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Abstract. For a non-trivial Kähler magnetic field on a Kähler manifold, we consider bow-shapes as substitu-
tions for triangles on a Riemannian manifold. We give a comparison theorem for bow-shapes on a manifold whose
sectional curvature is bounded from above.

1. Introduction

In papers [1, 2, 3] the author studied Kähler manifolds from Riemannian geometric point
of view by using Kähler magnetic fields. On a Kähler manifold (M, J, 〈 , 〉) a closed 2-form
Bκ = κBJ which is a constant multiple of the Kähler form BJ on M is said to be a Kähler
magnetic field. A smooth curve γ parameterized by its arc-length is called a trajectory for Bκ

if it satisfies the equation ∇γ̇ γ̇ = κJ γ̇ . As it is a geodesic when κ = 0, the author would like
to investigate Kähler manifolds by use of some properties of trajectories for Kähler magnetic
fields.

In Riemannian geometry it is a basic idea to compare the geometry of an arbitrary Rie-
mannian manifold with geometry of a space of constant curvature. Powerful results were first
obtained by Rauch, Alexandrov, Toponogov and Bishop, and active development was done by
many geometers. In [2] the author studied a comparison theorem on Kähler magnetic Jacobi
fields, which was generalized by N. Gouda[8] for general magnetic fields. He gave interesting
results on geometry of general manifolds with uniform magnetic fields in [8, 9]. In this paper,
in order to give another light on the study of non-trivial Kähler magnetic fields on general
Kähler manifolds, we consider “bow-shapes” which are consisted of trajectories and a kind
of geodesics and study a theorem of comparison type. Through out of this paper we suppose
κ �= 0.
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comments.
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2. Jacobi fields associated with a trajectory

Let γ be a trajectory for a non-trivial Kähler magnetic field Bκ on a complete Kähler

manifold M . We shall call a map α : R2 → M a variation of geodesics associated with γ if it
satisfies the following conditions;

i) γ (s) = α(s, 0),
ii) for each s the map σs(·) = α(s, ·) is a geodesic,

iii) ∂α
∂t

(s, 0) is parallel to J γ̇ (s) and satisfies κ
〈
∂α
∂t

(s, 0), J γ̇ (s)
〉
> 0.

LEMMA 1. For a variation α of geodesics associated with a trajectory γ for Bκ , we

consider a Jacobi field Y = ∂α
∂s

(s0, ·) along a geodesic σ = α(s0, ·). Then it satisfies
1) Y (0) = γ̇ (s0),

2) 1
2

d
dt

‖Y (t)‖2
∣∣
t=0 = 〈∇σ ′Y (0), γ̇ (s0)〉 = −κ〈σ ′(0), J γ̇ (s0)〉 < 0,

3) ∇σ ′Y (0) is contained in the complex vector subspace spanned by γ̇ (s0).

If α is a variation of normal geodesics, that is
∥∥ ∂α

∂t
(s, t)

∥∥ = 1 for every s, then Y also satisfies
〈∇σ ′Y (0), J γ̇ (s0)〉 = 0.

PROOF. Since ∂α
∂t

(s, 0) is parallel to J γ̇ (s), we see

0 = d

ds

〈
∂α

∂t
(s, 0), γ̇ (s)

〉
=

〈
∂

∂s

(
∂α

∂t

)
(s, 0), γ̇ (s)

〉
+

〈
∂α

∂t
(s, 0), κJ γ̇ (s)

〉
,

which shows the second assertion.
If a (local) vector field V along γ is orthogonal to both γ̇ (s) and J γ̇ (s) at each s, we find

∇γ̇ V is also orthogonal to both γ̇ (s) and J γ̇ (s) by differentiating both sides of the equalities

〈V (s), γ̇ (s)〉 = 0 and 〈V (s), J γ̇ (s)〉 = 0. Differentiating both sides of 〈 ∂α
∂t

(s, 0), V (s)〉 = 0,
we see 〈

∇γ̇
∂α

∂t
(s, 0), V (s)

〉
= −

〈
∂α

∂t
(s, 0),∇γ̇ V (s)

〉
= 0 ,

and obtain the third assertion.
We find the last assertion by differentiating both sides of

∥∥ ∂α
∂t

(s, t)
∥∥2 = 1 by s. �

Following Lemma 1, we shall say that a Jacobi field Y along a geodesic σ is associated
with a trajectory for Bκ if it satisfies

i) Y (0) = −sgn(κ)Jσ ′(0)/‖σ ′(0)‖,
ii) ∇σ ′Y (0) is contained in the complex vector subspace spanned by σ ′(0) and satisfies

〈∇σ ′Y (0), Jσ ′(0)〉 = κ‖σ ′(0)‖2.

