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Abstract. In this paper we prove that the Hodge conjecture is true for any self-product of the jacobian variety

J(Cpµ,qν ) of the curve Cpµ,qν : yqν = xpµ − 1, where pµ and qν are powers of distinct prime numbers p and q.

We also prove that the Hodge ring of J(Cpµ,qν ) is not generated by the divisor classes whenever pµqν �= 12 and

(µ, ν) �= (1, 1).

1. Introduction

Let A be an abelian variety over the complex number field C. Let B∗(A) be the Hodge
ring of A and C ∗(A) the subring of B∗(A) generated by the cohomology classes of algebraic
cycles on A. The Hodge conjecture for A, which we will refer to HC(A) in this paper, asserts
that the equality B∗(A) = C ∗(A) holds. If we denote by D∗(A) the subring of C ∗(A)

generated by the divisor classes, then the equality B∗(A) = D∗(A) implies HC(A). We say
that A is nondegenerate (resp. degenerate) if B∗(A) = D∗(A) (resp. B∗(A) �= D∗(A)).
If B∗(Ak) = D∗(Ak) for all k ≥ 1, then we say that A is stably nondegenerate ([7]). It
is clear that stably nondegeneracy implies nondegeneracy, but the converse does not always
hold. However, Lenstra proved that the converse does hold if A is a CM abelian variety whose
CM-field is an abelian field. A special class of such abelian varieties will be the main object
in this paper

For powers pµ, qν (> 1) of distinct prime numbers p, q , we consider the curve

Cpµ,qν : yqν = xpµ − 1(1)

defined over C. We call this curve a generalized Catalan curve. (The curve Cp,q is the usual
Catalan curve.) The starting point of this paper is the following theorem:

THEOREM 1.1 (Kubota-Hazama). The jacobian variety J (Cp,q) of the Catalan curve

Cp,q is simple and stably nondegenerate. In other words, the equality B∗(J (Cp,q)
k) =

D∗(J (Cp,q)k) holds for all k ≥ 1. In particular, HC(J (Cp,q)k) is true for all k ≥ 1.
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This theorem was proved by Kubota ([12]) when one of p, q is 2, and the other cases were
proved by Hazama ([9]). If (µ, ν) �= (1, 1), then J (Cpµ,qν ) is no longer simple since there
is a nontrivial homomorphism from J (Cpµ,qν ) to J (Cp,q). Nevertheless, we can generalize
Theorem 1.1 as follows.

THEOREM 1.2 (cf. Corollary 7.2 and Theorem 8.1). Suppose neither pµ nor qν equals
4. Then every simple factor of J (Cpµ,qν ) is stably nondegenerate. If (µ, ν) �= (1, 1), then

J (Cpµ,qν ) itself is degenerate. More precisely, Bd (J (Cpµ,qν )) �= Dd(J (Cpµ,qν )) for d =
p + 1, q + 1 and 1

2 (p + 1)(q + 1).

We shall prove a similar but slightly complicated result when either pµ = 4 or qν = 4
(see Theorem 7.1).

As for the Hodge conjecture for degnerate abelian varieties, only a few cases have been
studied (see [18], [24], [21] and [4]). In spite of degeneracy of J (Cpµ,qν ), however, we can
prove the following theorem, which provides a new example of degenerate abelian variety for
which the Hodge conjecture is true.

THEOREM 1.3 (cf. Theorem 8.2). For all k ≥ 1, HC(J (Cpµ,qν )k) is true.

It is easy to see that the jacobian variety J (Cpµ,qν ) of Cpµ,qν is an abelian variety of
CM type. More precisely, every simple factor of J (Cpµ,qν ) is a CM abelian variety whose
CM-field is an abelian field contained in Q(ζm), where m = pµqν and ζm denotes a primitive
m-th root of unity. For example, End(J (Cp,q)) ⊗ Q = Q(ζpq). We prove the first statemant
of Theorem 1.2 essentially in the same way as Kubota and Hazama proved Theorem 1.1.
They made use of an explicit description of the CM-type of J (Cp,q), while we resort to
an expression of the CM-type in terms of Stickelberger elements (Proposition 6.2). This
expression, which simplifies the argument in the proof, is a consequence of the fact that Cpµ,qν

is a quotient of the Fermat curve X1
m : xm + ym + zm = 0 of degree m = pµqν .

Now, suppose m is an arbitrary positive integer. If C is a quotient of the Fermat curve X1
m

of degree m, then HC(J (C)k) for the jacobian variety J (C) of C follows from HC((X1
m)gk),

where g denotes the genus of X1
m. Therefore, by the theory of inductive structure due to

Shioda [20], HC(J (Cpµ,qν )k) will follow from HC(XN
m ), where XN

m is the Fermat variety
of degree m and of sufficiently large dimension N . In this way, Shioda [21] succeeded in

proving HC(J (C)k) for all k ≥ 1 when m is a prime number or m ≤ 20, and our previous
papers [4], [5] generalized his result to some extent. However, the same proof does not
work when we consider the generalized Catalan curves, since the Hodge conjecture is still
remained to be proved for the Fermat varieties of degree pq if p, q > 2 and pq �= 15, 21. To
prove Theorem 1.3, we shall show that every Hodge cycle on J (Cpµ,qν ) comes (via Shioda’s
inductive structure) from the Hodge cyclces on a Fermat variety of degree m corresponding
to “standard elements". Then the work of [20], [15] and [2] proving that such Hodge cycles
are algebraic will establish Theorem 1.3.
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2. Preliminaries

We start with a brief review about the Hodge conjecture. We refer the reader to [22] and
[13] for more details. Let X be a non-singular projective variety over C. For each integer d

with 0 ≤ d ≤ dimX, let

Bd (X) = H 2d (X, Q) ∩ Hd,d(X)

be the space of Hodge cycles of codimension d on X. Let C d(X) be the subspace of Bd (X)

generated by the classes of algebraic cycles of codimension d on X and Dd (X) the subspace
of classes of intersections of d divisors on X. We then have inclusions

Bd (X) ⊇ C d(X) ⊇ Dd(X) .

We denote by HC(X) the Hodge conjecture for X which asserts that the equality Bd (X) =
C d (X) holds in all codimension d . If a subspace V of H 2d(X, Q) (resp. H 2d (X, C)) is

contained in C d (X) (resp. C d (X) ⊗ C), then we say that V is algebraic. In this terminology,
HC(X) asserts that Bd (X) is algebraic for any d .

Let A be an abelian variety of dimension g defined over C. Let

B∗(A) =
g⊕

i=0

Bi (A)(2)

be the Hodge ring of A and C ∗(A) (resp. D∗(A)) the subring of the Hodge ring generated by
the classes of algebraic cycles (resp. divisors) on A. Clearly we have

B∗(A) ⊇ C ∗(A) ⊇ D∗(A) .(3)

We say that A is nondegenerate if the equality B∗(A) = D∗(A) holds. Thus, if A is nonde-
generate, then it is clear from (3) that HC(A) is true. We say that A is stably nondegenerate if
B∗(Ak) = D∗(Ak) for all k ≥ 1 ([6], [7] and [8]).

