Токуо J. Матн. Vol. 27, No. 2, 2004

On Totally Real Cubic Orders Whose Unit Groups are of Type $\langle a\theta + b, c\theta + d \rangle$

Kenji MINEMURA

Nagoya University

(Communicated by A. Mizutani)

1. Introduction

Let $\phi(x)$ be a cubic, monic and irreducible polynomial in x with rational integer coefficients and three real roots. We fix one of these roots and denote it by θ . Set $K = \mathbf{Q}(\theta)$, and let E_K be the unit group of K and E_K^+ the subgroup of E_K which consists of units with norm +1. By Dirichlet's unit theorem, E_K^+ is generated by two units and so is $\mathbf{Z}[\theta] \cap E_K^+$. Hereafter we denote the latter by E_{θ}^+ . It is difficult to determine the generators of E_{θ}^+ even though that problem is important for number theory. In this paper, for given $a, b, c, d \in \mathbf{Z}$, we shall find conditions under which $E_{\theta}^+ = \langle a\theta + b, c\theta + d \rangle$. As a result, we shall obtain new infinite families of $\mathbf{Z}[\theta]$ with explicit generators of E_{θ}^+ , which will give useful examples for further study.

In 1972, Stender[6] found families of $\phi(x)$ such that $E_{\theta}^{+} = \langle \theta + b, \theta + d \rangle$ for rational integers b, d with $2 \leq b \leq d - 3$ by using Berwick's theorem[1]. In 1979, Thomas [7] found families of $\phi(x)$ such that $E_{\theta}^{+} = \langle a\theta + 1, \theta + d \rangle$ and $\langle a\theta + 1, c\theta + 1 \rangle$ for rational integers a, c, d with $a \geq 4$ and some other conditions by using the continued fraction expansion of a certain conjugate of θ . In 1995, Grundman [3] modified Thomas's technique for determining fundamental systems of units, and determined all a with |a| > 1 such that $E_{\theta}^{+} = \langle a\theta + 1, 2\theta + 3 \rangle$ for some totally real number θ of degree 3, and found families of $\phi(x)$ for each a. We shall further utilize this method under a more general condition that $a\theta + b, c\theta + d \in E_{\theta}^{+}$.

THEOREM 1. For rational integers a, b, c and d, assume the following conditions:

- 1. $|ad bc| > \max\{|a|, |c|\}, 2 \le |a| < |b| \text{ and } 2 \le |c| < |d|,$
- 2. there exist rational integers e, f and g such that

$$b^{3} - eab^{2} + fa^{2}b - ga^{3} = 1$$
, $d^{3} - ecd^{2} + fc^{2}d - gc^{3} = 1$, (1)

Received November 12, 2002; revised July 26, 2004

3.
$$\left|\phi'\left(-\frac{b}{a}\right)\right| > \max\left\{\frac{\left|\phi''\left(-\frac{b}{a}\right)\right|}{6a^{2}|g|} + \left(\frac{1}{3a^{2}|g|}\right)^{2} + \frac{3|g|}{|a|}, \frac{\left|\phi''\left(-\frac{b}{a}\right)\right|}{2} + 1 + 2|a|\right\}, \quad (2)$$

$$\left|\phi'\left(-\frac{d}{c}\right)\right| > \max\left\{\frac{\left|\phi''\left(-\frac{d}{c}\right)\right|}{6c^{2}|g|} + \left(\frac{1}{3c^{2}|g|}\right)^{2} + \frac{3|g|}{|c|}, \frac{\left|\phi''\left(-\frac{d}{c}\right)\right|}{2} + 1 + 2|c|\right\}, \quad (3)$$

$$\left| e - \frac{d}{c} - 2\frac{b}{a} \right| > 4 \max\{|a|, |c|\},$$
 (4)

$$\left| e - \frac{b}{a} - 2\frac{d}{c} \right| > 4 \max\{|a|, |c|\},$$
 (5)

where we put $\phi(x) = x^3 + ex^2 + fx + g$.

Then $\phi(x)$ is irreducible and has three real roots. Let θ be a root of $\phi(x)$. Then E_{θ}^+ is generated by $a\theta + b$ and $c\theta + d$.

If d = 0, then we can get the following theorem.

THEOREM 2. For rational integers a, b and c, assume the following conditions:

- 1. $2 \le |a| < |b|$ and |c| = 1,
- 2. there exist rational integers e and f such that

$$b^3 - eab^2 + fa^2b + ca^3 = 1, (6)$$

and

$$\pm e + f \neq 1, \tag{7}$$

3.

$$\left|\phi'\left(-\frac{b}{a}\right)\right| > \frac{\left|\phi''\left(-\frac{b}{a}\right)\right|}{2} + 1 + 2|a|, \qquad (8)$$

$$\left|e - \frac{b}{a}\right| > 4|a|, \tag{9}$$

and

$$\left|e - 2\frac{b}{a}\right| > \frac{5}{2},\tag{10}$$

where we put
$$\phi(x) = x^3 + ex^2 + fx - c$$
.

Then $\phi(x)$ is irreducible and has three real roots. Let θ be a root of $\phi(x)$. Then E_{θ}^+ is generated by $a\theta + b$ and $c\theta$.

ON TOTALLY REAL CUBIC ORDERS

THEOREM 3. For rational integers a, b, c and d, assume that

$$|ad - bc| > \max\left\{ |ac|, \left| \frac{3bd}{a} \right|, \left| \frac{3bd}{c} \right| \right\}, \quad |ac| \ge 2$$

and there exist rational integers e, f and g which satisfy (1). Then we can explicitly construct infinitely many cubic irreducible polynomials $\phi(x)$ such that $E_{\theta}^{+} = \langle a\theta + b, c\theta + d \rangle$, where θ is a root of $\phi(x)$.

REMARK 1. When $D := ac(ad - bc) \neq 0$, we see that the simultaneous diophantine equations (1) is solvable if and only if $D \operatorname{gcd}(ac, ad + bc) \mid a^3(d^3 - 1) - c^3(b^3 - 1)$, $D \operatorname{gcd}(ac, bd) \mid a^2b(d^3 - 1) - c^2d(b^3 - 1)$ and $D \operatorname{gcd}(ac, bd, ad + bc) \mid ab^2(d^3 - 1) - cd^2(b^3 - 1)$. Then, the simultaneous congruences

$$D(ad + bc)e \equiv a^3(d^3 - 1) - c^3(b^3 - 1), \ Dbde \equiv a^2b(d^3 - 1) - c^2d(b^3 - 1) \pmod{Dac}$$

have a solution $e \in \mathbb{Z}$, and we may put

$$f = \frac{a^3(d^3 - 1) - c^3(b^3 - 1) - D(ad + bc)e}{Dac}, \ g = \frac{a^2b(d^3 - 1) - c^2d(b^3 - 1) - Dbde}{Dac}$$

Moreover, all solutions of (1) are given by

$$e + t \frac{ac}{\gcd(ac, bd, ad + bc)}, \quad f + t \frac{ad + bc}{\gcd(ac, bd, ad + bc)}, \quad g + t \frac{bd}{\gcd(ac, bd, ad + bc)}$$

with $t \in \mathbb{Z}$.

