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1. Introduction

Let ¢ (x) be a cubic, monic and irreducible polynomial in x with rational integer coef-
ficients and three real roots. We fix one of these roots and denote it by 6. Set K = Q(0),
and let Ex be the unit group of K and E ;g the subgroup of Eg which consists of units with
norm +1. By Dirichlet’s unit theorem, E;g is generated by two units and so is Z[6] N E;g
Hereafter we denote the latter by E;r . It is difficult to determine the generators of E(j even
though that problem is important for number theory. In this paper, for given a, b, c,d € Z,
we shall find conditions under which E9+ = (a6 + b, cO + d). As a result, we shall obtain
new infinite families of Z[6] with explicit generators of E;, which will give useful examples
for further study.

In 1972, Stender[6] found families of ¢ (x) such that E; = (0 + b, 6 + d) for rational
integers b, d with 2 < b < d — 3 by using Berwick’s theorem[1]. In 1979, Thomas [7]
found families of ¢ (x) such that E; = (a6 + 1,0 +d) and {(ab + 1, cO + 1) for rational
integers a, c,d with a > 4 and some other conditions by using the continued fraction ex-
pansion of a certain conjugate of 6. In 1995, Grundman [3] modified Thomas’s technique
for determining fundamental systems of units, and determined all a with |a| > 1 such that
E9+ = (af + 1,26 + 3) for some totally real number 6 of degree 3, and found families of
¢(x) for each a. We shall further utilize this method under a more general condition that
ab +b,c0+d € E.

THEOREM 1. For rational integers a, b, c and d, assume the following conditions:
1. |ad — bc| > max{lal, |c|},2 < |a| < |b|and 2 < |c| < |d],
2. there exist rational integers e, f and g such that

b —eab® + fa*bh—ga® =1, d° —ecd*+ fc*d — g3 =1, (D
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" (= 2) 1Y 3lgl [e"(=2)
>max{ 6| +<3a2|g|> +m, 2 +1+2|a|}, 2)

n( _d 2 n(_ d
>max{‘¢( C)‘—i—( : )—FM—W( C)‘+1+2|c|}’ (3)

6¢2|g| 3c2|g| el 2
d b

e — — —2=| > 4max{|al, |c|}, @)
C a
b d

e— — —2—| > 4max{|al, |c|}, ®)
a C

where we put ¢ (x) = x> + ex®> + fx + g.
Then ¢ (x) is irreducible and has three real roots. Let 6 be a root of ¢(x). Then E; is
generated by a6 + b and c0 + d.

If d = 0, then we can get the following theorem.

THEOREM 2. For rational integers a, b and c, assume the following conditions:
1. 2<la|l < |bland]|c| =1,
2. there exist rational integers e and f such that

b3 —eab® + fa’b +ca’ =1, (6)
and
e+ f#1, 7
3.
b n(_ b
¢/(——>‘>M+l+2lal, (8)
a 2
b
e— —| > 4al, )
a
and
b 5
e—2—| > —, (10)
a 2

where we put ¢ (x) = x> +ex?> + fx —c.
Then ¢ (x) is irreducible and has three real roots. Let 6 be a root of ¢(x). Then E(;" is
generated by a6 + b and cf.
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THEOREM 3. For rational integers a, b, c and d, assume that

3bd| |3bd

c

9

lad — bc| >max{|ac|, }, lac| > 2

and there exist rational integers e, f and g which satisfy (1). Then we can explicitly construct
infinitely many cubic irreducible polynomials ¢ (x) such that Eg' = (aB + b, cO + d), where
0 is a root of ¢ (x).

REMARK 1. When D := ac(ad — bc) # 0, we see that the simultaneous diophan-
tine equations (1) is solvable if and only if D ged(ac, ad + be) | a>(d> — 1) — 3 (B3 — 1),
D ged(ac, bd) | a*b(d® — 1) — ¢2d(b® — 1) and D ged(ac, bd, ad + be) | ab*(d> — 1) —
cdz(b3 — 1). Then, the simultaneous congruences

D(ad + bc)e = a’(d> — 1) — B> — 1), Dbde = a*b(d> — 1) — c*d(b> — 1) (mod Dac)
have a solution e € Z, and we may put

a3 =1 =3B =1) = D(ad + bo)e a’b(d® = 1) = c2d(b* — 1) — Dbde
, g = .

f= Dac Dac

Moreover, all solutions of (1) are given by

4 ac Fi ad + bc 4 bd
gcd(ac, bd, ad + bc)’ gcd(ac, bd, ad + bc)’ g gcd(ac, bd, ad + bc)

witht € Z.