If there exists a CM-field K of degree 2g and an injective ring homomorphism

θ : K → End(A) ⊗ Q ,

then we call A a CM abelian variety of type (K, θ). Let (K,Φ) be the CM-type of (A, θ) and
(K∗,Φ∗) its reflex in the sense of Shimura-Taniyama [19]. For simplicity we consider only
the case where K is a Galois extension of Q, which is sufficient for our purpose. Let Γ be the
Galois group of the extension K/Q, and define a subgroup W(Φ) of Γ by

W(Φ) = {σ ∈ Γ | σΦ = Φ} .(4)

PROPOSITION 2.1. Natation being as above, A is simple if and only if W(Φ) = {1}.
More generally, A is isogenuous to B × · · · × B (|W(Φ)|-times), where B is a simple CM

abelian variety such that End(B) ⊗ Q = KW(Φ), the fixed field of W(Φ).

PROOF. See [19] or [17]. �
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For any number field F of finite degree, let TF = ResF/Q(Gm/F ) be the Weil restric-
tion of the multiplicative group Gm/F over F . Then the CM-type Φ induces an algebraic
homomorphism fΦ : TK → TK∗ and dim(ImΦ) ≤ g + 1. We say that the CM-type Φ is
nondegenerate if dim(ImfΦ) = g + 1 (for details see [12] and [16]).

Now, suppose K is an abelian field. For any character χ of Γ , let

χ(Φ) =
∑
σ∈Φ

χ(σ) .

We say that χ is odd if χ(ρ) = −1, where ρ denotes the complex conjugation. Then the
following propopsition is well known:

PROPOSITION 2.2. Let A be a simple CM abelian variety with CM type (K,Φ). As-
sume that K is an abelian extension of Q. Then the following four conditions are equivalent:

i) A is stably nondegenerate.
ii) A is nondegenerate.

iii) Φ is nondegenerate.
iv) χ(Φ) �= 0 for all odd character χ of Γ .

PROOF. The implication (i) ⇒ (ii) is clear. The converse implication (ii) ⇒ (i) was
proved by Lenstra (see [26]). Hazama [6] proved that (i) is equivalent to (iii). (Actually he
proved the equaivalence in more general cases.) The equivalence of (iii) and (iv) is easy. �

3. Fermat varieties

In this section we recall some fundamental properties on the Fermat varieties from [20],
[23], [15] and [2]. We begin with the definition of the Fermat variety. Let m > 1 be an integer
and n a non-negative integer. The Fermat variety Xn

m over C of degree m and dimension n is a

hypersurface in the (n+1)-dimensional projective space Pn+1 over C defined by the equation

xm
0 + xm

1 + · · · + xm
n+1 = 0 .

Let µm be the group of m-th roots of unity in C and set Gn
m = (µm)n+2/diagonal. Then

g = [ζ0, · · · , ζn+1] ∈ Gn
m acts on Xn

m by setting g ·(x0 : · · · : xn+1) = (ζ0x0 : · · · : ζn+1xn+1).
Hence Gn

m induces an action on the cohomology group Hn(Xn
m, C). Let

An
m =

{
(a0, a1, · · · , an+1) ∈ Zn+2

∣∣∣∣ 0 < ai < m,

n+1∑
i=0

ai ≡ 0 (mod m)

}
.

Note that An
m can be naturally viewd as a subset of the chracter group (Gn

m)∗ of Gn
m; if α =

(a0, · · · , an+1) ∈ An
m and g = [ζ0, · · · , ζn+1] ∈ Gn

m, then α(g) = ζ
a0
0 · · · ζ an+1

n+1 ∈ µm. For

each α ∈ (Gn
m)∗, let

V (α) = {ξ ∈ Hn(Xn
m, C) | g∗ξ = α(g)ξ (∀g ∈ Gn

m)} .
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For any α = (a0, · · · , an+1) ∈ An
m the number

|α| = a0 + · · · + an+1

m

is an integer such that 1 ≤ |α| ≤ n + 1. We define the action of t ∈ (Z/mZ)× on α ∈ An
m by

the rule

t · α = (〈ta0〉m, · · · , 〈tan+1〉m) ,

where for a ∈ Z and t ∈ (Z/mZ)×, 〈ta〉m denotes the unique integer such that 0 ≤ 〈ta〉m < m

and 〈ta〉m ≡ ta (mod m). It is then easy to see that

|α| + |(−1) · α| = n + 2 .(5)

If n is even, we define a subset Bn
m of An

m by

Bn
m =

{
α ∈ An

m

∣∣∣∣ |t · α| = n

2
+ 1 (∀t ∈ (Z/mZ)×)

}
.

The importance of two sets An
m and Bn

m is clear from the following theorem:

THEOREM 3.1. Let V (0) be the eigenspace of Hn(Xn
m, C) for the trivial character

0 ∈ (Gn
m)∗. Then dimV (0) = 1 or 0 according as n is even or odd. Moreover the following

statements hold.
(i) The eigenspace decomposition of Hn(Xn

m, C) with respect to the action of Gn
m is

given by

Hn(Xn
m, C) = V (0) ⊕

⊕
α∈�n

m

V (α)

and dimV (α) = 1 for all α ∈ An
m.

(ii) If n = 2r is even, then the C-span of Hodge cycles of codimension r on Xn
m is given

by

Br (Xn
m) ⊗ C = V (0) ⊕

⊕
α∈�n

m

V (α) .

PROOF. See [20, Theorem I]. �

To take a close look at the structure of the set Bn
m, it is convenient to consider Bn

m for all
n simultaneously. For this purpose, let

Rm =
∞⋃

r=1

(Z/mZ \ {0})r

be the disjoint union of (Z/mZ\{0})r for all r . For α = (a1, · · · , ar ), β = (b1, · · · , bs) ∈ Rm,
let

α ∗ β = (a1, · · · , ar , b1, · · · , bs) ∈ Rm .
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Then Rm becomes a monoid with respect to the operation ∗. For two elements α, β ∈ Rm we
write α ∼ β if α is equal to β up to permutation of components. If n = 2r is even, we define
a subset Dn

m of An
m as follows:

Dn
m = {α ∈ An

m | α ∼ (a0,m − a0, · · · , ar ,m − ar) for some a0, · · · , ar } .

Using (5), one can easily see that Dn
m ⊆ Bn

m. Consider the following two subsets of Rm:

Bm =
⋃

Bn
m , Dm =

⋃
Dn

m ,

where the unions are taken over all positive even integers n. Then it is clear that both Bm and
Dm are submonoid of Rm and that Bm ⊇ Dm. (The monoid Bm is nothing but Mm studied
in [20].)