REMARK 2. When G := gcd(ac, bd, ad + bc), if rational integers e, f and g satisfy (1), then for any rational integer t,

$$e' = e + \frac{ac}{G}t$$
, $f' = f + \frac{ad + bc}{G}t$, $g' = g + \frac{bd}{G}t$

also satisfy (1) by Remark 1. For these rational integers, we define $\phi(x) = x^3 + e'x^2 + f'x + g'$. Then we have

$$\begin{aligned} \left|\phi'\left(-\frac{b}{a}\right)\right| &= \left|3\left(-\frac{b}{a}\right)^2 + 2\left(e + \frac{ac}{G}t\right)\left(-\frac{b}{a}\right) + f + \frac{ad + bc}{G}t\right| = \left|\frac{ad - bc}{G}t\right| + O(1), \\ \left|\phi''\left(-\frac{b}{a}\right)\right| &= \left|6\left(-\frac{b}{a}\right) + 2\left(e + \frac{ac}{G}t\right)\right| = 2\left|\frac{ac}{G}t\right| + O(1), \\ \left|\phi'\left(-\frac{d}{c}\right)\right| &= \left|3\left(-\frac{d}{c}\right)^2 + 2\left(e + \frac{ac}{G}t\right)\left(-\frac{d}{c}\right) + f + \frac{ad + bc}{G}t\right| = \left|\frac{ad - bc}{G}t\right| + O(1), \\ \left|\phi''\left(-\frac{d}{c}\right)\right| &= \left|6\left(-\frac{d}{c}\right) + 2\left(e + \frac{ac}{G}t\right)\left|= 2\left|\frac{ac}{G}t\right| + O(1). \end{aligned}$$

Hence if $|ad - bc| > \max\{|ac|, |\frac{3bd}{a}|, |\frac{3bd}{c}|\}$, then we can find infinitely many rational integers *t* for which *e'*, *f'* and *g'* satisfy (2)–(5) or (7)–(10). Therefore, we can obtain infinitely many polynomials $\phi(x)$ such that $E_{\theta}^+ = \langle a\theta + b, c\theta + d \rangle$ (See Examples 1 and 2 below).

REMARK 3. If the discriminant of $\phi(x)$ is square-free, then $\mathbb{Z}[\theta]$ coincides with the ring of integers of *K* (cf. [2] chap. 4 Corollary 4.4.7) and $E_{\theta}^+ = E_K^+$. If the discriminant of $\phi(x)$ is perfect square, then K/\mathbb{Q} is a Galois extension.

REMARK 4. Thomas [7] studied on $\phi(x)$ such that $E_{\theta}^+ = \langle a\theta + 1, \theta + d \rangle$ with some conditions. In other words, he investigated $\langle \theta, a\theta + b \rangle$ for $b \equiv 1 \pmod{a}$. Therefore Theorem 2 is an extension of Thomas's work (see Example 2 below).

REMARK 5. To prove Theorem 2, we use Theorem T (See section 2), in which the case e + f = 1 is excluded. In this case we are not sure whether $E_{\theta}^+ = \langle a\theta + b, \theta \rangle$ or not. But Thomas [7] gave families of $\phi(x)$ such that $E_{\theta}^+ = \langle -\theta + 1, \theta \rangle$, which are examples for the case e + f = 1.

REMARK 6. Stender [6], Watabe [8] and Minemura [5] studied in the case |a| = 1, |c| = 1.

We give examples for $b \neq 1 \pmod{a}$, in which there has been no example until now. The following is an example of Theorem 1.

EXAMPLE 1. Put a = 7, b = 11, c = 7 and d = 43. Then for each $t \in \mathbb{Z}$, the integers e = 49t + 39, f = 378t + 251 and g = 473t + 302 satisfy (1). And if

$$t \neq 0, -1$$

hold, then $\phi(x) = x^3 + ex^2 + fx + g$ is irreducible and has three real roots. Let θ be a root of $\phi(x)$. Then $E_{\theta}^+ = \langle 7\theta + 11, 7\theta + 43 \rangle$ holds.

The following is an example of Theorem 2.

EXAMPLE 2. For $r \neq -1$, 0, put $a = r^2 + r + 1$, $b = (a^2 + a + 1)r$, c = 1 and d = 0. Then for each $t \in \mathbb{Z}$, the integers e = r - 1 + at, $f = -a^2r^2 - a^2 - r^2 + bt$ and g = -1 satisfy (6). And if

$$|t - 2r| \ge 5$$
, $|t - r| \ge 3$

hold, then $\phi(x) = x^3 + ex^2 + fx - 1$ is irreducible and has three real roots. Let θ be a root of $\phi(x)$. Then $E_{\theta}^+ = \langle a\theta + b, \theta \rangle$ holds.

2. Preliminaries

Before we prove our theorems, we give some notations which are used throughout this paper. For a cubic irreducible polynomial $\phi(x) = x^3 + ex^2 + fx + g \in \mathbb{Z}[x]$ which has three real roots, set $K = \mathbb{Q}(\theta)$ where θ is one of the three roots of $\phi(x)$. Let E_K be the unit group of

K and E_K^+ the subgroup of E_K which consists of units of norm +1 and set $E_{\theta}^+ = \mathbf{Z}[\theta] \cap E_K^+$. Let $\theta^{(i)}$ (*i* = 0, 1, 2) be the conjugates of θ over **Q**. And let

$$\theta^{(0)} > \theta^{(1)} > \theta^{(2)}$$
,

which is also assumed in Theorem G and Theorem T below which are the bases of our theorems. For $i, i', i'' \in \{0, 1, 2\}$, $i \neq i' \neq i'' \neq i$, $m, n \in \mathbb{Z}$, m > 0, $n \ge 0$, let $-\theta^{(i)} = [k_{i,0}, k_{i,1}, \cdots]$ be the continued fraction expansions of $-\theta^{(i)}$ and $\frac{p_{i,n}}{q_{i,n}}$ the *n*th principal convergents of $-\theta^{(i)}$, and define

$$\begin{split} \lambda_{i} &:= \frac{1}{|\theta^{(i')} - \theta^{(i'')}|}, \\ \delta_{i} &:= \lambda_{i}(\lambda_{i'} + \lambda_{i''}), \\ M_{i,n} &:= \lceil k_{i,n+1} - 2\lambda_{i}q_{i,n+1} \rceil, \\ N_{i} &:= \lceil \lambda_{i}(|\theta^{(i')}| + |\theta^{(i'')}|) \rceil, \\ \eta_{i,m,n} &:= mq_{i,n}\theta^{2} + m(q_{i,n}e - p_{i,n})\theta - \left\lfloor \frac{mgq_{i,n}}{\theta^{(i)}} \right\rfloor, \\ C_{i} &:= \{ \eta \in \mathbf{Z}[\theta] : \eta^{(i)} > 1, \ |\eta^{(i')}| < 1 \text{ and } |\eta^{(i'')}| < 1 \}, \end{split}$$

and if $M_{i,n} \ge 1$, we define

$$S_{i,n} := \{ \gamma \in C_i \cap E_K : \gamma = (-1)^i (\eta_{i,m,n} + l) \\ \text{with } 1 \le m \le M_{i,n}, \ -N_i \le l < N_i, \ m, l \in \mathbf{Z} \},$$

where $\lceil \alpha \rceil$ means the least integer which is greater than or equal to α , and $\lfloor \alpha \rfloor$ means the greatest integer which is less than or equal to α .