REMARK 2. When G := gecd(ac, bd, ad + bc), if rational integers e, f and g satisfy
(1), then for any rational integer ¢,
, ac ad + bc ,

+—t, fi=f+ t +bdt
e —=e —1, = , = —
G G I=97%

also satisfy (1) by Remark 1. For these rational integers, we define ¢ (x) = x3+¢/'x2+ f'x+¢'.
Then we have

’(—9) - 3(—9)2+2< +Et><—é)+ padrbe ] _tad=be ) o)

¢ all a ‘TG a ! G e ’

”(—9) - 6(—é)+2( +“—Ct>‘—2‘ﬁt +0()

¢ all a ‘TG )T G ’

[ d d\’ ac d ad + be ad — be

¢<——)=3(——) +2(e+—t>(——>+f+ t| = t|+0a),
c c G c G

Vi d _ _i % — E

qb(—;)_é( C)+2(e+Gt)‘_2‘Gt+0(l).
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3bd

a c

gers t for which ¢/, f’ and ¢’ satisfy (2)—(5) or (7)-(10). Therefore, we can obtain infinitely
many polynomials ¢ (x) such that E; = (ab + b, c0 + d) (See Examples 1 and 2 below).

3bd

Hence if |ad — bc| > max {|ac|, } then we can find infinitely many rational inte-

’

REMARK 3. If the discriminant of ¢ (x) is square-free, then Z[0] coincides with the
ring of integers of K (cf. [2] chap. 4 Corollary 4.4.7) and E; = E;g If the discriminant of
¢ (x) is perfect square, then K /Q is a Galois extension.

REMARK 4. Thomas [7] studied on ¢ (x) such that E;” = (a6 + 1,0 + d) with some
conditions. In other words, he investigated (6, a® + b) forb = 1 (mod a). Therefore Theorem
2 is an extension of Thomas’s work (see Example 2 below).

REMARK 5. To prove Theorem 2, we use Theorem T (See section 2), in which the case
e+ f = 1lis excluded. In this case we are not sure whether E;r = (af + b, 6) or not. But
Thomas [7] gave families of ¢ (x) such that ;- = (—6 + 1, ), which are examples for the
casee + [ = 1.

REMARK 6. Stender [6], Watabe [8] and Minemura [5] studied in the case |a| =
1, |c| =1.

We give examples for b # 1 (mod a), in which there has been no example until now.
The following is an example of Theorem 1.

EXAMPLE 1. Puta =7,b =11,c =7 and d = 43. Then for each ¢ € Z, the integers
e =49t + 39, f = 378t + 251 and g = 473t + 302 satisfy (1). And if

t#0,—1

hold, then ¢ (x) = x> + ex? + fx + g is irreducible and has three real roots. Let 6 be a root
of ¢(x). Then E; = (70 + 11, 76 + 43) holds.

The following is an example of Theorem 2.

EXAMPLE 2. Forr # —1,0,puta =r?+r+1,b= (a*+a+1)r,c =1andd = 0.
Then for each t € Z, the integers e = r — 1 +at, f = —a%r? —a? — r?2 4+ br and g=—1
satisfy (6). And if

[t =2r|>5, |t—r|>3

hold, then ¢ (x) = x3 4+ ex? + fx — 1 is irreducible and has three real roots. Let 6 be a root
of ¢(x). Then E; = (a6 + b, ) holds.