If m is divisible by a prime number p with p < m, then we define a standard element
([1]) by

σp,a =




(
a, a + m

p
, a + 2m

p
, · · · , a + (p − 1)m

p
,m − pa

)
if p ≥ 3 ,(

a, a + m

2
,m − 2a,

m

2

)
if p = 2 ,

(6)

where a is an integer such that ap �≡ 0 (mod m). For each prime number p, let

n(p) =
{

2 if p = 2 ,

p − 1 if p > 2 .
(7)

Then it is known that σp,a ∈ B
n(p)
m \ D

n(p)
m . We denote by Sm the set of elements α ∈ Rm

for which there exist some δ, δ′ ∈ Dm and some standard elements σ1, · · · , σk such that

α ∗ δ ∼ σ1 ∗ · · · ∗ σk ∗ δ′ .

It is clear from the definition that the following inclusions hold:

Bm ⊇ Sm ⊇ Dm .

Let Sn
m = Sm ∩ An

m. The following theorem will play a fundamental role in the proof of
Theorem 1.3.

THEOREM 3.2. If α ∈ Sn
m, then V (α) ⊂ Bn/2(Xn

m) is algebraic.

PROOF. The assertion for α ∈ Dn
m is proved by Shioda [20] and Ran [15]. For the

algebraicity of V (α) for α ∈ Sn
m \ Dn

m, see [20] and [2]. �

4. Abelian varieties of Fermat type

Every element g ∈ G1
m induces an automorphism g∗ of the jacobian variety J (X1

m) of

X1
m. Then the natural isomorphism H 1(J (X1

m), C) ∼= H 1(X1
m, C) is G1

m-equivariant. By
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Theorem 3.1, we have the eigenspace decomposition of H 1(J (X1
m), C) with respect to the

action of G1
m:

H 1(J (X1
m), C) =

⊕
α∈�1

m

U(α) ,(8)

where U(α) ∼= V (α) (as G1
m-modules) is one-dimensional for all α ∈ A1

m. Recall that the

group (Z/mZ)× acts on A1
m. We denote by Ωm = (Z/mZ)×\A1

m the orbit space. The
following proposition is well known.

PROPOSITION 4.1. For each S ∈ Ωm, let mS = m/GCD(α) and ζmS a primitive mS-th

root of unity. Then there exists an abelian variety AS of dimension 1
2ϕ(mS) with the following

properties:
(i) There exists an isogeny

π : J (X1
m) →

∏
S∈Ωm

AS .

Moreover, if we denote by πS the composite map of π and the projection to AS , then

H 1(AS, C) =
⊕
α∈S

W(α) ,

where W(α) is one-dimensional subspace of H 1(AS, C) such that π∗
SW(α) = U(α).

(ii) If we fix an element α ∈ S with |α| = 1, then there is an injective ring homomor-
phism

θα : Z[ζmS ] → End(AS)

such that θα(α(g)) = g∗ for all g ∈ G1
m. The CM-type of (AS, θα) is given by

Φα = {t ∈ (Z/mZ)× | |t · α| = 1} .

(Here we have identified (Z/mZ)× with the Galois group Gal(Q(ζmS )/Q) in the usual way.)

PROOF. See [21] and [17]. �

Following Shioda [21], we call the abelian variety AS an admissible factor of J (X1
m).

We will frequently write Aα for AS if it is equipped with the embedding θα in Proposition
4.1 (ii). An abelian variety A is said to be of Fermat type of degree m if there exist (not
necessarily distinct) orbits S1, · · · , Sr ∈ Ωm such that

A ∼ AS1 × · · · × ASr .(9)

To state a fundamental theorem of Shioda on the Hodge cycles on A, we recall some no-
tation. Let S(A) denote the disjoint union of the orbits S1, · · · , Sr appeared in (9). If
I = {α1, · · · , αs} is a subset of S(A), we define a subspace WI of Hs(A, C) by

WI = W(α1) ∧ · · · ∧ W(αs) .
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Then for any d with 0 ≤ d ≤ dimA, we have

H 2d(A, C) =
⊕

I

WI ,(10)

where the direct sum is taken over the subsets I = {α1, · · · , α2d} of S(A) such that αi �=
αj (i �= j). Then Shioda’s theorem can be stated as follows:

THEOREM 4.2. Let A be an abelian variety of Fermat type of degree m which is isoge-
nous to the product AS1 × · · · × ASr . Then the C-span of Hodge cycles on A of codimension
d is given by

Bd (A) ⊗ C =
⊕

I

WI ,

where the direct sum is taken over the subsets I = {α1, · · · , α2d } of S(A) such that αi �=
αj (i �= j) and

α1 ∗ · · · ∗ α2d ∈ B6d−2
m .

Moreover, if the corresponding subspace V (α1 ∗ · · · ∗ α2d) of B3d−1(X6d−2
m )C is algebraic,

then so is WI .

PROOF. The first assertion is Theorem 3.1 of [21], and the second assertion follows
from Lemma 4.1 and Lemma 4.2 of [21]. �

COROLLARY 4.3. Let I = {α1, · · · , α2d } ⊂ S(A) be as in the above theorem. If

α1 ∗ · · · ∗ α2d ∈ S6d−2
m , then WI is algebraic.

PROOF. This follows from Theorem 3.2 and the last statement of Theorem 4.2. �

5. The jacobian varieties of quotients of Fermat curves

In the following we will fix an element α = (a, b, c) ∈ A1
m with GCD(α) = 1. We

define Cα to be the quotient X1
m/Ker(α) of the Fermat curve X1

m by the subgroup Ker(α) =
{g ∈ G1

m | α(g) = 1} of G1
m. Then Cα is birational to the curve

ym = xa(1 − x)b .

The jacobian variety Jα of Cα is a quotient of the jacobian variety J (X1
m). In particular Jα

is an abelian variety of Fermat type of degree m. We say that an element x of Z/mZ is α-
admissible if xa, xb, xc �≡ 0 (mod m). Let {d1, · · · , dr } be the set of α-admissible divisors
of m and Si the orbit of (di)α ∈ A1

m. Then the decomposition of Jα into admissible factors is
given by

Jα ∼
r∏

i=1

ASi =
r∏

i=1

A(di)α(11)
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([21, Example 2.2]). To describe the eigenspace decomposition of H ∗(J k
α , C), let

α(1), · · · , α(k) be k copies of α. Then

S(J k
α ) =

k⋃
i=1

{(x)α(i) | x ∈ Z/mZ, x is α-admissible} .

By the definition of S(J k
α ), the equality (b)α(i) = (b′)α(i′) holds if and only if b = b′ and

i = i ′.
An element β = (b1, · · · , bs) ∈ Rm is said to be α-admissible (resp. primitive) if bi is α-

admissible (resp. bi ∈ (Z/mZ)×) for every i. Clearly if β is primitive, then it is α-admissible.
For any β = (b1, · · · , bs) ∈ Rm we define the product βα by

βα = (a1)α ∗ · · · ∗ (as)α ∈ (Z/mZ)3s .