Here sgn(a) is the signature of a real number a. It is clear that every Jacobi field associated
with a trajectory for Bκ can be obtained by some variation of geodesics associated with this
trajectory. When σ is a normal geodesic, that is a geodesic of unit speed, we find a Jacobi
field Y associated with a trajectory for Bκ is of the form Y = atσ̇ (t)− sgn(κ)g(t)J σ̇ (t)+Y⊥
with a constant a, a function g and a vector field Y⊥ along σ which is orthogonal to both
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σ̇ (t) and J σ̇ (t) at every t . The function g and the vector field Y⊥ satisfy g(0) = 1, g ′(0) =
−|κ |, Y⊥(0) = 0, ∇σ̇ Y⊥(0) = 0.

LEMMA 2. We consider a surface formed by a variation α of geodesics associated with
a trajectory for Bκ , which may have singularities. This surface is a complex line if and only if

the vector R
(
J ∂α

∂t
, ∂α

∂t

)
∂α
∂t

is parallel to J ∂α
∂t

at each point. In this case it is totally geodesic.

PROOF. The variation α forms a complex line if and only if the corresponding Jacobi

field Y satisfies Y⊥ ≡ 0. Such case occurs if and only if R
(
J ∂α

∂t
, ∂α

∂t

)
∂α
∂t

is parallel to J ∂α
∂t

.
We show α forms a totally geodesic surface in this case. For the sake of simplicity, we may

only treat the case that α is a variation of normal geodesics. In this case we have ∂α
∂s

(s, t) =
−sgn(κ)g(s, t)J ∂α

∂t
(s, t) with a function g satisfying

∂2g
∂t2

(s, t) + g(s, t)HR

(
∂α

∂t
(s, t)

)
≡ 0 , g(s, 0) = 1 ,

∂g
∂t

(s, 0) = −|κ | ,

where HR(v) denotes the holomorphic sectional curvature of the line spanned by a unit vector
v. Thus we have

∇ ∂α
∂t

∂α

∂t
= 0 ,

∇ ∂α
∂s

∂α

∂t
= ∇ ∂α

∂t

∂α

∂s
= −sgn(κ)∇ ∂α

∂t

(
gJ

∂α

∂t

)
= −sgn(κ)

∂g
∂t

J
∂α

∂t
,

∇ ∂α
∂s

∂α

∂s
= −sgn(κ)∇ ∂α

∂s

(
gJ

∂α

∂t

)
= −sgn(κ)

(
∂g
∂s

J
∂α

∂t
+ gJ∇ ∂α

∂s

∂α

∂t

)
.

Hence these vectors ∇ ∂α
∂t

∂α
∂t

, ∇ ∂α
∂s

∂α
∂t

, ∇ ∂α
∂s

∂α
∂s

are contained in the tangent space of a surface

formed by α, and the surface is totally geodesic. �

We call a point σ(t0) a Bκ -trajectory focal point of σ(0) if there is a Jacobi field along σ

associated with a Bκ -trajectory which vanishes at t0, and call the value t0/‖σ ′‖ a Bκ -trajectory
focal value of σ(0). The minimum positive Bκ -trajectory focal value is said to be the first Bκ -
trajectory focal value of σ(0), and is denoted by tf (σ (0); σ, κ) or tf (σ (0); κ). In case every
point σ(t), t > 0 is not a Bκ -trajectory focal point of σ(0) we put tf (σ (0); σ, κ) = ∞.
We denote the maximum negative Bκ -trajectory focal value by −tn(σ (0); σ, κ). We also put
tn(σ (0); σ, κ) = ∞ if there are no negative Bκ -trajectory focal values.

We here study Bκ -trajectory focal values for a complex space form CMn(c), which is a
complex projective space CPn(c) of constant holomorphic sectional curvature c, a complex
Euclidean space Cn or a complex hyperbolic space CHn(c) of constant holomorphic sectional
curvature c according c is positive, null or negative. On a complex Euclidean space Cn, a
trajectory for Bκ is a circle of radius 1/|κ | in the sense of Euclidean geometry. Thus geodesics
associated with a trajectory meet at its center, hence the first Bκ -trajectory focal value is 1/|κ |
and has no negative Bκ -trajectory focal values.
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On a complex projective space CPn(c), every trajectory lies on some totally geodesic

sphere CP 1(c) and is a small circle. If we regard this as a latitude line, geodesics associated

with this trajectory meet at poles of CP 1(c) which are the center of this small circle and its
anti-podal point. Hence the first Bκ -trajectory focal value is (1/

√
c) tan−1(

√
c/|κ |) and the

maximum negative Bκ -trajectory focal value is −(1/
√

c){π − tan−1(
√

c/|κ |)}. A Jacobi field
along a normal geodesic σ associated with a trajectory for Bκ on CPn(c) is of the form