2. Preliminaries

Before we prove our theorems, we give some notations which are used throughout this
paper. For a cubic irreducible polynomial ¢ (x) = x> + ex?+ fx + g € Z[x] which has three
real roots, set K = Q(0) where 0 is one of the three roots of ¢ (x). Let E g be the unit group of
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K and E; the subgroup of Ex which consists of units of norm +1 and set Er =7Z[]1N E;
Let6® (i = 0,1, 2) be the conjugates of 6 over Q. And let
0O 5 g 5 @

which is also assumed in Theorem G and Theorem T below which are the bases of our
theorems. For i,i’,i” € {0,1,2}, i #i #i" # i, min € Z, m > 0, n > 0, let
-0 = [ki.0, ki 1, - - -] be the continued fraction expansions of —0® and f;f—"’ the nth princi-

pal convergents of —0 and define

. 1
L |9(1/) _ 9(1'//)| ’

8i = Ai(Air + Aim)
M;in = [kin+1 — 2Xiqin+1],

Ni o= 2 (109 + 1097,

A

myqin J
PG

Ci={nez0] : n > 1, n%] < 1and |n""| < 1},

Nimn i=Mqi n0* + m(gine — pin) — L

and if M; , > 1, we define
Sin:={y €CNEg : y= (=1 Wimn+1
withl <m < M;,, —N; <l < N;, m,l € Z},

where [«] means the least integer which is greater than or equal to «, and |«] means the
greatest integer which is less than or equal to «.
The following three theorems are the bases of our theorems.

THEOREM B (Berwick [1]). 1. There exists a unit in each C; (i =0, 1, 2).
l.(l) < 09 for every unit n € C;. Moreover,
any two of the three units €, €1, &2 form a fundamental system of units for Z[0].

2. There exists a unit &; € C; such that &

We call ¢; in Theorem B the fundamental C; unit.
THEOREM G (Grundman [3]). Let 0@ > 0D > 0@ Suppose 8; < 1. If there exists
an integer n; such that

1
Kini+1 < qu',n,+1 and Sin, #9,

then (—l)i(m,mhn, + 1;) is the fundamental C; unit, where
m; ;= min{ m : (—l)i(r]i,m,n, +1) € S for somel},

Lic=min{l : (=) Wijmgn; +1) € Sin; }-



398 KENJI MINEMURA

REMARK 7. Grundman [3] stated the theorem only fori = 1, 2, but the proof still goes
through fori = 0.
THEOREM T (Thomas [7]). Let 6@ > 0D > 0@ Suppose g = +1, (e + f, g) #
(1, =1.
@ If1 <6 <0 and (0@ —gWY(1 + ¢g8P) > 2, then —go~" is the fundamental
C» unit.
b) IfoP < —1, 1 <09 and 9O > |0, then g0~ is the fundamental Cy unit.

3. Proof of Theorems 1,2 and 3

In this section, we shall prove Theorems 1, 2 and 3. First, we shall show that if the
assumptions in Theorem 1 or 2 hold, then ¢ (x) is irreducible and has three real roots. We use
the following elementary lemma all over our proofs.

LEMMA 1. For real numbers a, f and y, ifoa = B+ y and |B| > |y|, then sgn(a) =

sgn(p).
Now by ¢( - 3) = —;—3, if |a| and |¢/( — §)| are sufficiently large, then we have a real

root of ¢ (x) nearby — %. Indeed we have the following lemma.

LEMMA 2. If 2 < |a] < |b], (1) and (2) hold, then there exists at least one root of

¢(x)in
b 1 b n 1
a 3a%lgl” a 3a?g|l)’

PROOF. Let y be an indeterminate. Then we have

b b b (-t
R e
a a a 2

b - 1
=¢/(——)y+My2+y3——3-
a 2 a

Let |y| = and let 8 and y be the first term and the remains of the above respectively.

’ <_é>‘ - <3a;|g|> - (2_3)| - (3a;|g|)2 - %}

b 1
a + 3a?|g]

1
3a?|g|
By (2), we have

— >
81—yl = 3a2|g|{

>0.

) are equal to those of £¢’ ( — g) respectively.

Hence by Lemma 1 the signs of q)( —
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b 1 b 1 0
"’(_ a’ 3a2|g|>¢<_ a_ 3a2|g|> =

and this completes the proof of Lemma 2. a

So we have

Hereafter, let 6; be a root of ¢ (x) which satisfies the condition of Lemma 2, and fix it.
Then Lemma 2 means

b
01+ —
a

1

, 11
= 3424 (b

Similarly, we shall obtain the second real root 8, nearby —%. Indeed, if 2 < |c| < |d] and (3)
hold, then there exists a real root 8, of ¢ (x) such that

0+ — (12)