Then βα ∈ A3s−2
m if and only if β is α-admissible. For any subset X of Rm we let

(X : α) = {β ∈ Rm | βα ∈ X} .

If Y is a subset of Rm, we denote by Y ∗ (resp. Y×) the set of α-admissible (resp. primitive)
elements in Y . Thus

(X : α)∗ = {β ∈ (X : α) | β is α-admissible} ,

(X : α)× = {β ∈ (X : α) | β is primitive} .

Let d be a positive integer. For each β = (b1, · · · , b2d) ∈ (A6d−2
m : α)∗ and for each i =

(i1, · · · , i2d) ∈ {1, · · · , k}2d we define a (at most one-dimensional) subspace of H 2d(J k
α , C):

W(β,i)(α) = W((b1)α
(i1)) ∧ · · · ∧ W((b2d)α(i2d )) .

In the notation of the preceding section, the subspace W(β,i)(α) is nothing but WI with I =
{(b1)α

(i1), · · · , (b2d)α(i2d )}. We say that the pair (β, i) is regular if (bµ)α(iµ) �= (bν)α
(iν ) for

all µ �= ν. If k = 1, then the set {1}2d consists of the unique element 1 = (1, · · · , 1). For
simplicity we write Wβ(α) for W(β,1)(α). We say that β is regular if (β, 1) is regular. Thus
β = (b1, · · · , b2d) is regular if and only if bi �= bj (i �= j). Clearly dimCW(β,i)(α) = 1
if and only if (β, i) is regular. We let the permutation group of 2d elements act on both

(Z/mZ)2d and {1, · · · , k}2d in a natural manner. Then, for two regular pair (β, i) and (β ′, i′),
the corresponding spaces W(β,i)(α) and W(β ′,i′)(α) coincides if and only if there exsists a

permutation σ such that σ(β) = β ′ and σ(i) = i′. If this holds, we say that (β, i) and (β ′, i′)
are equivalent. In particular, when k = 1, β and β ′ are equivalent if and only if β ∼ β ′.

If A denotes the abelian variety Jα or Aα, then for any positive integer k it follows from
(10) that

H 2d(Ak, C) =
⊕
(β,i)

W(β,i)(α) ,
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where the pair (β, i) runs through the equivalent classes of the regular elements in (A6d−2
m :

α)∗ × {1, · · · , k}2d if A = Jα and in (A6d−2
m : α)× × {1, · · · , k}2d if A = Aα. The eigenspace

decompositions of Bd (Ak) and Dd (Ak) for A = Jα or Aα are given by the following theorem.

THEOREM 5.1. Let A be either Jα or Aα and k a positive integer.
(i) The C-span of the Hodge cycles on Ak of codimension d is given by

Bd (Ak) ⊗ C =
⊕
(β,i)

W(β,i)(α) ,

where the pair (β, i) runs through the equivalent classes of the regular elements of (B6d−2
m :

α)∗ × {1, · · · , k}2d if A = Jα and of (B6d−2
m : α)× × {1, · · · , k}2d if A = Aα. Moreover, if

β ∈ (S6d−2
m : α)∗, then W(β,i)(α) is algebraic.

(ii) If every admissible factor of A is simple, then

Dd (Ak) ⊗ C =
⊕
(β,i)

W(β,i)(α) ,

where the pair (β, i) runs through the equivalent classes of the regular elements of (D2d−2
m )∗×

{1, · · · , k}2d if A = Jα and of (D2d−2
m )× × {1, · · · , k}2d if A = Aα.

PROOF. The first assertion immediately follows from Theorem 4.2, and the second as-
sertion can be proved by a similar arguement of the proof of [21, Theorem 5.2]. �

COROLLARY 5.2. If (Bm : α)∗ = (Sm : α)∗, then HC(J k
α ) is true for all k ≥ 1.

PROOF. This follows from Theorem 5.1 (i) and Corollary 4.3. �

6. Stickelberger elements

Let Γm = Gal(Q(ζm)/Q). For any t ∈ (Z/mZ)× we denote by σt the element of Γm such
that σt (ζm) = ζ t

m. For any a ∈ Z/mZ \ {0} we define a Stickelberger element θ(a) ∈ Q[Γm]
by

θ(a) =
∑

t∈(Z/mZ)×

(〈
at

m

〉
− 1

2

)
σ−1

t ,

where, for any x ∈ Q, 〈x〉 denotes the rational number such that 0 � 〈x〉 < 1 and
〈x〉 ≡ x (mod 1). We extend θ to a map from Rm to Q[Γm] by the following rule: For
α = (a1, · · · , as) ∈ Rm we let

θ(α) =
s∑

i=1

θ(ai) .
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The importance of θ lies in the fact that the coefficients of θ(α) are described by the numbers
|t · α| (t ∈ (Z/mZ)×): If α = (a0, · · · , an+1) ∈ An

m, then

θ(α) =
∑

t∈(Z/mZ)×

(
|t · α| − n

2
− 1

)
σ−1

t .(12)

Indeed, θ(α) is equal to

n+1∑
i=0

∑
t∈(Z/mZ)×

(〈
ait

m

〉
− 1

2

)
σ−1

t =
∑

t∈(Z/mZ)×

n+1∑
i=0

(〈
ait

m

〉
− 1

2

)
σ−1

t .

Hence (12) holds. This leads to a useful characterization of the set Bn
m in terms of θ :

PROPOSITION 6.1. Let α ∈ An
m with n even. Then α is in Bn

m if and only if θ(α) = 0.

PROOF. By definition, α ∈ Bn
m if and only if |t · α| = n

2 + 1 for all t ∈ (Z/mZ)×. But
this is equivalent to θ(α) = 0 by (12). �

The following proposition also explains significance of θ :

PROPOSITION 6.2. Let α ∈ A1
m and Φα the CM-type of Aα defined in Proposition

4.1 (ii). Let ρ = σ−1 be the complex conjugation in Γm. Then

1

2
(1 − ρ)

∑
σ∈Φα

σ = −θ(α)∗ ,

where ∗ denotes the involution of Q[Γm] induced from the automorphism of Γm sending σ to

σ−1.

PROOF. For any t ∈ (Z/mZ)× we have |t · α| = 1 or 2 according as σt ∈ Φα or
σt ∈ ρΦα . Therefore

1

2
(1 − ρ)

∑
σ∈Φα

σ = 1

2

( ∑
σ∈Φα

σ −
∑

σ∈ρΦα

σ

)

= −
∑

t∈(Z/mZ)×

(
|t · α| − 3

2

)
σt

= −θ(α)∗ .

