A Note on Anti-Pluricanonical Maps for 5-Folds

Qi-Lin YANG

Tsinghua University
(Communicated by S. Miyoshi)

Abstract. We prove that the anti-pluricanonical map $\Phi_{|-mK_X|}$ is birational when $m \ge 16$ for 5-fold X whose anticanonical divisor is nef and big.

1. Introduction

Throughout the ground field k is always supposed to be algebraically closed of characteristic zero. Let X be a non-singular n-fold over k and assume its anticanonical divisor $-K_X$ is a nef and big divisor. It is an interesting problem to find an explicit lower bound l(n) such that the rational map $\Phi_{|-mK_X|}$ associated with the complete linear system $|-mK_X|$ is a birational map onto its image for any $m \ge l(n)$. Ando ([1, Theorem 9]) first gave the bounds l(2) = 3, l(3) = 5 and l(4) = 12. Fukuda [3] improved Ando's method and got the bounds l(3) = 4, l(4) = 11 and

$$l(n) = 2^{n-2} \cdot (n + 4[n/2] - 1) - 2[n/2] - 1$$

for any $n \ge 5$. Chen [2] also used the similar ideas to improve Ando's partial results. Using the Key Lemma in [3], this note proves

MAIN THEOREM. Let X be a smooth 5-fold whose anticanonical divisor $-K_X$ is nef and big. Then $\Phi_{|-mK_X|}$ is a birational map when $m \ge 16$.

2. Preparations

In this note we use the standard terminology as in [4, 5]. For example, $c_i := c_i(TX)$ is the *i*-th Chern class of the tangential bundle; $H^i(X, \mathcal{F})$ denotes the *i*-th cohomology with coefficient in a coherent sheaf \mathcal{F} , and $h^i(X, \mathcal{F}) = \dim_k H^i(X, \mathcal{F})$. We simply denote $H^i(X, \mathcal{O}_X(D))$ by $H^i(X, D)$ if the sheaf is induced by a divisor D.

We will use Lemma 1, a special case of the Key Lemma in [3], which improved the Theorem 5 in [1].

Received June 24, 2003; revised September 25, 2003 Research partially supported by SFB-237 of the DFG. Key words. anti-pluricanonical map, birationality. Mathematics Subject Classifications (2000). 14E05, 14J30, 14N05. 372 QI-LIN YANG

LEMMA 1 (Ando [1], Fukuda [3], Chen [2]). Let X be a nonsingular projective variety of dimension n and $-K_X$ is a nef and big divisor. We assume:

- (i) For each i with $1 \le i \le n-2$, there exists a natural number r_i such that $\dim \Phi_{|-r_iK_X|}(X) \ge i$.
 - (ii) There exist an integer $r_0 \ge 3$ such that $H^0(X, -rK_X) \ne 0$ for any $r \ge r_0$. Then $\Phi_{|-mK_X|}$ is birational for all $m \ge r_0 + (r_1 + \cdots + r_{n-2})$.

PROOF. In the Key Lemma in [3], we let the nef and big divisor $R = -K_X$ and the numerically trivial divisor T = 0. By our assumptions we have $H^0(X, -rK_X) = H^0(X, -(r+1)K_X + K_X) \neq 0$ for any $r+1 \geq r_0+1 := \hat{r}_0 \geq 4$. So both (1) and (2) of the Key Lemma are satisfied. Hence $\Phi_{|-mK_X|} = \Phi_{|-(m+1)K_X + K_X|}$ is birational when $m+1 \geq \hat{r}_0 + (r_1 + \cdots r_{n-2})$, thus $\Phi_{|-mK_X|}$ is birational for all $m \geq r_0 + (r_1 + \cdots r_{n-2})$. \square

To use Lemma 1, we need the following Lemma, it is the Proposition 6 in [1], we refer to [1, 2, 3] for reference of it.

LEMMA 2 (Matsusaka & Maehara). Let D be a nef and big divisor and dim X = n. If $h^0(X, mD) > m^r D^n + r$, then dim $\Phi_{|mD|} > r$.