C

= 332
by Lemma 2. On the other hand, if d = 0, then we have the following lemma.
LEMMA 3. If2 < |a| < |b|, (6) and (9) hold, then there exists a real root 03 of ¢ (x)

such that

0 —
|62] < 2]

PROOF. By (6) we have f = 2 (e — 2) + g% + #. Therefore we have

b b 1
¢(x)=x3+ex2+<;<e—;)+g%+m)x+g

b b 3 b, a 1
=le——)x|lx+-)+x+x"+|g-+ -5 |x+yg.
a a a b a“b
Hence we have

o) == (o= L) o (1 +2)

4|al a) 4la| 4la|l a
PR (CRSR
64|a3] 1643 b a%b) 4|a|

respectively. Let 8 and y be the first term and the remains of the right-hand side respectively.
By (9), |g| = 1and 2 < |a| < |b|, we have
1 1 |b| 1 |b| 1 1
o112 g (= * ) ~ i~ T~ 1
|b] 1 |b] 1

- 2
la|  4la|  16]a’]  2lal
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Hence by Lemma 1 the sign of q)( + ﬁ) is equal to that of 8. Therefore we have q)( +

ﬁ)q&( — ﬁa‘) < 0, and hence we obtain Lemma 3. O

From the above, we can obtain the third real root 63 of ¢ (x), and fix it. Next we shall
show the roots 61, 6, and 63 are sufficiently far from each other.

LEMMA 4. If the assumptions in Theorem 1 hold, then we have
0 — | > ——,
o= 02> S indlal. el

1
162 = 63] > 4 max{lal. |c[} = 5.

1
|63 — 01| >4 max{|a|, |c|} — 3

PROOF. By Lemma 2, (12), |ad — bc| > max{|a|, |c|},2 < |a| and 2 < |c|, we have

b d b d
01—l =|lh+—)—|O2+—)—|———
a c a ¢

b d 1 1
T la Tl T 3a2gl T 3l
max{lal, |c|} 1 1
lac| C3q2 3¢2
2

~ 3minflal, |c|}
By 61 + 62 + 63 = —e and (5), we have

|02 — 03] = |e + 01 + 26,|

b d\ b _d
e+ (O1+—)+2(0+—-)—=—2-
a C a C

b d 1 2

e — — — -

a c| 3a?gl 32y

>

1
> 4 max{|al, |c|} — 5

Similarly by (4), we have

1
|63 — 01| > 4max{|al, |c|} — 5

Hence we obtain Lemma 4. O
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LEMMA 5. If the assumptions in Theorem 2 hold, then we have
61 — 62] > 1,
1
6 — 06 4lal — =,
|62 — 03] > 4lal >

6 o] 53
— > —
3TN g

PROOF. We have

b 1 1
> [—— —_—— — —
a| 3a%2  4a
|b] — 1
|al
> 1

by Lemma 2, Lemma 3 and 2 < |a| < |b|,

62 — 03] = |e + 61 + 20|

b b
=le+ |01+ —)+200——
a a
b 1 1
>le——|—— — —
al 3a%? 2la|
> 4la| — =
by 61 + 62 + 63 = —e and (9), and
|61 — 03] = |e + 261 + 02|
b b
fera(o+2) rn2t]
a a
b 2 1
>le—2—|—— — —
al 3a%>  4a
53
> =
24
by (10). Hence we obtain Lemma 5. O

By (11), (12) or Lemma 3, 61 and 6, are not rational integers. On the other hand, by (1),
we have

(ab1 + b)(abr + b)(ab3 + b) = b> — eab® + fa’b — ga®> = 1.
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If 63 is a rational integer, then we have a63 + b = +1. Hence we have

s — 61 + (91 + 9)
a

which contradicts to Lemma 4 or 5. Thus 63 is not a rational integer as well as 61 and 6,.
These imply ¢ (x) is irreducible and has three real roots. Therefore K = Q(6) is a totally real
cubic field. Hence by (1) we have

1
> — =

> |03 — 01| —
|al

b
O3+ —| =
a

1
3a?|gl’

N =

Nkjo@d+b)=1 and Ng(ch+d) =1,

ie,ab +b,c0+deE}.