Thus the assertion holds. �

Let W(Φα) denote the subgroup of Γm defined by

W(Φα) = {σ ∈ Γm | σΦα = Φα}
(see (4)). By Proposition 2.1, Aα is simple if and only if W(Φα) = {1}.
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COROLLARY 6.3. Notation being as above, we have

W(Φα) = {σt ∈ Γm | (1,−t)σ ∈ B4
m} .

PROOF. The proof proceeds as follows. Let t ∈ Γm. Then:

σt ∈ W(Φα) ⇔ σtΦα = Φα

⇔ σtθ(α) = θ(α)

⇔ θ(α + (−t)α) = 0

⇔ (1,−t)α ∈ B4
m .

The first equivalence is just the definition of Wα , the second follows from Proposition 6.2, the
third holds since (σt + σ−t )θ(α) = 0 for all t ∈ (Z/mZ)×, and the last one follows from
Propoition 6.1. �

Now, let C−(m) stand for the set of odd Dirichlet characters of Z/mZ. For any χ ∈
C−(m) we denote the conductor of χ by cond(χ), that is, cond(χ) is the smallest divisor f of
m for which χ comes from C−(f ). As usual we set χ(a) = 0 if GCD(a, f ) > 1. Moreover,
we denote by PC−(m) the set of odd characters χ ∈ C−(m) with cond(χ) = m. Note that
PC−(m) = ∅ if and only if either m = 12 or ord2m = 1. For any χ ∈ C−(m) and any
a ∈ Z/mZ with GCD(m, a) = d , let

τχ (a) =




χ(a′)ϕ(m)

ϕ(f )

∏
p| m

f d

(1 − χ̄(p)) if d|m
f

,

0 otherwise ,

where a′ = a/d and the product is over the prime factors p of m
fd

. More generally, for any

α = (a1, · · · , as) ∈ (Z/mZ \ {0})s , let

τχ (α) =
s∑

i=1

τχ(ai) .

LEMMA 6.4. Notation being as above, we have

χ(θ(α)) = τχ(α)B1,χ̄ ,

where B1,χ = 1
f

∑f

t=1 tχ(t) denotes the generalized Bernoulli number.

PROOF. See for example [11, Chapter 1]. �

PROPOSITION 6.5. Let α ∈ An
m. Then α ∈ Bn

m if and only if τχ (α) = 0 for all

χ ∈ C−(m).

PROOF. Let α = (a0, · · · , an) ∈ An
m. Then α ∈ Bn

m if and only if θ(α) = 0 by
Proposition 6.1. But the latter condition holds if and only if χ(θ(α)) = 0 for every odd
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character χ of Γm. Hence the assertion follows from Lemma 6.4 since B1,χ �= 0 for all

χ ∈ C−(m) ([25, Corollary 4.4]). �

PROPOSITION 6.6. Let α be an element of A1
m with GCD(α) = 1 and Φα the CM-type

of Aα (α ∈ A1
m). Then Φα is nondegenerate if and only if τχ (α) �= 0 for all χ ∈ C−(m).

PROOF. By Proposition 6.2 and Lemma 6.4 we have

χ(Φ) = −τχ̄ (α)B1,χ

for all χ ∈ C−(m). By nonvanishing of B1,χ , this shows that χ(Φα) �= 0 if and only if
τχ(α) �= 0. This proves the assertion. �

7. Generalized Catalan curves

Throughout this section m = pµqν will be a product of prime powers pµ and qν of
distinct prime numbers p, q . Let Cpµ,qν be the generalized Catalan curve defined by (1). Then

Cpµ,qν is a quotient of the Fermat curve X1
m : xm+ym+zm = 0 of degree m = pµqν . Indeed,

the map sending (x, y) to ((x/z)q
ν
, ε(y/z)p

µ
) gives a finite morphism f : X1

m → Cpµ,qν ,

where ε denotes a root of unity such that εqν = −1. Since p and q are relatively prime, there
exist integers a, b such that pµa + qνb = m − 1, 0 < a < qν, 0 < b < pµ. Let

α = (1, pµa, qνb) ∈ A1
m .(13)

Then Cpµ,qν is the quotient X1
m/Ker(α). If (µ, ν) = (1, 1), then J (Cp,q) is simple by the

work of Kubota and Hazama. To obtain the decomposition of J (Cpµ,qν ) into admissible

factors, we note that the α-admissible divisors are in the form m/piqj with 1 ≤ i ≤ µ, 1 ≤
j ≤ ν. For such i, j let αi,j be the element of A1

piqj such that

αi,j ≡ α (mod piqj ) .

Let Aαi,j denote the admissible factor defined in Proposition 4.1. Thus Aαi,j is a CM abelian

variety of dimension 1
2ϕ(piqj ) such that End(Aαi,j ) ⊗ Q ⊃ Q(ζpiqj ). Then there is an

isogeny

J (Cpµ,qν ) ∼
µ∏

i=1

ν∏
j=1

Aαi,j .(14)

Thus if (µ, ν) �= (1, 1), then J (Cpµ,qν ) is not simple. Moreover, its admissible factors can be

nonsimple. Indeed, if m = 12, then α = (1, 3, 8) ∈ A1
12 and we have an isogeny

J (C3,4) ∼ Aα × J (C3,2) .

The CM type of Aα is given by Φα = {1, σ5} ⊂ Γ12, and W(Φα) = Φα . Therefore by

Proposition 2.1 Aα ∼ E × E, where E is an elliptic curve with End(E) ⊗ Q = Q(
√−1).
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Moreover J (C3,2) is a CM elliptic curve with End(J (C3,2)) ⊗ Q = Q(
√−3). By the work

of Imai [10] (see also [14]) any product of CM elliptic curves is stably nondegenerate, hence
J (C3,4) and Aα are stably nondegenerate. The following theorem shows that an admissible
factor of J (Cpµ,qν ) is simple if it is not a factor of J (C3,4).

THEOREM 7.1. Suppose m �= 12 and let α be the element of A1
m defined by (13). Then

Aα is simple. Moreover Aα is stably nondegenerate except for the following case:
Either pµ = 4 or qν = 4, and the order of −2 in (Z/m

4 Z)× is odd .

In this exceptional case, Aα is degenerate. More precisely, if d denotes the order of −2 in
(Z/m

4 Z)×, then

dimBd (Aα)/Dd(Aα) ≥ ϕ(m/4)

d
.

COROLLARY 7.2. Suppose neither pµ nor qν equals 4. Then every admissible factor
of J (Cpµ,qν ) is simple and stably nondegenerate.

PROOF. This is a special case of the above theorem. �

In order to prove Theorem 7.1, we need to determine which characters χ ∈ C−(m)

satisfy the equality τχ(α) = 0.

LEMMA 7.3. Let the notation be as above.
(i) If ord2(m) �= 2, then τχ (α) �= 0 for all χ ∈ C−(m).

(ii) If ord2(m) = 2, then τχ(α) = 0 if and only if χ ∈ C−(m/4) and χ(−2) = 1.

