\theta^{\left(i^{\prime}\right)}\right|}+\frac{1}{\left|\theta^{(i)}-\theta^{\left(i^{\prime \prime}\right)}\right|}\right) \\
& =\frac{1}{\left|\theta_{2}-\theta_{3}\right|}\left(\frac{1}{\left|\theta_{1}-\theta_{2}\right|}+\frac{1}{\left|\theta_{1}-\theta_{3}\right|}\right) \\
& < \begin{cases}\frac{1}{4 \max \{|a|,|c|\}-\frac{1}{2}}\left(\frac{3}{2} \min \{|a|,|c|\}+\frac{1}{4 \max \{|a|,|c|\}-\frac{1}{2}}\right) & \text { if } 2 \leq|c|<|d| \\
\frac{1}{4|a|-\frac{1}{2}}\left(1+\frac{24}{53}\right) & \text { if }|c|=1, d=0\end{cases} \\
& <\frac{1}{2}
\end{aligned}
$$

Hence by (14), Lemmas 7,8,9 and Theorem G, $(-1)^{i}(a \theta+b)^{-1}$ is the fundamental C_{i} unit. On the other hand, if $2 \leq|c|<|d|$, then c and d satisfy the same conditions with respect to a and b; therefore $(-1)^{i^{\prime}}(c \theta+d)^{-1}$ is also the fundamental $C_{i^{\prime}}$ unit. Hence, by Theorem B, we have $E_{\theta}^{+}=\langle a \theta+b, c \theta+d\rangle$ and this completes the proof of Theorem 1. Finally, we shall show that $(-1)^{i^{\prime}}(c \theta)^{-1}=-(-1)^{i^{\prime}} g \theta^{-1}$ is the fundamental $C_{i^{\prime}}$ unit if $d=0$. If a, b, c, d and $\phi(x)$ satisfy the assumptions in Theorem 2 , then so do $-a, b,-c, d$ and $-\phi(-x)$, and the last polynomial has three real roots $-\theta^{(0)}<-\theta^{(1)}<-\theta^{(2)}$. Hence we may assume that $\left|\theta^{(2)}\right|<\theta^{(0)}$ and $1<\theta^{(0)}$ without loss of generality. Now we use Theorem T to determine the fundamental $C_{i^{\prime}}$ unit. If $1<\theta^{(1)}$, then $i^{\prime}=2$, i.e. $\theta^{(2)}=\theta^{\left(i^{\prime}\right)}=\theta_{2}$. Hence, by Lemma 5, we have

$$
\begin{aligned}
\left(\theta^{(0)}-\theta^{(1)}\right)\left(1+g \theta^{(2)}\right) & =\left|\theta_{3}-\theta_{1}\right|\left(1+g \theta_{2}\right) \\
& >\frac{53}{24}\left(1-\frac{1}{4|a|}\right) \\
& >2
\end{aligned}
$$

Hence $-g \theta^{-1}$ is the fundamental C_{2} unit. Next suppose $\theta^{(1)} \leq 1$. By Lemmas 2 and 5 , we have $\left|\theta_{1}\right|>1$ and

$$
\begin{aligned}
\left|\theta_{3}\right| & =\left|-e-\theta_{1}-\theta_{2}\right| \\
& >\left|e-\frac{b}{a}\right|-\frac{1}{3 a^{2}}-\frac{1}{4|a|} \\
& >1 .
\end{aligned}
$$

Therefore the absolute values of two of three roots : $\theta^{(2)}<\theta^{(1)}<\theta^{(0)}$ are greater than 1 . Hence we have $\theta^{(2)}<-1$ and $i^{\prime}=1$, i.e., $\theta^{(1)}=\theta^{\left(i^{\prime}\right)}=\theta_{2}$. By Theorem B and Theorem T, we obtain $E_{\theta}^{+}=\langle a \theta+b, c \theta\rangle$. This completes the proof of Theorem 2.

In the end we shall prove Theorem 3. By Remark 2, we can construct infinitely many polynomials which satisfy (1)-(5) or (6)-(10) using a polynomial $\phi(x)$ which satisfies (1). Let $\Phi(x)$ be a cubic monic polynomial in x. Then the following two statements are equivalent:

1. $\Phi(x)$ satisfies (1),
2. $\Phi\left(-\frac{b}{a}\right)=\left(-\frac{1}{a}\right)^{3}, \Phi\left(-\frac{d}{c}\right)=\left(-\frac{1}{c}\right)^{3}$.

Now for a rational integer n, put $A=a, B=a n+b, C=c, D=c n+d$ and $\Phi(x)=$ $\phi(x+n)$. Then $\Phi(x)$ is a cubic monic polynomial in x and satisfies the second condition of the above for A, B, C, D. And let θ be a root of $\phi(x)$ and put $\Theta=\theta-n$. Then Θ is a root of $\Phi(x)$ and $A \Theta+B=a \theta+b, C \Theta+D=c \theta+d$. Hence we may assume $|a|<|b|$ and $|c|<|d|$ without loss of generality. This completes the proof of Theorem 3 for $|a| \geq 2,|c| \geq 2$. Next suppose $|c|=1$ and put $n=-c d$. Then $D=0$ and $|B|=|a d-b c|$. Hence if $|c|=1$, we may assume $d=0$ without loss of generality. Suppose $d=0$ and put $A=b c, B=a c, C=c, D=0$ and $\Phi(x)=-c \phi\left(\frac{1}{x}\right) x^{3}$. Then $\Phi(x)$ satisfies the second condition of the above for A, B, C, D and $\Theta=\frac{1}{\theta}$ is a root of $\Phi(x)$. Furthermore we have

$$
\begin{aligned}
\langle A \Theta+B, C \Theta+D\rangle & =\left\langle b c \frac{1}{\theta}+a c, c \frac{1}{\theta}\right\rangle \\
& =\langle a \theta+b, c \theta\rangle, \\
|A| \lessgtr|B| & \Leftrightarrow|a| \gtrless|b| .
\end{aligned}
$$

Hence if $|c|=1$, we may consider $a,-a c d+b$ (we again note that its absolute value is equal to $|a d-b c|), c, 0$ instead of a, b, c, d and assume $|a|<|a d-b c|$ without loss of generality. This completes the proof of Theorem 3 for $|a| \geq 2$ and $|c|=1$.

References

[1] W. E. H. Berwick, Algebraic number fields with two independent units, Proc. London Math. Soc. 34 (1932), 360-378.
[2] H. Cohen, A Course in Computational Algebraic Number Theory, Second Corrected Printing, GTM 138 (1995), Springer.
[3] H. G. Grundman, Systems of fundamental units in cubic orders, J. Number Theory $\mathbf{5 0}$ (1995), 119-127.
[4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Fifth edition, Oxford Science Publications (1979).
[5] K. Minemura, On totally real cubic fields whose unit groups are of type $\{\theta+r, \theta+s\}$, Proc. Japan Acad. 74A (1998), 156-159.
[6] H. J. STENDER, Einheiten für eine allgemeine Klasse total reeller algebraischer Zahlkörper, J. reine angew. Math. 257 (1972), 151-178.
[7] E. ThOMAS, Fundamental units for orders in certain cubic number fields, J. reine angew. Math. 310 (1979), 33-55.
[8] M. Watabe, On certain cubic fields I, III, VI, Proc. Japan Acad. 59A (1983), 66-69, 260-262; 60A (1984), 331-332.

Present Address: Graduate School of Human Informatics, Nagoya University, Chikusa-ku, NAGOYA 464-8601, JAPAN.