3. Proof of the Main Theorem

Let

$$P(m) := \chi(\mathcal{O}_X(-mK_X)) = \sum_{i=0}^{5} (-1)^i h^i(X, -mK_X) = h^0(X, -mK_X),$$

Change to:

$$P(m) := \chi(\mathcal{O}_X(-mK_X)) = \sum_{i=0}^{5} (-1)^i h^i(X, \mathcal{O}_X(-mK_X)) = h^0(X, \mathcal{O}_X(-mK_X)),$$

since $-K_X$ is nef and big, by the Kawamata-Viehweg vanishing theorem (cf. [5, Corollary 1-2-2]) we have $H^i(X, -mK_X) = 0$ for $m \ge 0$ and i > 0. Thus $\chi(\mathcal{O}_X) = 1$. Note by definition, $c_1 = -K_X$, and $c_i = 0$ for i > 5. Combine these facts with Hirzebruch-Riemann-Roch formula ([4, P_{432}]), we have

$$\begin{split} P(m) &= \int_X \mathrm{ch}(\mathcal{O}_X(-mK_X))\mathrm{Td}(X) \\ &= m(m+1)(2m+1)(3m^2+3m-1)\frac{(-K_X)^5}{720} + m(m+1)(2m+1)\frac{(-K_X)^3 \cdot c_2}{144} \\ &\quad + (2m+1) \\ &= (2m+1)\{(m(m+1)[(3m^2+3m-1)a+b]+1\}\,, \end{split}$$

where $720a = (-K_X)^5$ and $144b = (-K_X)^3 \cdot c_2$.

To use Lemma 1 and Lemma 2, we need priori estimates of P(m) for $m \ge 0$.

Proposition 1.

- (i) P(1) = 0, $P(2) \ge 0 \Rightarrow P(3) \ge 35$;
- (ii) $P(1) = 1, P(2) \ge 1 \Rightarrow P(3) \ge 21$;
- (iii) $P(1) = 2, P(2) \ge 2 \Rightarrow P(3) \ge 7$;
- (iv) $P(1) = 3 \Rightarrow P(2) \ge 6$;
- (v) P(1) = 3, $P(2) = 6 \Rightarrow P(3) = 49$;
- (vi) P(m+1) > P(m) when m > 3 and $P(3) \ge 7$.

PROOF. Assume $P(1) = 3[2(5a+b)+1] := l \ge 0$, we have $b = \frac{1}{6}(l-3)-5a$. By $P(2) \ge P(1)$ we get $a \ge \frac{1}{360}(10-4l)$, so we have $P(3) \ge 35-14l$. Hence we get (i)–(iii). Now we assume P(1) = 3 and P(2) = 5[6(17a+b)+1] := l. Then b = -5a and l = 5(12a+1) > 5, and hence $P(2) \ge 6$ and we have (iv). If P(2) = 2P(1) = 6. Then we have $a = \frac{1}{60}$ and $b = -\frac{1}{12}$, So P(3) = 7[12(35a+b)+1] = 49 > 7 we get (v).

If P(2) > 6, then $P(3) \ge P(2) \ge 7$. Combine with (i)–(v) we always have $P(3) \ge 7$. Since $P(1) \ge 0$, we have $b \ge -5a - \frac{1}{2}$ and [3m(m+1)-1]a+b>0 when $m \ge 3$. Thus $P(m+1)-P(m) > (m+1)\{[3m(m+1)-1]a+b+1\}[(m+2)(2m+3)-(m+1)(2m+1)] > 0$ when $m \ge 3$, we get (vi).

PROPOSITION 2.

- (i) $\dim \Phi_{|-mK_X|}(X) \ge 1$, for any $m \ge 3$;
- (ii) $\dim \Phi_{|-mK_X|}(X) \ge 2$, for any $m \ge 4$;
- (iii) $\dim \Phi_{|-mK_Y|}(X) \ge 3$, for any $m \ge 6$.

PROOF. By Proposition 1, $P(3) = 7[12(35a+b)+1] \ge 7$, so we have (i) and $b \ge -35a$. Thus $P(4) = 9[20(59a+b)+1] \ge 180 \times 24a + 9 > 6(-K_X)^5 + 2$. By Lemma 2 we have (ii). $P(6) = 13[42(125a+b)+1] \ge \frac{13\times21}{4}(-K_X)^5 + 13 > 36(-K_X)^5 + 3$, we have (iii).

PROOF OF MAIN THEOREM. By Proposition 1 we have $h^0(X, -3K_X) \ge 7$, so we can put $r_0 = 3$. By Proposition 2, we can set $r_1 = 3$, $r_2 = 4$, $r_3 = 6$. By Lemma 1 when $m \ge r_0 + r_2 + r_3 + r_4 = 16$, then $\Phi_{|-mK_X|}$ is a birational map.