PROOF. First, consider the case ord2(m) = 1, say m = 2pµ with p an odd prime. Then
α = (1, pµ, pµ − 1). Hence, for any χ ∈ C−(pµ), we have

τχ (α) = 1 − χ̄ (2) + χ

(
pµ − 1

2

)

= 1 − 2χ̄(2) .

The last expression shows that τχ(α) �= 0 for any χ ∈ C−(pµ).

Next, suppose ord2(m) �= 1. Thus pµ, qν > 2. If χ ∈ C−(m) \ {C−(pµ) ∪ C−(qν)},
then τχ(1) = 1 and τχ ((apµ)) = τχ ((bqν)) = 0, hence τχ (α) = 1. Suppose τχ (α) = 0 for

some χ ∈ C−(pµ) ∪ C−(qν). By symmetry it suffices to consider the case χ ∈ C−(pµ).
Since bqν ≡ −1 (mod pµ), we have χ(b) = −χ̄(q)ν . Therefore

τχ(α) = 1 − χ̄(q) − ϕ(qν)χ̄(q)ν .

The assumption τχ(α) = 0 then implies that

χ(qν)(1 − χ̄(q)) = ϕ(qν) .(15)
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Since |χ(pµ)(1 − χ̄(p))| ≤ 2, this shows that ϕ(qν) ≤ 2. Hence qν = 3 or 4. If qν = 3, then
by (15) we have

χ(3) − 1 = 2 ,

which is clearly impossible. Hence qν must be 4. It then follows from (15) that

χ(2)2(1 − χ̄(2)) = 2 .

But this holds if and only if χ(2) = −1, or equivalently χ(−2) = 1. This completes the
proof. �

PROOF OF THEOREM 7.1. Recall that Aα is simple and stably nondegenerate if the
CM-type Φa is degenerate, and the latter condition holds if and if τχ (α) �= 0 for all χ ∈
C−(m). Therefore Aα is simple and stably nondegenerate provided that ord2(m) �= 2 by
Lemma 7.3 (i).

Suppose ord2(m) = 2. If there is no odd character χ ∈ C−(m/4) such that χ(−2) = 1,
then Lemma 7.3 (ii) shows that Aα is simple and stably nondegenerate. Suppose there exists
an odd character χ ∈ C−(m/4) such that χ(−2) = 1. Then the order d of −2 in (Z/m

4 Z)× is

odd. Moreover, we have d > 1 since m
4 > 3. First we shall show that Aα is simple. For this

we must show that W(Φα) = {1} (see Proposition 2.1). Let σt ∈ Wα . Then (1,−t)α ∈ B4
m

by Corollary 6.3. Hence by Proposition 6.5 we have

(1 − χ(t))τχ (α) = 0(16)

for all χ ∈ C−(m). It follows from Lemma 7.3 (ii) that χ(t) = 1 if either χ ∈ C−(m) \
C−(m/4) or χ ∈ C−(m/4) and χ(−2) �= 1. If χ(t) = 1 for some χ ∈ C−(m) \ C−(m/4),
then

t ≡
{

1 (mod 4) ,

ε (mod m/4) (ε = ±1)

provided that m �= 20 (see [1, Proposition 6.1]). Note that there is an odd character χ ∈
C−(m/4) such that χ(−2) �= 1 since d > 1. For such a character χ we have χ(t) = ε.
Therefore ε = 1, hence t = 1. Thus Aα is simple when m �= 20. If m = 20, then α =
(1, 4, 15) ∈ A1

20, Φα = {1, σ3, σ7, σ11} and W(Φα) = {1}. Thus Aα is also simple. This
proves the first statement.

Now, we shall prove that Aα is degenerate assuming that ord2(m) = 2 and the order d

of −2 in (Z/m
4 Z)× is odd. Let b be the element of (Z/mZ)× such that

b ≡
{

−1 (mod 4) ,

−2 (mod pµ) .

Then the order of b is 2d . Let

β1 = (1, b, · · · , b2d−1) ∈ Rm .
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Let R×
m be the set of primitive elements in Rm and β̄1 ∈ Z[Γm] the image of β1 under the

natural isomorphism from R×
m to the integral group ring Z[Γm] induced from the map sending

(t) to σt . Then

β̄1 = (1 + σm
2 +1)(1 + σu + · · · + σd−1

u ) ,

where u is the element of Z/mZ such that

u ≡
{

1 (mod 4) ,

−2 (mod m/4) .

Since χ(σm
2 +1) = −1 for all χ ∈ C−(m) \ C−(m/4) and

1 + χ(σu) + · · · + χ(σu)d−1 = 0

for any χ ∈ C−(m/4) such that χ(−2) �= 1, we have χ(β1)τχ(α) = 0 for all χ ∈ C−(m)

by Lemma 7.3 (ii). Therefore β1 is in (B6d−2
m : α)×. To show that Aα is degenerate, we

have only to verify that β1 �∈ D2d−2
m . To see this, suppose on the contrary that β ∈ D2d−2

m .

Then bd = −1 since the order of b is 2d . But this is impossible since d is odd and b ≡ −1

(mod 4). Thus β1 �∈ D2d−2
m .

To prove the last assertion of the theorem, note that by Theorem 5.1 (ii) the dimension of

the quotient space Bd (Aα)/Dd (Aα) equals the number of the equivalent classes of (B6d−2 :
α)× \ (D6d−2 : α)×. By the arguement above, (B6d−2

m : α)× contains the elements equivalent
to (c)β1 for some c ∈ (Z/mZ)×/〈b〉. Thus

dimBd (Aα)/Dd(Aα) ≥ ϕ(m)

2d
= ϕ(m/4)

d
.

This completes the proof. �

8. The Hodge conjecture for powers of J (Cpµ,qν )

In this section we prove the following theorems.

THEOREM 8.1. If m �= 12 and (µ, ν) �= (1, 1), then J (Cpµ,qν ) itself is degenerate.

More precisely, Bd (J (Cpµ,qν )) is strictly bigger than Dd (J (Cpµ,qν )) for d = p + 1, q + 1

and 1
2 (p + 1)(q + 1).

THEOREM 8.2. For any k ≥ 1, HC(J (Cpµ,qν )k) is true.

To make our proof transparent, we introduce further notation. For the moment let m be
an arbitrary positive integer. Let Rm be the free abelian group generated by the elements of
Z/mZ − {0}. An element of Rm will be written as∑

a∈Z/mZ−{0}
ca(a) (ca ∈ Z) .
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There is a natural map u : Rm → Rm sending (a1, · · · , ar) to
∑r

i=1(ai). Clearly we have
u(α ∗ β) = u(α) + u(β) for any α, β ∈ Rm. If there is no fear of confusion, we write
(a1, · · · , ar ) for the image

∑r
i=1(ai). For any two elements α = ∑

ca(a), β = ∑
db(b) ∈

Rm we define the product αβ ∈ Rm by the rule:

αβ =
∑

a,b∈Z/mZ\{0}
cadb(ab) ,

where we understand that (ab) = 0 if ab = 0. Thus Rm is a commutative ring with the unit
(1).