Yc(t) = atσ̇ (t) +
{

− sgn(κ) cos
√

ct + κ√
c

sin
√

ct

}
J σ̇ (t)

with a constant a.
On a complex hyperbolic space CHn(c), every trajectory lies on some totally geodesic

real hyperbolic plane CH 1(c). A Jacobi field along a normal geodesic σ associated with a
trajectory for Bκ on CHn(c) is of the form

Yc(t) = atσ̇ (t) +
{

− sgn(κ) cosh
√|c|t + κ√|c| sinh

√|c|t
}
J σ̇ (t)

with a constant a. Therefore, if |κ | ≤ √|c|, there are no Bκ -trajectory focal points,
and if |κ | >

√|c|, the first Bκ -trajectory focal value is (1/2
√|c|) log(

√|c|+ |κ |)/(|κ |−√|c|)
and there is no negative Bκ -trajectory focal values.

We denote by tf (c; κ) and −tn(c; κ) the first Bκ -trajectory focal value and the maximum
negative Bκ -trajectory focal value on a complex space form of constant holomorphic sectional
curvature c. Then we see

tf (c; κ) =



1√
c

tan−1
√

c
|κ| , if c > 0 ,

1
|κ| , if c = 0 ,

1
2
√|c| log

√|c|+|κ|
|κ|−√|c| , if c < 0 and |κ | >

√|c| ,
∞, if c < 0 and |κ | ≤ √|c| ,

tn(c; κ) =


1√
c

(
π − tan−1

√
c

|κ|
)

, if c > 0 ,

∞, if c ≤ 0 .

We here give comparison results on first Bκ -focal values.

PROPOSITION 1. Let M be a Kähler manifold and σ be a normal geodesic on M . If
the sectional curvatures of 2-planes spanned by σ̇ (t) and a vector orthogonal to σ̇ (t) are not
greater than c for 0 ≤ t ≤ tf (σ (0); σ, κ), then we have the following:

(1) tf (σ (0); σ, κ) ≥ tf (c; κ).
(2) Let Y be a Jacobi field along a geodesic σ which is associated with a trajectory for

Bκ , and Ŷ be a Jacobi field along a normal geodesic σ̂ which is associated with a trajectory

for Bκ on a simply connected surface M̂ = CM1(c) of constant sectional curvature c.
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If Y is orthogonal to σ̇ and Ŷ is orthogonal to ˙̂σ , then ‖Y (t)‖ ≥ ‖Ŷ (t)‖ for every t with

0 ≤ t ≤ tf (c; κ). The equality ‖Y (t0)‖ = ‖Ŷ (t0)‖ (0 < t0 ≤ tf (c; κ)) holds if and only if
Y (t) is parallel to J σ̇ (t) and the holomorphic sectional curvature of the line spanned by σ̇ (t)

is equal to c for 0 ≤ t ≤ t0.

PROOF. For the sake of simplicity, we suppose κ > 0. We denote Y and Ŷ by Y = hE

and Ŷ = −gJ ˙̂σ with functions g, h and a vector field E along σ satisfying h(0) = g(0) =
1, ‖E‖ = 1 and 〈E, σ̇ 〉 = 0. As 〈∇σ̇ E,E〉 = 0 and 〈∇σ̇ ∇σ̇ E,E〉 = −‖∇σ̇ E‖2, we see

h′′ + h(〈R(E, σ̇ )σ̇ , E〉 − ‖∇σ̇ E‖2) = 0 .

Therefore, for 0 ≤ t < min{tf (σ (0); σ, κ), tf (c; κ)} we have

(h′g − hg ′)′ = hg(‖∇σ̇ E‖2 − 〈R(E, σ̇ )σ̇ , E〉 + c)

≥ hg(c − 〈R(E, σ̇ )σ̇ , E〉) ≥ 0 .

By the definition of Jacobi fields associated with trajectories for Bκ , we see h′(0) = g ′(0) =
−κ and (h′g − hg ′)(0) = 0. Therefore we find (h/g)′ ≥ 0, hence h ≥ g .

The equality h(t0) = g(t0) at some point 0 < t0 < tf (c; κ) holds if and only if ∇σ̇ E ≡ 0
and 〈R(E, σ̇ )σ̇ , E〉 ≡ c for 0 ≤ t ≤ t0. This is the case that E = −J σ̇ and the holomorphic
sectional curvature of the complex line spanned by σ̇ (t) is c for 0 ≤ t ≤ t0. �

The proof of Proposition 1 also guarantees the following.

PROPOSITION 2. Let M be a Kähler manifold and σ be a normal geodesic on M . If
the sectional curvatures of 2-planes spanned by σ̇ (t) and a vector orthogonal to σ̇ (t) are not
greater than c for t < 0, then tn(σ (0); σ, κ) ≥ tn(c; κ).