Next we shall show that a0 +b and c0+d generate E9+ . First we recall 0@ > g > @),
Using this, we define integers i, i’ and i” by 6; = 6@, 6, = 64 and 63 = 84" respectively.
In order to prove that they generate E 9+ , we shall show that (—1)! (@6 +b)~! is the fundamental
C; unit by using Theorem G. To prove this, at first, we shall determine »; in Theorem G (see
(13) below), next check the conditions in Theorem G (see (14), Lemmas 7 and 9 below), and
finally determine m;, [; in Theorem G (see Lemma 8 below). If 2 < |c| < |d|, then the above
argument implies that (—l)i/(c9 + d)~! is also the fundamental C; unit. If d = 0, then we
shall also get a same result by using Theorem T.

We assume 2 < |a| < |b], (1) and (2) hold. For i defined above, by Lemma 2, we have

—0® — ﬁ’—l < 3a21|g‘ < 2‘]1—2 Hence there exists a natural number n; such that

pin; = sgn(—0D)|b| =sgn(a)b and g, = la. (13)
by the well known fact on the continued fraction (cf. [4] chap.X Theorem 184). And we have

1
ki,n;+l < Eqi,nrH (14)
by qdini+1 = Qi,niki,ni+1 + Gini—1 and din; = lal > 2.

LEMMA 6. Ifthe assumptions in Theorem I or 2 hold, then we have
ki,n,--‘rl > 3lal .

PROOF. Note that the minimal polynomial of —8®) is —¢(—x). By (11), Lemma4 or 5,
—¢$(—x) is a monotone function between —6 ) and g, where we use the following elementary
fact: if u < v are two consecutive real roots of an equation of degree 3 with real coefficients
and w is the extreme point between them, then we have

2u +v u—+2v
<w<

3 - - 3
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Hence we have

Gin; Pini—1 — PinQini—1 = |a|pin;—1 — sgn(a)bq; n;—1

(-
o (D)l (2)
o (o(-2)). 05

We put S = |a¢’ (—§)| — 3q"’""71. Then S is a rational integer. Indeed, by |a|¢’ (—g) =

lal

la| (3Z—§ —2ek 4 f) = 32 (mod 1), we have

= Tal

b b 3qin.—
= (o (=) o (=) - 25
2 .
= sgn (¢/ <_é>> ﬂ _ M (mod 1)

a/) lal lal

sen(¢'(— 2))b* — gin—1

lal

=3

(mod 1).

Hence it is sufficient to show sgn(qﬁ/( — g))bz = ¢in;—1 (mod a). This is equivalent to

Gini—1b = sgn(¢'(— 3)) (mod a) by (1), and holds by (15). Therefore S is a rational integer.
Moreover by (2), we have S > 3|a|. By (15), the following holds for an indeterminate 7':

_sgn(@)bT + pini—1 _ b lalpin—1 — sgn(@)bqin;—1

lalT + gim—1  a lal(la|T + Gin—1)
__b, sgn (¢ (—2))
a a(alT + qin-1)

Hence we have

—¢ (_ sgn(@)bT + pin;—1 )
la|T + qin;—1

=0 (<L) (L) (i) D e i)y
~ ( sen(¢'(— 2)) )3

a(la|T + gip;—1)

{QMT+%mlﬁ—a2

b
= e a|T + qjn.—
(T + qim—1)? ¢( aNﬂ| Gioni=1)
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_ap’(= %) sen(¢'(-2)) }

2 la|T + qin;—1

1
~a3(1al(S+ 1) + gin—1)?

{(Ialf = 2¢i.n;—1)(|al(S + T) + qin; 1)

ag"(=3) __ sen(¢'(=2)) }

2 - lal(S + 1) + gin;—1

where we put 7 = S + . Now let t be either 0 or 2 and put

ag” (=3) __ sen(@'(=2))

B = (lalt —2gin,—1)(al(S+ 1) +qip;—1) and y =—

2 LS+ D)+ qim1
By |lalt — 2¢i n;—1] > 1 and (2), we have
/ b / b
apg' | — )| =3 ) > lal|l¢ | ——
a a
b n{_b
¢'(——)‘—M—l) > 0.
a 2
By Lemma 1, we have

sgn(a)b(S + 1) + pin—1 _ .
e <_¢ (_ lal(S + ) + qin;—1 )) = sen (adlalr = 2qin-0)

’

1Bl > lalS > la| (

hence we have

1Bl =1yl > Ial<

_ sgn(a) ift=2,
N —sgn(a) if t=0.