Let Bm, Sm and Dm be the submodule of Rm generated by the elements of
u(Bm), u(Sm) and u(Dm) respectively. Then we have inclusions

Rm ⊇ Bm ⊇ Sm ⊇ Dm .

By the work of Yamamoto [27] it is known that the quotient group Bm/Sm is an elementary
abelian group of exponent 2. More precisely, if r denotes the number of prime divisor of m,
then

Bm/Sm
∼= (Z/2Z)⊕2r−1−δ−1 ,(17)

where δ = 0 if ord2(m) �= 1 and δ = 1 if ord2(m) = 1 (see [27, Theorem 4] and [1, Theorem
D]).

In the following we assume that m = pµqν as in the previous section and that ord2m �=
1, i.e. pµ, qν �= 2. Then Bm/Sm

∼= Z/2Z by (17). This means that if both p and q are odd
primes, then there exists an element ξ ∈ Bpq such that Bm is generated by Sm and (m/pq)ξ ,
and if either p or q is 2, say q = 2, then Bm is generated by Sm and (m/4p)ξ with some
ξ ∈ B4p. We shall need an explicit form of ξ in the proof of Theorem 7.1.

First, consider the case where both p and q are odd primes. We define gp to be an

element of (Z/mZ)× of order p − 1 such that gp ≡ 1 (mod q) and define gq similarly. Let

γp = (1, gp, g2
p, · · · , g(p−3)/2

p ) , γq = (1, gq, g2
q , · · · , g(q−3)/2

q ) .

One can easily see that there exist elements ηq ∈ Rq and ηp ∈ Rp satisfying the condition:

(1,−p−1)γq + 2ηq ∈ Dq , (1,−q−1)γp + 2ηp ∈ Dp .(18)

Then we can take the following element for ξ :

ξ = γpγq + (p)ηq + (q)ηp .(19)

Next, suppose one of p, q is 2, say q = 2. Let gp ∈ Z/4pZ be an element of order p − 1
such that gp ≡ 1 (mod 4), and put

γ ′
p = (1, g2

p, g4
p, · · · , gp−3

p ) .
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Then we define ξ ∈ R4p by

ξ =




γ ′
p p ≡ 1 (mod 8) ,

γ ′
p + (−4)γ ′

p + (2p) p ≡ 3 (mod 8) ,

γ ′
p + (2p) p ≡ 5 (mod 8) ,

γ ′
p + (−p) p ≡ 7 (mod 8) .

(20)

For example, for m = 12 we have ξ = (1, 6, 8, 9) ∈ B12.

REMARK 8.3. If m = pq ≡ 3 (mod 4), then one can use γ ′
pγ ′

q instead of γpγq in

the definition of ξ , and ξ will be in a simpler form. However, this definition does not work
if pq ≡ 1 (mod 4), since in this case γ ′

pγ ′
q is an element of Dm, and so ξ does not give a

generator of Bm/Sm.

Now, for any x = (x1, · · · , xr ) ∈ Rm \ (m/p)Rm and any y = (y1, · · · , ys) ∈ Rm \
(m/q)Rm, let

σp,x =
r∑

i=1

σp,xi , σq,y =
s∑

j=1

σq,yj ∈ Sm .

Let Im = (pµ)Rm + (qν)Rm be the ideal of Rm generated by two elements (pµ) and (qν).
Consider two homomorphisms

πp : Rm → Rpµ , πq : Rm → Rqν

induced from the natural surjections Z/mZ → Z/pµZ and Z/mZ → Z/qνZ, respectively.
We denote by Spµ,qν the submodule of Sm generated by Dm + Im and the elements of the
form σp,x , σq,y such that πq(x) ∈ Sqν and πp(y) ∈ Spµ , respectively.

Let α = (1, apµ, bqν) ∈ A1
m be the element defined by (13). For any submodule M of

Rm containig Dm, let

(M : α) = {β ∈ Rm | βα ∈ M} ,

(M : α)∗ = {β ∈ (M : α) | β is α-admissible} .

Clearly, both (M : α) and (M : α)∗ are submodules of Rm which enjoy the following proper-
ties:

(M : α) = (M : α)∗ + Im ,

(M : α)∗ = (M : α) ∩ (Rm \ Im) .

Indeed, the first equality follows from the fact that both (pµ)α = (pµ,−pµ) and (qν)α =
(qν,−qν) are elements of Dm, and the second is a direct consequence of the definition. These
relations show that for any submodule M,M ′ of Rm the equality (M : α) = (M ′ : a) holds
if and only if (M : α)∗ = (M ′ : α)∗. Moreover, if M is generated by the image u(X) of a
subset X of Rm under the map u, then (M : α) (resp. (M : a)∗) is the submodule generated
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by u((X : α)) (resp. u((X : a)∗)) and u−1((M : α)) = (X : α) (resp. u−1((M : α)∗) = (X :
α)∗).

PROPOSITION 8.4. (Bm : α) = (Sm : α) = Spµ,qν .

This proposition is the core of the proof of Theorem 8.1 and Theorem 8.2. We postpone
the proof of this proposition for the moment and give the proof of Theorem 8.1 and Theorem
8.2.

PROOF OF THEOREM 8.1. The assertion follows from the second equality of Propo-
sition 8.4. To be precise, note that Spµ (resp. Sqν ) is generated by Dpµ (resp. Dqν ) and the
elements of the form σp,x (resp. σq,y ). Therefore Spµ,qν is generated by Dm and the following
four types of elements:



σp,(x1,x2) (x1 + x2 ≡ 0 (mod qν)) ,

σq,(y1,y2) (y1 + y2 ≡ 0 (mod pµ)) ,

σp,x (πq(x) = σq,y for some y ∈ Z/qνZ) ,

σq,y (πp(y) = σp,x for some x ∈ Z/pµZ) .

(21)

Thus (Bm : α)∗ is generated by those elements with the terms in Im omitted, and it is generated

by u((B6d−2
m : α)∗) with d = 1, p + 1, q + 1 and 1

2 (p + 1)(q + 1). Since all the elements

in (21) do not belong to Dm, Bd (J (Cpµ,qν )) is strictly bigger than Dd(J (Cpµ,qν )) for d =
p + 1, q + 1 and 1

2 (p + 1)(q + 1). This completes the proof. �

PROOF OF THEOREM 8.2. The observations before Proposition 8.4 show that if (Bm :
α) = (Sm : α), then (Bm : α)∗ = (Sm : α)∗. Thus, in view of Corollary 5.2, the first equality
of Proposition 8.4 establish Theorem 8.2. �

Before entering the proof of Proposition 8.4 we prove a lemma.