4. An example

EXAMPLE 1. Let $\pi: E = \mathcal{O}_{\mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1}(1) \to \mathbf{P}^1$ be a rank 5 vector bundle. Let $X = I\!\!P(E)$. Then by calculations in the Exercise 8.4 of [4, P_{253}], $K_X = -5L + \pi^*(\det(E) + K_{\mathbf{P}^1}) = -5L - H$, where $L \in |\mathcal{O}_X(1)|, H \in |\pi^*\mathcal{O}_{\mathbf{P}^1}(1)|$. Clearly X is a Fano manifold and $-K_X$ is a nef and big divisor. Note $L^5 = H \cdot L^4 = 1$,

374 QI-LIN YANG

so $(-K_X)^5 = 2 \times 5^5$. By Leray spectral sequence and the fact that $R^i \pi_*(\mathcal{O}(l)) = 0$ for any i > 0 and l > -5, we have $H^i(X, -mK_X) = 0$ when i > 0 and $H^0(X, -mK_X) = H^0(X, \mathcal{O}_X(5m) \otimes \pi^*\mathcal{O}_{\mathbf{P}^1}(m)) = H^0(\mathbf{P}^1, S^{5m}(E) \otimes \mathcal{O}_{\mathbf{P}^1}(m))$ for any m > 0. Note that

$$\begin{split} S^{5m}(E) &= \bigoplus_{i=0}^{5m} S^{5m-i}(\mathcal{O}_{\boldsymbol{P}^1} \oplus \mathcal{O}_{\boldsymbol{P}^1} \oplus \mathcal{O}_{\boldsymbol{P}^1} \oplus \mathcal{O}_{\boldsymbol{P}^1}) \otimes \mathcal{O}_{\boldsymbol{P}^1}(i) \\ &= \bigoplus_{i=0}^{5m} (\mathcal{O}_{\boldsymbol{P}^1}(i) \oplus \mathcal{O}_{\boldsymbol{P}^1}(i) \oplus \cdots \oplus \mathcal{O}_{\boldsymbol{P}^1}(i)) \,, \end{split}$$

it is a bundle of rank $\frac{1}{6}(5m-i-1)(5m-i)(5m-i+1)$ in the last bracket of above summation. So,

$$\begin{split} h^0(\mathbf{P}^1, S^{5m} &(E) \otimes \mathcal{O}_{\mathbf{P}^1}(m)) \\ &= \frac{1}{6} \sum_{i=0}^{5m} (5m-i-1)(5m-i)(5m-i+1)h^0(\mathbf{P}^1, \mathcal{O}_{\mathbf{P}^1}(m+i)) \\ &= \frac{1}{6} \sum_{i=0}^{5m} (m+i+1)(5m-i-1)(5m-i)(5m-i+1) \\ &= \frac{1}{24} m(5m-1)(5m+1)(5m+2)(10m+3) \,. \end{split}$$

It is easy to check that $h^0(IP(E), -K_X) = 91$, we can take $r_0 = r_1 = 3$; and $h^0(IP(E), -4K_X) = 62909 > 10(-K_X)^5 + 2$, we take $r_2 = 4$, and $h^0(IP(E), -5K_X) = 186030 > 5^2(-K_X)^5 + 3$ we can take $r_3 = 5$. So $\Phi_{|-mK_X|}$ is a birational map when $m \ge 15$.

QUESTION. Find out the lowest bound l(n) such that $\Phi_{|-mK_X|}$ is birational when $m \ge l(n)$.

We also don't know how to improve the bounds l(n) given in [3] for n > 5 since the Hirzebruch-Riemann-Roch formula is more complicate in these cases.

ACKNOWLEDGEMENT. The author would like to thank the referee for showing him the paper [3], base on which he improve the earlier bound to present stage. Part of this work was done while I was visiting as a guest fellow at the Institut für Mathematik, Ruhr Universität Bochum, Germany. I would like to thank Prof. A. Huckleberry and P. Heinzner for showing me the thesis of Dr. S. Kebekus, which stimulates my interest in algebraic geometry.

References

- [1] T. Ando, Pluricanonical systems of algebraic varieties of general type of dimension ≤ 5, Adv. Stud. in Pure Math., 10 (1987), [Algebraic Geometry, Sendi, 1985], 1–10.
- [2] M. CHEN, A note on pluricanonical maps for varieties of dimension 4 and 5, J. Math. Kyoto Univ. 37 (1997), 513–517.
- [3] S. FUKUDA, A note on Ando's paper "pluricanonical systems of algebraic varieties of general type of dimension ≤ 5, Tokyo J. Math. 14 (1991), 479–487.
- [4] R. HARTSHORNE, Algebraic Geometry, GTM 52 (1977), Springer.
- [5] Y. KAWAMATA, K. MATSUDA and K. MATSUKI, Introduction to minimal model problem, Adv. Stud. in Pure Math. 10, (1987), [Algebraic Geometry, Sendi, 1985], 283–360.

Present Address:
DEPARTMENT OF MATHEMATICS, TSINGHUA UNIVERSITY,
BEIJING 100084, P. R. CHINA,
e-mail: qlyang@math.tsinghua.edu.cn