Thus we have

(_ sgn(@)bS + pin;—1 ) <_ sgn(@)b(S +2) + pin—1 ) -0
lalS + qini—1 lal(S +2) + gini—1 .

sgn(@)bS+pin;—1 sgn(@)b(S+2)+pin; -1

Hence —¢(—x) has a root between QIS Fdim 1 and AT w1 It coincides with
—® by (11), Lemma 4 or 5. This means S +2 > k; ,,4+1 > S. Hence we have k; 5,41 >
3lal. 0

LEMMA 7. If the assumptions in Theorem 1 or 2 hold, then we have
(—1)' (@b +b)~" € Sip, .

PROOF. It is sufficient to show that (—1)!(a® + b)~! € C; and it can be expressed as
(—1)"(17,',|a‘,,1,. + [) such that |a| < M; ,, and —N; <[ < N;. By the proof of Lemma 6 and
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the definition of i, we have

sgn(ad + b) = sgn <¢/ (—g)) =(=1)".

Hence by (11), we have 0 < (—=1)/(@8® + b) < 1, and by Lemma 4 or 5, we have |a6@" +
bl > 1, a0 +b| > 1,ie., (=1)'(@b + b)~' € C;. Next, we shall show |a| < M;,.
We have g n;+1 = kip;+1lal + gin;—1 < lal(kip;+1 + 1) by (13) and g; ;1 < |al, and
A

T < ﬁ by Lemma 4 or 5. Hence we have

_ 1 -1 1
6@ —o@| — 102=631 ~ 4max{jal,lc]}—1

M; ;= Tkini+1 — 2XiGin; 111

- 4
> | kip+1 — ?(ki,n,--i-l + 1)—‘
[ 3kip+1 —4
N 7
[9lal — 1
>
- 7
> |al

by Lemma 6. Finally, we shall show —N; <[ < N;. By elementary calculation and (1), we
3
have (a6 + b)~" = a20% + (a%e — ab)0 + “9*1. On the other hand, by (13) we have

lalgqi n;
F10)

Ni,la|,n; = |a|Qi,ni92 + |a|(Qi,n,-€ - pi,n,-)e - \‘

2
_ 22 2, |94
=a“0° + (a“e — ab)d \‘G(i)J'

Hence we have
1= (af+b) " = nijan,

3 2
a’g+1
g \\a QJ
b Q)

5, (a 1 1
ag B—i_m +E .

2 (e, 1\ _ > 2 +69] 1
ag(b—l-e(i))‘—m gl—‘§‘|9(l_)| <2.

Now by (11), we have

Henceby|%|<%,wehave
| = 0 or —1.

By the definition of N;, we have 1 < N;. Hence we have —N; <[ < N;. This completes the
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proof of Lemma 7. a
Let us determine m; and /; in Theorem G.

LEMMA 8. Ifthe assumptions in Theorem I or 2 hold, then we have

mi =la| and ;= (ad+b) "' —nijapm -

PROOF. ByLemma7,m = |a|and! = (@0 +b)~" =i ja).n; imply (= 1) i m.n; +1) €
S;.n;. Hence it is sufficient to prove that there exists no other pair (m, /) with 1 < m < |a|
such that (—1)"(77,-,,,,,,1,. +10) €S, . By (13), for any m and / we have

(@ + b)Mim,n; +1)

— (ab + b) (m|a|92 + m(lale — segn(@)b)6 — V;‘ﬂ;"J 4 1)

3
_ —ga’ — 1 mgla| mglal
_(m|a|T +Cl<—\‘ 9([) J+l>>9—gma|a|+b<—{ 9([) +l

3
where A = m|a|=24= + a(— | 22 | + 7). We note that A € Z by (1). If A 3 0, then we

have

Neo (40 + ™ + 22 — 430 (6 b m Vo a3yl
k/Q lal ) 0K a Aa))” a Aal)’

and hence we have
b 2 b
A tmialag' (=2) A2 -2 (=2)a+ L3 — aya® =0, (16)
a 2 a la|
where Ay = Ng (A0 + o+ %A). This also holds for A = 0. If 1; ., + [ is a unit,

then A6 + % + %A is also a unit because af + b is a unit. So we set Ay = %1 and regard
the left-hand side of (16) as a polynomial in A, and denote it by {(A). To prove Lemma
8, we may show that there exist no integral roots of ¥ (A) with 1 < m < |a| for which
(—1)i(n[,m,ni + 1) € C; other than A = 0 with m = |a| and Ay = 1. For that, we are going
to see

vy (=1 >0, [¥ED] > [¢(0)] A7)