LEMMA 8.5. Let m = pµqν and assume that m �= 12 and ord2(m) �= 1. Let β ∈ Rm.
If χ(β) = 0 for all χ ∈ C−(m) with cond(χ) ≡ 0 (mod pq), then β ∈ Bm + Im, that is,
there exist β0 ∈ Bm, β1 ∈ Rqν and β2 ∈ Rpµ such that

β = β0 + (pµ)β1 + (qν)β2 .

PROOF. Assuming that the lemma does not hold for some β ∈ Rm, we will get a con-
tradiction. For this end we write such an element β as

β ≡ β0 + (pµ)β1 + (qν)β2 (mod Bm) ,(22)

where β1, β2 ∈ Rm and β0 ∈ Rm \ Im. By assumption, β0 is not an element of Bm. We write
β0 in the following form

β0 =
∑
d

(d)γd (γd ∈ Z[(Z/(m/d)Z)×]) ,
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where d runs through the proper divisors of m not divisible by pµ and qν . Let

d(β0) = min{d | γd �= 0} .

Of all the expressions of β in (22) we choose one so that d(β0) is as large as possible. Then
d(β0) �= pµ, qν . Furthermore, we have m/d(β0) �= 12 and ord2(m/d(β0)) �= 1. To see this,
let d0 = d(β0). If m/d0 = 12, then replacing β0 with β ′

0 = β0 − (d0)γd0ξ12 ≡ β0 (mod Bm)

in the expression (22), we obtain d(β ′
0) > d0, which is a contradiction. If ord2(m/d0) = 1,

then replacing β0 with β ′
0 = β0 −(d0)γd0σ2,1 ≡ β0 (mod Bm) in (22), we obtain d(β ′

0) > d0,
which is again a contradiction. Thus m/d0 �= 12 and ord2(m/d0) �= 1. Here note that
PC−(m/d0) is not empty. Then the assumption of the proposition implies that

τχ (β) = τχ (βα) = 0

for any χ ∈ PC−(m/d0) with d0 = d(β0) since pµ � d0 and qν � d0. Since τχ (β) =
ϕ(m)

ϕ(m/d0)
χ(γd0), this implies that χ(γd0) = 0. Hence by [1, Proposition 4.1] there exists some

η ∈ Bm/d0 such that

γd0 = η +
∑
d

(d)γ ′
d ,

where the sum is over the proper divisors d of m/d0 distinct from 1 and where γ ′
d ∈ Rm/d0d .

Then we can replace β0 with β ′
0 = β0 − (d0)η ∈ Bm in (22). Since d(β ′

0) > d0, we get a
contradiction. This completes the proof. �

PROOF OF PROPOSITION 8.4. We prove the proposition assuming that both p and q

are odd primes since the proof in the case either p = 2 or q = 2 is almost pararell.
Now, note that we have inclusions

(Bm : α) ⊇ (Sm : α) ⊇ Spµ,qν .(23)

The first inclusion is clear. To prove the second, let β ∈ Spµ,qν . Then there exists an α-
admissible element σ ∈ Sm ∩ Spµ,qν such that

β ≡ σ (mod Im) .

Since (pµ)α, (qν)α ∈ Dm, we have

βα ≡ σ + (apµ)σ + (bqν)σ (mod Dm) .(24)

By the definition of σ , we have πp(σ) ∈ Spµ , hence (apµ)σ ∈ Sm. Similarly we have
(bqν)σ ∈ Sm. Since σ ∈ Sm, (24) implies that σα ∈ Sm as well. Therefore β ∈ (Sm; α),
hence Spµ,qν ⊆ (Sm : α), proving (23).

Thus in order to prove the proposition, it suffices to prove the inclusion

(Bm : α) ⊆ Spµ,qν .(25)
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To prove this, let β ∈ (Bm : α). Then Proposition 6.5 implies that τχ (βα) = 0 for all

χ ∈ C−(m). If cond(χ) ≡ 0 (mod pq), then τχ(β) = τχ (βα) = 0. Therefore by Lemma
8.5 there exists β0 ∈ Bm such that

β ≡ β0 (mod Im) .

Then βα ≡ β0α (mod Dm). Thus, replacing β with β0, we may assume that β ∈ Bm from
the first. Write β in the form

β = σp,x + σq,y + c(m/pq)ξ ,(26)

where x ∈ Rm \ (m/p)Rm, y ∈ Rm \ (m/q)Rm, ξ ∈ Bpq and c = 0 or 1. Of cource, β ∈ Sm

if and only if c = 0, and we must show that c = 0, πq(x) ∈ Sqν and πp(y) ∈ Spµ . Since
β ∈ Bm, we have

βα ≡ (apµ)β + (bqν)β (mod Bm) .

Hence for any χ ∈ C−(qν) we have the equality

τχ (βα) = τχ ((apµ)β) .(27)

To compute the right-hand side of (27), we note that

(pµ)σp,x = (pµ){p(1) + (−p)}πq(x)

and (pµ)σq,y ∈ Sm. If χ ∈ C−(qν) \ C−(q), then τχ ((apµ)ξ) = 0, hence by the expression
(26) we have

τχ ((apµ)β) = ϕ(pµ)(p − χ(p))τχ (πq(x)) .(28)

Since β ∈ (Bm : α), we have τχ(βα) = 0, so τ ((apµ)β) = 0 for all χ ∈ C−(m) by (27). But

since p − χ(p) �= 0 for any χ , we have τχ(πq(x)) = 0 by (28) for any χ ∈ C−(qν) \C−(q).
A quite similar arguement as in the proof of Lemma 8.5 show that

πq(x) ≡ (qν−1)x′ (mod Sqν )(29)

for some x ′ ∈ Rq . Thus

(apµ)β ≡
(

m

q

)
{(p(1) + (−p))(a)x′ + c(apµ−1)ξ} (mod Bm) .(30)

On the other hand, multiplying (19) by 2(apµ) and using the relation (18), we obtain

2(apµ)ξ ≡ (apµ){p(1) + (−p)}γq (mod Dm) .

Substituting this into (30), we obtain

2(apµ)β ≡
(

m

q

)
{p(1) + (−p)}{2(a)x′ + cγq} (mod Bm) .
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It follows from this and (27) that the equality

ϕ(m)

ϕ(q)
(p − χ(p)){2χ((a)x′) + cχ(γq)} = 2τχ(βα)

holds for any χ ∈ C−(q). Since p − χ(p) �= 0 and τχ(βα) = 0, this shows that

2χ((a)x′) + cχ(γq) = 0

for any χ ∈ C−(q). Clearly this holds if and only if 2(a)x′ + cγq ∈ Dq . But this is possible
only when c = 0 and x ′ ∈ Dq . Hence (29) implies that πq(x) ∈ Sqν . Quite similarly one can
show that πp(y) ∈ Spµ . Thus β ∈ Spµ,qν , which proves the inclusion (25). This completes
the proof of Proposition 8.4. �
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