The following three theorems are the bases of our theorems.

- THEOREM B (Berwick [1]). 1. There exists a unit in each C_i (i = 0, 1, 2).
- 2. There exists a unit $\varepsilon_i \in C_i$ such that $\varepsilon_i^{(i)} \leq \eta^{(i)}$ for every unit $\eta \in C_i$. Moreover, any two of the three units ε_0 , ε_1 , ε_2 form a fundamental system of units for $\mathbf{Z}[\theta]$.

We call ε_i in Theorem B the fundamental C_i unit.

THEOREM G (Grundman [3]). Let $\theta^{(0)} > \theta^{(1)} > \theta^{(2)}$. Suppose $\delta_i < \frac{1}{2}$. If there exists an integer n_i such that

$$k_{i,n_i+1} \leq \frac{1}{2}q_{i,n_i+1}$$
 and $S_{i,n_i} \neq \emptyset$,

then $(-1)^{i}(\eta_{i,m_{i},n_{i}}+l_{i})$ is the fundamental C_{i} unit, where

$$m_{i} := \min\{ m : (-1)^{l} (\eta_{i,m,n_{i}} + l) \in S_{i,n_{i}} \text{ for some } l \},\$$
$$l_{i} := \min\{ l : (-1)^{i} (\eta_{i,m_{i},n_{i}} + l) \in S_{i,n_{i}} \}.$$

REMARK 7. Grundman [3] stated the theorem only for i = 1, 2, but the proof still goes through for i = 0.

THEOREM T (Thomas [7]). Let $\theta^{(0)} > \theta^{(1)} > \theta^{(2)}$. Suppose $g = \pm 1, (e + f, g) \neq (1, -1)$.

- (a) If $1 < \theta^{(1)} < \theta^{(0)}$ and $(\theta^{(0)} \theta^{(1)})(1 + g\theta^{(2)}) > 2$, then $-g\theta^{-1}$ is the fundamental C_2 unit.
- (b) If $\theta^{(2)} < -1$, $1 < \theta^{(0)}$ and $\theta^{(0)} > |\theta^{(2)}|$, then $g\theta^{-1}$ is the fundamental C_1 unit.

3. Proof of Theorems 1, 2 and 3

In this section, we shall prove Theorems 1, 2 and 3. First, we shall show that if the assumptions in Theorem 1 or 2 hold, then $\phi(x)$ is irreducible and has three real roots. We use the following elementary lemma all over our proofs.

LEMMA 1. For real numbers α , β and γ , if $\alpha = \beta + \gamma$ and $|\beta| > |\gamma|$, then sgn $(\alpha) = sgn(\beta)$.

Now by $\phi(-\frac{b}{a}) = -\frac{1}{a^3}$, if |a| and $|\phi'(-\frac{b}{a})|$ are sufficiently large, then we have a real root of $\phi(x)$ nearby $-\frac{b}{a}$. Indeed we have the following lemma.

LEMMA 2. If $2 \le |a| < |b|$, (1) and (2) hold, then there exists at least one root of $\phi(x)$ in

$$\left(-\frac{b}{a} - \frac{1}{3a^2|g|}, -\frac{b}{a} + \frac{1}{3a^2|g|}\right).$$

PROOF. Let *y* be an indeterminate. Then we have

$$\phi\left(-\frac{b}{a}+y\right) = \phi\left(-\frac{b}{a}\right) + \phi'\left(-\frac{b}{a}\right)y + \frac{\phi''\left(-\frac{b}{a}\right)}{2}y^2 + y^3$$
$$= \phi'\left(-\frac{b}{a}\right)y + \frac{\phi''\left(-\frac{b}{a}\right)}{2}y^2 + y^3 - \frac{1}{a^3}.$$

Let $|y| = \frac{1}{3a^2|g|}$ and let β and γ be the first term and the remains of the above respectively. By (2), we have

$$\begin{aligned} |\beta| - |\gamma| &\ge \frac{1}{3a^2|g|} \left\{ \left| \phi'\left(-\frac{b}{a}\right) \right| - \left(\frac{1}{3a^2|g|}\right) \frac{\left|\phi''\left(-\frac{b}{a}\right)\right|}{2} - \left(\frac{1}{3a^2|g|}\right)^2 - \frac{3|g|}{|a|} \right\} \\ &> 0 \,. \end{aligned}$$

Hence by Lemma 1 the signs of $\phi\left(-\frac{b}{a} \pm \frac{1}{3a^2|g|}\right)$ are equal to those of $\pm \phi'\left(-\frac{b}{a}\right)$ respectively.

So we have

$$\phi\left(-\frac{b}{a}+\frac{1}{3a^2|g|}\right)\phi\left(-\frac{b}{a}-\frac{1}{3a^2|g|}\right)<0\,,$$

and this completes the proof of Lemma 2.

Hereafter, let θ_1 be a root of $\phi(x)$ which satisfies the condition of Lemma 2, and fix it. Then Lemma 2 means

$$\left|\theta_1 + \frac{b}{a}\right| < \frac{1}{3a^2|g|} \,. \tag{11}$$

Similarly, we shall obtain the second real root θ_2 nearby $-\frac{d}{c}$. Indeed, if $2 \le |c| < |d|$ and (3) hold, then there exists a real root θ_2 of $\phi(x)$ such that

$$\left|\theta_2 + \frac{d}{c}\right| < \frac{1}{3c^2|g|} \tag{12}$$

by Lemma 2. On the other hand, if d = 0, then we have the following lemma.