1//(—m|a|a¢’ (—S)—i—l)t[i(—mlalaqﬁ/ (—g)— l) <0. (18)

and
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If (17) holds, then y¥r(A) = 0 has only one root out of (—1, 1). Moreover, if (18) holds, then

the root is in
/ b / b
—mlalad' | —— ) — 1, —m|ala¢p’ | —— )+ 1] .
a a

If¢”( — g) # 0, then we have |¢” (—§)| = ‘%llae —3p| > I%\ and hence
b 1 b b a
v (cmtas (=) = mane (=5) o (=5) # g = ave
b
az / <__>‘ _ 2|a|3
a

0

=

\

_b

a
above interval. If ¢” (—2) = 0 and ¢ (—m|alag’ (—2)) = 0, then we have e = 32, m = |a|
and Ay = 1. Hence by (1) we have

2 3
—mlalag’ (—9> = (_% +f> =a <b2— g+ 1 1) ,
a a b

On the other hand by the definition of A, we have

3 2
_ ga’ +1 ga
A—a(— b —\‘WJ‘FI)

Hence ! must be equal to b2+ Lg(—[ﬁ . Then we have 1; |q|,n; +1 = (a0 +b)2. By Lemma 2, we

have |a9(i) + b| < 1, and hence (—l)i(ni,\am + 1) ¢ C;. Hence there exist no integral roots
of ¥ (A) with 1 < m < |a| for which (—l)i(n[,m,ni + 1) € C; other than A = 0. Therefore
Lemma 8 holds. Now we shall show (17) and (18). Let § be either O or 1. We have

v (—m|a|a¢/ <—é>5:|: 1>
a
, b s , b m2a Y b
= <—m|a|a¢ (——) = 1) {ﬂ:(—l) mlalad (——) - —9¢ <——> + 1} + ¥ (0).
a a 2 a

Put

by (2). Therefore the root is not an integer because —m|a|a¢’ ( ) is a unique integer in the

2 a

Y 1 2m?  2|al
P\ T T T

$ / b m2a 7 b
B ==x(=1)’mlalag - and y=——-9¢ | —= )+ 1+¢¥(0).
By (2)and 1 < m < |a|, we have

(D)=
o (-2) -3

1Bl =yl — [y (0)] >ma2(

>0.
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Hence by |—m|a|a¢/ (—%) s+ 1| > 1 and Lemma 1, we have | (Z1)| > |¥(0)| and

s (o (2)10)
(o (220 ()

+1 if §=1,
sgn(ag’(— g)) if§=0.
These mean that (17) and (18) hold. This completes the proof of Lemma 8. O

LEMMA 9. Ifthe assumptions in Theorem I or 2 hold, then we have §; < %

PROOF. By Lemma4 or 5 and |a| > 2, we have

1 1 1
b = |0G) — ") <|9(i) — 00| + 0@ — 9(:’”)|)

o ( . >
T 16— 63 \ |01 — 62| |61 — 65]

1 3 1 .
—min{|a|, |c|} + if 2 <|c| < |d|

4max{lal, ||} — 4 \2 4max{lal, ||} — %

1 24
— (1+_) if |c|]=1,d=0
4jal — 1 53

1
Hence by (14), Lemmas 7,8,9 and Theorem G, (=1Di(a6 + b)~ ! is the fundamental C; unit.

On the other hand, if 2 < |c| < |d|, then ¢ and d satisfy the same conditions with respect to a
and b; therefore (—1)"/(09 +d)~! is also the fundamental C;/ unit. Hence, by Theorem B, we
have E; = (af + b, c6 + d) and this completes the proof of Theorem 1. Finally, we shall
show that (—1)'(c)~! = —(—1)!"¢go6~! is the fundamental C;s unitif d = 0. If a, b, c,d
and ¢ (x) satisfy the assumptions in Theorem 2, then so do —a, b, —c, d and —¢(—x), and
the last polynomial has three real roots —0© < —9() < —9 Hence we may assume that