LEMMA 3. If $2 \le |a| < |b|$, (6) and (9) hold, then there exists a real root θ_2 of $\phi(x)$ such that

$$|\theta_2| < \frac{1}{4|a|}$$

PROOF. By (6) we have $f = \frac{b}{a} \left(e - \frac{b}{a} \right) + g \frac{a}{b} + \frac{1}{a^{2}b}$. Therefore we have

$$\phi(x) = x^3 + ex^2 + \left(\frac{b}{a}\left(e - \frac{b}{a}\right) + g\frac{a}{b} + \frac{1}{a^2b}\right)x + g$$
$$= \left(e - \frac{b}{a}\right)x\left(x + \frac{b}{a}\right) + x^3 + \frac{b}{a}x^2 + \left(g\frac{a}{b} + \frac{1}{a^2b}\right)x + g.$$

Hence we have

$$\phi\left(\pm\frac{1}{4|a|}\right) = \pm\left(e - \frac{b}{a}\right)\frac{1}{4|a|}\left(\pm\frac{1}{4|a|} + \frac{b}{a}\right)$$
$$\pm\frac{1}{64|a^3|} + \frac{b}{16a^3} \pm\left(g\frac{a}{b} + \frac{1}{a^2b}\right)\frac{1}{4|a|} + g$$

respectively. Let β and γ be the first term and the remains of the right-hand side respectively. By (9), |g| = 1 and $2 \le |a| < |b|$, we have

$$\begin{split} |\beta| - |\gamma| &> 4|a| \frac{1}{4|a|} \left(-\frac{1}{4|a|} + \frac{|b|}{|a|} \right) - \frac{1}{64|a^3|} - \frac{|b|}{16|a^3|} - \frac{1}{4|b|} - \frac{1}{4|a^3b|} - 1 \\ &> \frac{|b|}{|a|} - \frac{1}{4|a|} - \frac{|b|}{16|a^3|} - \frac{1}{2|a|} - 1 \\ &> 0 \,. \end{split}$$

Hence by Lemma 1 the sign of $\phi(\pm \frac{1}{4|a|})$ is equal to that of β . Therefore we have $\phi(\pm \frac{1}{4|a|})\phi(-\frac{1}{4|a|}) < 0$, and hence we obtain Lemma 3.

From the above, we can obtain the third real root θ_3 of $\phi(x)$, and fix it. Next we shall show the roots θ_1 , θ_2 and θ_3 are sufficiently far from each other.

LEMMA 4. If the assumptions in Theorem 1 hold, then we have

$$\begin{cases} |\theta_1 - \theta_2| > \frac{2}{3\min\{|a|, |c|\}}, \\ |\theta_2 - \theta_3| > 4\max\{|a|, |c|\} - \frac{1}{2}, \\ |\theta_3 - \theta_1| > 4\max\{|a|, |c|\} - \frac{1}{2}. \end{cases}$$

PROOF. By Lemma 2, (12), $|ad - bc| > \max\{|a|, |c|\}, 2 \le |a| \text{ and } 2 \le |c|$, we have

$$\begin{aligned} |\theta_1 - \theta_2| &= \left| \left(\theta_1 + \frac{b}{a} \right) - \left(\theta_2 + \frac{d}{c} \right) - \left(\frac{b}{a} - \frac{d}{c} \right) \right| \\ &> \left| \frac{b}{a} - \frac{d}{c} \right| - \frac{1}{3a^2|g|} - \frac{1}{3c^2|g|} \\ &> \frac{\max\{|a|, |c|\}}{|ac|} - \frac{1}{3a^2} - \frac{1}{3c^2} \\ &\ge \frac{2}{3\min\{|a|, |c|\}}. \end{aligned}$$

By $\theta_1 + \theta_2 + \theta_3 = -e$ and (5), we have

$$\begin{aligned} |\theta_2 - \theta_3| &= |e + \theta_1 + 2\theta_2| \\ &= \left| e + \left(\theta_1 + \frac{b}{a} \right) + 2\left(\theta_2 + \frac{d}{c} \right) - \frac{b}{a} - 2\frac{d}{c} \right| \\ &> \left| e - \frac{b}{a} - 2\frac{d}{c} \right| - \frac{1}{3a^2|g|} - \frac{2}{3c^2|g|} \\ &> 4 \max\{|a|, |c|\} - \frac{1}{2}. \end{aligned}$$

Similarly by (4), we have

$$|\theta_3 - \theta_1| > 4 \max\{|a|, |c|\} - \frac{1}{2}.$$

Hence we obtain Lemma 4.

$$\begin{cases} |\theta_1 - \theta_2| > 1, \\ |\theta_2 - \theta_3| > 4|a| - \frac{1}{2}, \\ |\theta_3 - \theta_1| > \frac{53}{24}. \end{cases}$$

PROOF. We have

$$|\theta_1 - \theta_2| = \left| \left(\theta_1 + \frac{b}{a} \right) - \theta_2 - \frac{b}{a} \right|$$
$$> \left| -\frac{b}{a} \right| - \frac{1}{3a^2} - \frac{1}{4|a|}$$
$$> \frac{|b| - 1}{|a|}$$
$$\ge 1$$

by Lemma 2, Lemma 3 and $2 \le |a| < |b|$,

$$|\theta_2 - \theta_3| = |e + \theta_1 + 2\theta_2|$$

$$= \left| e + \left(\theta_1 + \frac{b}{a} \right) + 2\theta_2 - \frac{b}{a} \right|$$

$$> \left| e - \frac{b}{a} \right| - \frac{1}{3a^2} - \frac{1}{2|a|}$$

$$> 4|a| - \frac{1}{2}$$

by $\theta_1 + \theta_2 + \theta_3 = -e$ and (9), and

$$\begin{aligned} |\theta_1 - \theta_3| &= |e + 2\theta_1 + \theta_2| \\ &= \left| e + 2\left(\theta_1 + \frac{b}{a}\right) + \theta_2 - 2\frac{b}{a} \right| \\ &> \left| e - 2\frac{b}{a} \right| - \frac{2}{3a^2} - \frac{1}{4|a|} \\ &> \frac{53}{24} \end{aligned}$$

by (10). Hence we obtain Lemma 5.

By (11), (12) or Lemma 3, θ_1 and θ_2 are not rational integers. On the other hand, by (1), we have

$$(a\theta_1 + b)(a\theta_2 + b)(a\theta_3 + b) = b^3 - eab^2 + fa^2b - ga^3 = 1.$$

If θ_3 is a rational integer, then we have $a\theta_3 + b = \pm 1$. Hence we have

$$\frac{1}{2} \ge \frac{1}{|a|} = \left| \theta_3 + \frac{b}{a} \right| = \left| (\theta_3 - \theta_1) + \left(\theta_1 + \frac{b}{a} \right) \right| > |\theta_3 - \theta_1| - \frac{1}{3a^2|g|},$$

which contradicts to Lemma 4 or 5. Thus θ_3 is not a rational integer as well as θ_1 and θ_2 . These imply $\phi(x)$ is irreducible and has three real roots. Therefore $K = Q(\theta)$ is a totally real cubic field. Hence by (1) we have

$$N_{K/\mathbf{Q}}(a\theta + b) = 1$$
 and $N_{K/\mathbf{Q}}(c\theta + d) = 1$,

i.e., $a\theta + b$, $c\theta + d \in E_{\theta}^+$.

Next we shall show that $a\theta + b$ and $c\theta + d$ generate E_{θ}^+ . First we recall $\theta^{(0)} > \theta^{(1)} > \theta^{(2)}$. Using this, we define integers *i*, *i'* and *i''* by $\theta_1 = \theta^{(i)}$, $\theta_2 = \theta^{(i')}$ and $\theta_3 = \theta^{(i'')}$ respectively. In order to prove that they generate E_{θ}^+ , we shall show that $(-1)^i (a\theta + b)^{-1}$ is the fundamental C_i unit by using Theorem G. To prove this, at first, we shall determine n_i in Theorem G (see (13) below), next check the conditions in Theorem G (see (14), Lemmas 7 and 9 below), and finally determine m_i , l_i in Theorem G (see Lemma 8 below). If $2 \le |c| < |d|$, then the above argument implies that $(-1)^{i'} (c\theta + d)^{-1}$ is also the fundamental $C_{i'}$ unit. If d = 0, then we shall also get a same result by using Theorem T.

We assume $2 \le |a| < |b|$, (1) and (2) hold. For *i* defined above, by Lemma 2, we have $\left|-\theta^{(i)} - \frac{b}{a}\right| < \frac{1}{3a^2|g|} < \frac{1}{2a^2}$. Hence there exists a natural number n_i such that

$$p_{i,n_i} = \text{sgn}(-\theta^{(i)})|b| = \text{sgn}(a)b \text{ and } q_{i,n_i} = |a|.$$
 (13)

by the well known fact on the continued fraction (cf. [4] chap.X Theorem 184). And we have

$$k_{i,n_i+1} < \frac{1}{2}q_{i,n_i+1} \tag{14}$$

by $q_{i,n_i+1} = q_{i,n_i}k_{i,n_i+1} + q_{i,n_i-1}$ and $q_{i,n_i} = |a| \ge 2$.

LEMMA 6. If the assumptions in Theorem 1 or 2 hold, then we have

$$k_{i,n_i+1} > 3|a|$$
.

PROOF. Note that the minimal polynomial of $-\theta^{(i)}$ is $-\phi(-x)$. By (11), Lemma 4 or 5, $-\phi(-x)$ is a monotone function between $-\theta^{(i)}$ and $\frac{b}{a}$, where we use the following elementary fact: *if* u < v are two consecutive real roots of an equation of degree 3 with real coefficients and w is the extreme point between them, then we have

$$\frac{2u+v}{3} \le w \le \frac{u+2v}{3} \,.$$

Hence we have

$$q_{i,n_{i}} p_{i,n_{i}-1} - p_{i,n_{i}} q_{i,n_{i}-1} = |a| p_{i,n_{i}-1} - \operatorname{sgn}(a) b q_{i,n_{i}-1}$$

$$= \operatorname{sgn}\left(-\theta^{(i)} - \frac{b}{a}\right)$$

$$= \operatorname{sgn}\left(\phi\left(-\frac{b}{a}\right)\right) \operatorname{sgn}\left(\phi'\left(-\frac{b}{a}\right)\right)$$

$$= \operatorname{sgn}(-a) \operatorname{sgn}\left(\phi'\left(-\frac{b}{a}\right)\right).$$
(15)

We put $S = |a\phi'(-\frac{b}{a})| - \frac{3q_{i,n_i-1}}{|a|}$. Then S is a rational integer. Indeed, by $|a|\phi'(-\frac{b}{a}) = |a|\left(3\frac{b^2}{a^2} - 2e\frac{b}{a} + f\right) \equiv \frac{3b^2}{|a|} \pmod{1}$, we have

$$S = \operatorname{sgn}\left(\phi'\left(-\frac{b}{a}\right)\right)|a|\phi'\left(-\frac{b}{a}\right) - \frac{3q_{i,n_i-1}}{|a|}$$
$$\equiv \operatorname{sgn}\left(\phi'\left(-\frac{b}{a}\right)\right)\frac{3b^2}{|a|} - \frac{3q_{i,n_i-1}}{|a|} \pmod{1}$$
$$\equiv 3\frac{\operatorname{sgn}(\phi'\left(-\frac{b}{a}\right))b^2 - q_{i,n_i-1}}{|a|} \pmod{1}.$$

Hence it is sufficient to show $\operatorname{sgn}(\phi'(-\frac{b}{a}))b^2 \equiv q_{i,n_i-1} \pmod{a}$. This is equivalent to $q_{i,n_i-1}b \equiv \operatorname{sgn}(\phi'(-\frac{b}{a})) \pmod{a}$ by (1), and holds by (15). Therefore S is a rational integer. Moreover by (2), we have S > 3|a|. By (15), the following holds for an indeterminate T:

$$-\frac{\operatorname{sgn}(a)bT + p_{i,n_i-1}}{|a|T + q_{i,n_i-1}} = -\frac{b}{a} - \frac{|a|p_{i,n_i-1} - \operatorname{sgn}(a)bq_{i,n_i-1}}{|a|(|a|T + q_{i,n_i-1})}$$
$$= -\frac{b}{a} + \frac{\operatorname{sgn}\left(\phi'\left(-\frac{b}{a}\right)\right)}{a(|a|T + q_{i,n_i-1})}.$$

Hence we have

$$-\phi \left(-\frac{\operatorname{sgn}(a)bT + p_{i,n_i-1}}{|a|T + q_{i,n_i-1}}\right)$$

= $-\phi \left(-\frac{b}{a}\right) - \phi' \left(-\frac{b}{a}\right) \left(\frac{\operatorname{sgn}(\phi'(-\frac{b}{a}))}{a(|a|T + q_{i,n_i-1})}\right) - \frac{\phi''(-\frac{b}{a})}{2} \left(\frac{\operatorname{sgn}(\phi'(-\frac{b}{a}))}{a(|a|T + q_{i,n_i-1})}\right)^2$
 $- \left(\frac{\operatorname{sgn}(\phi'(-\frac{b}{a}))}{a(|a|T + q_{i,n_i-1})}\right)^3$
= $\frac{1}{a^3(|a|T + q_{i,n_i-1})^2} \left\{ (|a|T + q_{i,n_i-1})^2 - a^2 \left|\phi'\left(-\frac{b}{a}\right)\right| (|a|T + q_{i,n_i-1})$

$$-\frac{a\phi''(-\frac{b}{a})}{2} - \frac{\operatorname{sgn}(\phi'(-\frac{b}{a}))}{|a|T+q_{i,n_i-1}|} \bigg\}$$
$$= \frac{1}{a^3(|a|(S+\tau)+q_{i,n_i-1})^2} \bigg\{ (|a|\tau - 2q_{i,n_i-1})(|a|(S+\tau)+q_{i,n_i-1}) \\ - \frac{a\phi''(-\frac{b}{a})}{2} - \frac{\operatorname{sgn}(\phi'(-\frac{b}{a}))}{|a|(S+\tau)+q_{i,n_i-1}|} \bigg\}$$

where we put $T = S + \tau$. Now let τ be either 0 or 2 and put

$$\beta = (|a|\tau - 2q_{i,n_i-1})(|a|(S+\tau) + q_{i,n_i-1}) \text{ and } \gamma = -\frac{a\phi''\left(-\frac{b}{a}\right)}{2} - \frac{\operatorname{sgn}(\phi'\left(-\frac{b}{a}\right))}{|a|(S+\tau) + q_{i,n_i-1}}$$

By $||a|\tau - 2q_{i,n_i-1}| > 1$ and (2), we have

$$|\beta| > |a|S > |a| \left(\left| a\phi'\left(-\frac{b}{a}\right) \right| - 3 \right) > |a| \left| \phi'\left(-\frac{b}{a}\right) \right|,$$

hence we have

$$|\beta| - |\gamma| > |a| \left(\left| \phi'\left(-\frac{b}{a}\right) \right| - \frac{\left| \phi''\left(-\frac{b}{a}\right) \right|}{2} - 1 \right) > 0.$$