0@ < 0O and 1 < 6© without loss of generality. Now we use Theorem T to determine
the fundamental C;/ unit. If 1 < OW theni’ = 2,ie. 6@ = 9" = 6>. Hence, by Lemma 5,
we have

OQ — oMYA+ g8P) =163 — 0111 + g62)

53 1
> (1-—
24 4]l

> 2.
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Hence —g#~! is the fundamental C; unit. Next suppose 6) < 1. By Lemmas 2 and 5, we
have |01] > 1 and

03] = | —e— 0 — 6]
b 1 1
>le—-| - — — —
a|l 3a? 4a|
> 1.

Therefore the absolute values of two of three roots : 62 < 1) < 9O are greater than 1.
Hence we have 6@ < —1 and i’ = 1,ie,o0 = 9 — 6>. By Theorem B and Theorem T,
we obtain E; = (a0 + b, c0). This completes the proof of Theorem 2.

In the end we shall prove Theorem 3. By Remark 2, we can construct infinitely many
polynomials which satisfy (1)—(5) or (6)—(10) using a polynomial ¢ (x) which satisfies (1). Let
@ (x) be a cubic monic polynomial in x. Then the following two statements are equivalent:

1. @ (x) satisfies (1),

2 (= =(-)e(-9)=(-1"

Now for a rational integer n, put A = a,B = an+b,C = c¢,D = cn+d and @(x) =
¢(x + n). Then @(x) is a cubic monic polynomial in x and satisfies the second condition
of the above for A, B, C, D. And let 6 be a root of ¢(x) and put ® = 6 — n. Then ®
is a root of @(x) and A® + B = ab + b,CO® + D = cH + d. Hence we may assume
la] < |b| and |c| < |d| without loss of generality. This completes the proof of Theorem 3 for
la| > 2, |c| = 2. Next suppose |c¢| = 1 and putn = —cd. Then D = 0 and |B| = |ad — bc|.
Hence if |c| = 1, we may assume d = 0 without loss of generality. Suppose d = 0 and put
A=bc,B=ac,C=c,D=0and ®(x) = —cqb(%)x? Then @ (x) satisfies the second

condition of the above for A, B, C, D and ® = % is a root of @ (x). Furthermore we have
1 1
(A® + B,CO® + D) = bc§ +ac, c;
= (ab + b, cb) ,
Al = |B] & lal 2 |b].

Hence if |c| = 1, we may consider a, —acd + b (we again note that its absolute value is equal
to lad — bc|),c, 0 instead of a, b, ¢, d and assume |a| < |ad — bc| without loss of generality.
This completes the proof of Theorem 3 for [a| > 2 and |c| = 1.

References

[1] W.E.H. BERWICK, Algebraic number fields with two independent units, Proc. London Math. Soc. 34 (1932),
360-378.

[2] H. COHEN, A Course in Computational Algebraic Number Theory, Second Corrected Printing, GTM 138
(1995), Springer.



410 KENJI MINEMURA

[3] H.G. GRUNDMAN, Systems of fundamental units in cubic orders, J. Number Theory 50 (1995), 119-127.

[4] G. H. HARDY and E. M. WRIGHT, An introduction to the theory of numbers, Fifth edition, Oxford Science
Publications (1979).

[5] K. MINEMURA, On totally real cubic fields whose unit groups are of type {6 + r, 6 + s}, Proc. Japan Acad.
74A (1998), 156-159.

[6] H.J. STENDER, Einheiten fiir eine allgemeine Klasse total reeller algebraischer Zahlkorper, J. reine angew.
Math. 257 (1972), 151-178.

[7]1 E. THOMAS, Fundamental units for orders in certain cubic number fields, J. reine angew. Math. 310 (1979),
33-55.

[8] M. WATABE, On certain cubic fields I, III, VI, Proc. Japan Acad. 59A (1983), 66-69, 260-262; 60A (1984),
331-332.

Present Address:
GRADUATE SCHOOL OF HUMAN INFORMATICS, NAGOYA UNIVERSITY,
CHIKUSA-KU, NAGOYA 464-8601, JAPAN.