By Lemma 1, we have

$$\operatorname{sgn}\left(-\phi\left(-\frac{\operatorname{sgn}(a)b(S+\tau)+p_{i,n_{i}-1}}{|a|(S+\tau)+q_{i,n_{i}-1}}\right)\right) = \operatorname{sgn}\left(a(|a|\tau-2q_{i,n_{i}-1})\right)$$
$$=\begin{cases} \operatorname{sgn}(a) & \text{if } \tau=2, \\ -\operatorname{sgn}(a) & \text{if } \tau=0. \end{cases}$$

Thus we have

$$\phi\left(-\frac{\operatorname{sgn}(a)bS + p_{i,n_i-1}}{|a|S + q_{i,n_i-1}}\right)\phi\left(-\frac{\operatorname{sgn}(a)b(S+2) + p_{i,n_i-1}}{|a|(S+2) + q_{i,n_i-1}}\right) < 0.$$

Hence $-\phi(-x)$ has a root between $\frac{\operatorname{sgn}(a)bS+p_{i,n_i-1}}{|a|S+q_{i,n_i-1}}$ and $\frac{\operatorname{sgn}(a)b(S+2)+p_{i,n_i-1}}{|a|(S+2)+q_{i,n_i-1}}$. It coincides with $-\theta^{(i)}$ by (11), Lemma 4 or 5. This means $S+2 \ge k_{i,n_i+1} \ge S$. Hence we have $k_{i,n_i+1} > 3|a|$.

LEMMA 7. If the assumptions in Theorem 1 or 2 hold, then we have

$$(-1)^i(a\theta+b)^{-1}\in S_{i,n_i}.$$

PROOF. It is sufficient to show that $(-1)^i (a\theta + b)^{-1} \in C_i$ and it can be expressed as $(-1)^i (\eta_{i,|a|,n_i} + l)$ such that $|a| < M_{i,n_i}$ and $-N_i \le l < N_i$. By the proof of Lemma 6 and

the definition of *i*, we have

$$\operatorname{sgn}(a\theta^{(i)}+b) = \operatorname{sgn}\left(\phi'\left(-\frac{b}{a}\right)\right) = (-1)^i$$

Hence by (11), we have $0 < (-1)^i (a\theta^{(i)} + b) < 1$, and by Lemma 4 or 5, we have $|a\theta^{(i')} + b| > 1$, $|a\theta^{(i'')} + b| > 1$, i.e., $(-1)^i (a\theta + b)^{-1} \in C_i$. Next, we shall show $|a| < M_{i,n_i}$. We have $q_{i,n_i+1} = k_{i,n_i+1}|a| + q_{i,n_i-1} < |a|(k_{i,n_i+1} + 1)$ by (13) and $q_{i,n_i-1} < |a|$, and $\lambda_i = \frac{1}{|\theta^{(i')} - \theta^{(i'')}|} = \frac{1}{|\theta_2 - \theta_3|} < \frac{1}{4 \max\{|a|, |c|\} - \frac{1}{2}} < \frac{2}{7|a|}$ by Lemma 4 or 5. Hence we have

$$M_{i,n_i} = \lceil k_{i,n_i+1} - 2\lambda_i q_{i,n_i+1} \rceil$$

$$\geq \left\lceil k_{i,n_i+1} - \frac{4}{7} (k_{i,n_i+1} + 1) \right\rceil$$

$$= \left\lceil \frac{3k_{i,n_i+1} - 4}{7} \right\rceil$$

$$\geq \left\lceil \frac{9|a| - 1}{7} \right\rceil$$

$$> |a|$$

by Lemma 6. Finally, we shall show $-N_i \le l < N_i$. By elementary calculation and (1), we have $(a\theta + b)^{-1} = a^2\theta^2 + (a^2e - ab)\theta + \frac{a^3g+1}{b}$. On the other hand, by (13) we have

$$\eta_{i,|a|,n_i} = |a|q_{i,n_i}\theta^2 + |a|(q_{i,n_i}e - p_{i,n_i})\theta - \left\lfloor \frac{|a|gq_{i,n_i}}{\theta^{(i)}} \right\rfloor$$
$$= a^2\theta^2 + (a^2e - ab)\theta - \left\lfloor \frac{ga^2}{\theta^{(i)}} \right\rfloor.$$

Hence we have

$$l = (a\theta + b)^{-1} - \eta_{i,|a|,n_i}$$
$$= \frac{a^3g + 1}{b} + \left\lfloor \frac{a^2g}{\theta^{(i)}} \right\rfloor$$
$$= \left\lfloor a^2g \left(\frac{a}{b} + \frac{1}{\theta^{(i)}}\right) + \frac{1}{b} \right\rfloor$$

Now by (11), we have

$$\left|a^2g\left(\frac{a}{b}+\frac{1}{\theta^{(i)}}\right)\right| = |a^2g|\frac{\left|\frac{b}{a}+\theta^{(i)}\right|}{\left|\frac{b}{a}\right|\left|\theta^{(i)}\right|} < \frac{1}{2}.$$

Hence by $\left|\frac{1}{b}\right| < \frac{1}{2}$, we have

$$l = 0$$
 or -1 .

By the definition of N_i , we have $1 \le N_i$. Hence we have $-N_i \le l < N_i$. This completes the

proof of Lemma 7.

Let us determine m_i and l_i in Theorem G.

LEMMA 8. If the assumptions in Theorem 1 or 2 hold, then we have

$$m_i = |a|$$
 and $l_i = (a\theta + b)^{-1} - \eta_{i,|a|,n_i}$.

PROOF. By Lemma 7, m = |a| and $l = (a\theta + b)^{-1} - \eta_{i,|a|,n_i}$ imply $(-1)^i (\eta_{i,m,n_i} + l) \in S_{i,n_i}$. Hence it is sufficient to prove that there exists no other pair (m, l) with $1 \le m \le |a|$ such that $(-1)^i (\eta_{i,m,n_i} + l) \in S_{i,n_i}$. By (13), for any *m* and *l* we have

$$\begin{aligned} (a\theta+b)(\eta_{i,m,n_{i}}+l) \\ &= (a\theta+b)\left(m|a|\theta^{2}+m(|a|e-\operatorname{sgn}(a)b)\theta-\left\lfloor\frac{mg|a|}{\theta^{(i)}}\right\rfloor+l\right) \\ &= \left(m|a|\frac{-ga^{3}-1}{ab}+a\left(-\left\lfloor\frac{mg|a|}{\theta^{(i)}}\right\rfloor+l\right)\right)\theta-gma|a|+b\left(-\left\lfloor\frac{mg|a|}{\theta^{(i)}}\right\rfloor+l\right) \\ &= A\theta+\frac{m}{|a|}+\frac{bA}{a} \end{aligned}$$

where $A = m|a|\frac{-ga^3-1}{ab} + a(-\lfloor \frac{mg|a|}{\theta^{(i)}} \rfloor + l)$. We note that $A \in \mathbb{Z}$ by (1). If $A \neq 0$, then we have

$$N_{K/\mathbf{Q}}\left(A\theta + \frac{m}{|a|} + \frac{bA}{a}\right) = A^3 N_{K/\mathbf{Q}}\left(\theta - \left(-\frac{b}{a} - \frac{m}{A|a|}\right)\right) = -A^3\phi\left(-\frac{b}{a} - \frac{m}{A|a|}\right),$$

and hence we have

$$A^{3} + m|a|a\phi'\left(-\frac{b}{a}\right)A^{2} - \frac{m^{2}a}{2}\phi''\left(-\frac{b}{a}\right)A + \frac{a}{|a|}m^{3} - \Delta_{N}a^{3} = 0,$$
(16)

where $\Delta_N = N_{K/\mathbb{Q}} \left(A\theta + \frac{m}{|a|} + \frac{bA}{a} \right)$. This also holds for A = 0. If $\eta_{i,m,n_i} + l$ is a unit, then $A\theta + \frac{m}{|a|} + \frac{bA}{a}$ is also a unit because $a\theta + b$ is a unit. So we set $\Delta_N = \pm 1$ and regard the left-hand side of (16) as a polynomial in A, and denote it by $\psi(A)$. To prove Lemma 8, we may show that there exist no integral roots of $\psi(A)$ with $1 \le m \le |a|$ for which $(-1)^i(\eta_{i,m,n_i} + l) \in C_i$ other than A = 0 with m = |a| and $\Delta_N = 1$. For that, we are going to see

$$\psi(1)\psi(-1) > 0, \quad |\psi(\pm 1)| > |\psi(0)|$$
(17)

and

$$\psi\left(-m|a|a\phi'\left(-\frac{b}{a}\right)+1\right)\psi\left(-m|a|a\phi'\left(-\frac{b}{a}\right)-1\right)<0.$$
(18)

406

If (17) holds, then $\psi(A) = 0$ has only one root out of (-1, 1). Moreover, if (18) holds, then the root is in

$$\left(-m|a|a\phi'\left(-\frac{b}{a}\right)-1, -m|a|a\phi'\left(-\frac{b}{a}\right)+1\right).$$

If $\phi''\left(-\frac{b}{a}\right) \neq 0$, then we have $\left|\phi''\left(-\frac{b}{a}\right)\right| = \frac{2}{|a|}|ae - 3b| \geq \frac{2}{|a|}$, and hence $\left|\psi\left(-m|a|a\phi'\left(-\frac{b}{a}\right)\right)\right| = \left|\frac{1}{2}m^{3}|a|^{3}\phi'\left(-\frac{b}{a}\right)\phi''\left(-\frac{b}{a}\right) + \frac{a}{|a|}m^{3} - \Delta_{N}a^{3}\right|$ $\geq \left|a^{2}\phi'\left(-\frac{b}{a}\right)\right| - 2|a|^{3}$ > 0

by (2). Therefore the root is not an integer because $-m|a|a\phi'(-\frac{b}{a})$ is a unique integer in the above interval. If $\phi''(-\frac{b}{a}) = 0$ and $\psi(-m|a|a\phi'(-\frac{b}{a})) = 0$, then we have $e = 3\frac{b}{a}$, m = |a| and $\Delta_N = 1$. Hence by (1) we have

$$-m|a|a\phi'\left(-\frac{b}{a}\right) = -a^3\left(-\frac{3b^2}{a^2} + f\right) = a\left(b^2 - \frac{ga^3 + 1}{b}\right).$$

On the other hand by the definition of *A*, we have

$$A = a \left(-\frac{ga^3 + 1}{b} - \left\lfloor \frac{ga^2}{\theta^{(i)}} \right\rfloor + l \right).$$

Hence *l* must be equal to $b^2 + \lfloor \frac{ga^2}{\theta^{(i)}} \rfloor$. Then we have $\eta_{i,|a|,n_i} + l = (a\theta + b)^2$. By Lemma 2, we have $|a\theta^{(i)} + b| < 1$, and hence $(-1)^i (\eta_{i,|a|,n_i} + l) \notin C_i$. Hence there exist no integral roots of $\psi(A)$ with $1 \le m \le |a|$ for which $(-1)^i (\eta_{i,m,n_i} + l) \in C_i$ other than A = 0. Therefore Lemma 8 holds. Now we shall show (17) and (18). Let δ be either 0 or 1. We have

$$\psi\left(-m|a|a\phi'\left(-\frac{b}{a}\right)\delta\pm1\right)$$
$$=\left(-m|a|a\phi'\left(-\frac{b}{a}\right)\delta\pm1\right)\left\{\pm(-1)^{\delta}m|a|a\phi'\left(-\frac{b}{a}\right)-\frac{m^{2}a}{2}\phi''\left(-\frac{b}{a}\right)+1\right\}+\psi(0).$$

Put

$$\beta = \pm (-1)^{\delta} m |a| a \phi'\left(-\frac{b}{a}\right) \quad \text{and} \quad \gamma = -\frac{m^2 a}{2} \phi''\left(-\frac{b}{a}\right) + 1 + \psi(0) \,.$$

By (2) and $1 \le m \le |a|$, we have

$$\begin{aligned} |\beta| - |\gamma| - |\psi(0)| &> ma^2 \left(\left| \phi'\left(-\frac{b}{a}\right) \right| - \frac{m}{2|a|} \left| \phi''\left(-\frac{b}{a}\right) \right| - \frac{1}{ma^2} - \frac{2m^2}{a^2} - \frac{2|a|}{m} \right) \\ &> 0 \,. \end{aligned}$$

Hence by $\left|-m|a|a\phi'\left(-\frac{b}{a}\right)\delta\pm1\right|\geq1$ and Lemma 1, we have $|\psi(\pm 1)|>|\psi(0)|$ and

$$\operatorname{sgn}\left(\psi\left(-m|a|a\phi'\left(-\frac{b}{a}\right)\delta\pm1\right)\right)$$
$$=\operatorname{sgn}\left\{\left(-m|a|a\phi'\left(-\frac{b}{a}\right)\delta\pm1\right)\left(\pm(-1)^{\delta}m|a|a\phi'\left(-\frac{b}{a}\right)\right)\right\}$$
$$=\begin{cases}\pm1 & \text{if } \delta=1,\\\operatorname{sgn}(a\phi'(-\frac{b}{a})) & \text{if } \delta=0.\end{cases}$$

These mean that (17) and (18) hold. This completes the proof of Lemma 8.

LEMMA 9. If the assumptions in Theorem 1 or 2 hold, then we have $\delta_i < \frac{1}{2}$.

PROOF. By Lemma 4 or 5 and $|a| \ge 2$, we have

$$\begin{split} \delta_{i} &= \frac{1}{|\theta^{(i')} - \theta^{(i'')}|} \left(\frac{1}{|\theta^{(i)} - \theta^{(i')}|} + \frac{1}{|\theta^{(i)} - \theta^{(i'')}|} \right) \\ &= \frac{1}{|\theta_{2} - \theta_{3}|} \left(\frac{1}{|\theta_{1} - \theta_{2}|} + \frac{1}{|\theta_{1} - \theta_{3}|} \right) \\ &< \begin{cases} \frac{1}{4 \max\{|a|, |c|\} - \frac{1}{2}} \left(\frac{3}{2} \min\{|a|, |c|\} + \frac{1}{4 \max\{|a|, |c|\} - \frac{1}{2}} \right) & \text{if } 2 \le |c| < |d| \\ \frac{1}{4 \max\{|a| - \frac{1}{2}} \left(1 + \frac{24}{53} \right) & \text{if } |c| = 1, d = 0 \end{cases} \\ &< \frac{1}{2}. \end{split}$$

Hence by (14), Lemmas 7,8,9 and Theorem G, $(-1)^i (a\theta + b)^{-1}$ is the fundamental C_i unit. On the other hand, if $2 \le |c| < |d|$, then *c* and *d* satisfy the same conditions with respect to *a* and *b*; therefore $(-1)^{i'}(c\theta + d)^{-1}$ is also the fundamental $C_{i'}$ unit. Hence, by Theorem B, we have $E_{\theta}^+ = \langle a\theta + b, c\theta + d \rangle$ and this completes the proof of Theorem 1. Finally, we shall show that $(-1)^{i'}(c\theta)^{-1} = -(-1)^{i'}g\theta^{-1}$ is the fundamental $C_{i'}$ unit if d = 0. If a, b, c, d and $\phi(x)$ satisfy the assumptions in Theorem 2, then so do -a, b, -c, d and $-\phi(-x)$, and the last polynomial has three real roots $-\theta^{(0)} < -\theta^{(1)} < -\theta^{(2)}$. Hence we may assume that $|\theta^{(2)}| < \theta^{(0)}$ and $1 < \theta^{(0)}$ without loss of generality. Now we use Theorem T to determine the fundamental $C_{i'}$ unit. If $1 < \theta^{(1)}$, then i' = 2, i.e. $\theta^{(2)} = \theta^{(i')} = \theta_2$. Hence, by Lemma 5, we have

$$\begin{aligned} (\theta^{(0)} - \theta^{(1)})(1 + g\theta^{(2)}) &= |\theta_3 - \theta_1|(1 + g\theta_2) \\ &> \frac{53}{24} \left(1 - \frac{1}{4|a|}\right) \\ &> 2. \end{aligned}$$

408

Hence $-g\theta^{-1}$ is the fundamental C_2 unit. Next suppose $\theta^{(1)} \leq 1$. By Lemmas 2 and 5, we have $|\theta_1| > 1$ and

$$\begin{aligned} |\theta_3| &= |-e - \theta_1 - \theta_2| \\ &> \left|e - \frac{b}{a}\right| - \frac{1}{3a^2} - \frac{1}{4|a|} \\ &> 1. \end{aligned}$$

Therefore the absolute values of two of three roots : $\theta^{(2)} < \theta^{(1)} < \theta^{(0)}$ are greater than 1. Hence we have $\theta^{(2)} < -1$ and i' = 1, i.e., $\theta^{(1)} = \theta^{(i')} = \theta_2$. By Theorem B and Theorem T, we obtain $E_{\theta}^{+} = \langle a\theta + b, c\theta \rangle$. This completes the proof of Theorem 2.

In the end we shall prove Theorem 3. By Remark 2, we can construct infinitely many polynomials which satisfy (1)–(5) or (6)–(10) using a polynomial $\phi(x)$ which satisfies (1). Let $\Phi(x)$ be a cubic monic polynomial in x. Then the following two statements are equivalent:

- 1. $\Phi(x)$ satisfies (1),

2. $\Phi\left(-\frac{b}{a}\right) = \left(-\frac{1}{a}\right)^3$, $\Phi\left(-\frac{d}{c}\right) = \left(-\frac{1}{c}\right)^3$. Now for a rational integer *n*, put A = a, B = an + b, C = c, D = cn + d and $\Phi(x) =$ $\phi(x + n)$. Then $\Phi(x)$ is a cubic monic polynomial in x and satisfies the second condition of the above for A, B, C, D. And let θ be a root of $\phi(x)$ and put $\Theta = \theta - n$. Then Θ is a root of $\Phi(x)$ and $A\Theta + B = a\theta + b$, $C\Theta + D = c\theta + d$. Hence we may assume |a| < |b| and |c| < |d| without loss of generality. This completes the proof of Theorem 3 for $|a| \ge 2$, $|c| \ge 2$. Next suppose |c| = 1 and put n = -cd. Then D = 0 and |B| = |ad - bc|. Hence if |c| = 1, we may assume d = 0 without loss of generality. Suppose d = 0 and put A = bc, B = ac, C = c, D = 0 and $\Phi(x) = -c\phi(\frac{1}{x})x^3$. Then $\Phi(x)$ satisfies the second condition of the above for A, B, C, D and $\Theta = \frac{1}{\theta}$ is a root of $\Phi(x)$. Furthermore we have

$$\langle A\Theta + B, C\Theta + D \rangle = \left\langle bc\frac{1}{\theta} + ac, c\frac{1}{\theta} \right\rangle$$
$$= \langle a\theta + b, c\theta \rangle ,$$
$$|A| \leq |B| \Leftrightarrow |a| \geq |b| .$$

Hence if |c| = 1, we may consider a, -acd + b (we again note that its absolute value is equal to |ad - bc|, c, 0 instead of a, b, c, d and assume |a| < |ad - bc| without loss of generality. This completes the proof of Theorem 3 for $|a| \ge 2$ and |c| = 1.

References

- [1] W. E. H. BERWICK, Algebraic number fields with two independent units, Proc. London Math. Soc. 34 (1932), 360-378
- [2] H. COHEN, A Course in Computational Algebraic Number Theory, Second Corrected Printing, GTM 138 (1995), Springer.

- [3] H. G. GRUNDMAN, Systems of fundamental units in cubic orders, J. Number Theory 50 (1995), 119–127.
- [4] G. H. HARDY and E. M. WRIGHT, *An introduction to the theory of numbers, Fifth edition*, Oxford Science Publications (1979).
- [5] K. MINEMURA, On totally real cubic fields whose unit groups are of type $\{\theta + r, \theta + s\}$, Proc. Japan Acad. 74A (1998), 156–159.
- [6] H. J. STENDER, Einheiten f
 ür eine allgemeine Klasse total reeller algebraischer Zahlkörper, J. reine angew. Math. 257 (1972), 151–178.
- [7] E. THOMAS, Fundamental units for orders in certain cubic number fields, J. reine angew. Math. 310 (1979), 33–55.
- [8] M. WATABE, On certain cubic fields I, III, VI, Proc. Japan Acad. 59A (1983), 66–69, 260–262; 60A (1984), 331–332.

Present Address: Graduate School of Human Informatics, Nagoya University, Chikusa-ku, Nagoya 464–8601, Japan.