For two unit tangent vectors v,w ∈ UM (v �= ±w), we denote by Riem(v,w) the
sectional curvature of the plane spanned by v,w. In view of the values tf (c; κ) of the first Bκ -
focal value on a complex space form and tn(c; κ), these propositions guarantee the following.

COROLLARY 1. On a Kähler manifold M whose sectional curvature satisfies Riem ≤
c with some nonpositive constant c, every variation of geodesics associated with a trajectory
for Bκ forms an immersed surface without singularities if |κ | ≤ √|c|.

3. Crescents and Bow-shapes

In Riemannian geometry, a comparison theorem for triangles plays quite an important
role. This Toponogov theorem says that triangles on a manifold of large sectional curvature
are fatter than triangles on a manifold of small sectional curvature. We here prepare a corre-
sponding result for trajectories. As a substitute for a triangle we consider a bow-shape, which
is consisted of a trajectory segment and a kind of geodesic segment.

A crescent for Bκ on a Kähler manifold M is a pair C = (γ, τ ) of a trajectory segment
γ : [0, L] → M for Bκ and a nonnegative function τ : [0, L] → [0,∞) satisfying τ (0) =
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τ (L) = 0 and 0 ≤ τ (s) < tf (γ (s); κ) for every s. For a crescent C = (γ, τ ) we call γ the arc
of C. If α : [0, L]×R → M is the variation of normal geodesics associated with γ , we call the
set Rep(C) = {α(s, t) | 0 ≤ s ≤ L, 0 ≤ t ≤ τ (s)} the represented shape of C. We denote by
ρC the curve [0, L] � s �→ α(s, τ (s)) ∈ M . If a crescent B with arc γ has the minimum length
of periphery among crescents C with arc γ , that is, length(ρC) ≥ length(ρB), we shall call it
a bow-shape with arc γ , and call the curve ρB the bow-string of B. As a matter of course,
a bow-shape does not necessarily exists for every trajectory segment. Roughly speaking, if
a bow-string ρB exists for a trajectory segment γ its image is an image of minimal geodesic
joining the origin and terminus of γ on a part of a surface formed by a variation of geodesics
associated with γ . We here make mention of bow-shapes on a complex space form CMn(c) of
constant holomorphic sectional curvature c. For bow-strings we sometimes call their images
also bow-strings.

EXAMPLE 1. On a complex Euclidean space Cn, for a trajectory segment γ for Bκ

with length(γ ) < π/|κ |, we have a unique bow-shape B whose bow-string ρB is an image of
a geodesic segment and satisfies

length(ρB) = 2

|κ | sin

(
1

2
|κ |length(γ )

)
.

The image of this bow-shape lies on a totally geodesic C1. But if length(γ ) ≥ π/|κ |, there
does not exist bow-shapes with arc γ .

EXAMPLE 2. On a complex projective space CPn(c), for a trajectory segment γ for

Bκ with length(γ ) < π/
√

κ2 + c, we have a unique bow-shape B whose bow-string ρB is an
image of a geodesic segment and satisfies

√
c sin

(
1

2

√
κ2 + c length(γ )

)
=

√
κ2 + c sin

(
1

2

√
c length(ρB)

)
.

In particular, we see length(ρB) ≤ (2/
√

c) sin−1
√

c/(κ2 + c). The image of this bow-shape

lies on some totally geodesic standard sphere CP 1(c), and its periphery consists of a part of
a small circle and a part of a great circle.

For a trajectory segment γ with length(γ ) ≥ π/
√

κ2 + c, there does not exist bow-
shapes with arc γ .

EXAMPLE 3. Let γ be a trajectory segment for Bκ on a complex hyperbolic space
CHn(c).

(1) When |κ | ≤ √|c|, we have a unique bow-shape B whose bow-string ρB is an image
of a geodesic segment and satisfies

√|c| sinh
(√|c| − κ2 length(γ )/2

)
=

√
|c| − κ2 sinh(

√|c| length(ρB)/2) ,
if |κ | <

√|c| ,
√|c| length(γ ) = 2 sinh(

√|c| length(ρB)/2) , if κ = ±√|c| .
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(2) When |κ | >
√|c|, if length(γ ) < π/

√
κ2 + c, we have a unique bow-shape B

whose bow-string ρB is an image of a geodesic segment and satisfies√|c| sin

(
1

2

√
κ2 + c length(γ )

)
=

√
κ2 + c sinh

(
1

2

√|c| length(ρB)

)
.

In particular, we see length(ρB) ≤ (2/
√|c|) log

(|κ | + √|c|)/√κ2 + c
)
. But if length(γ ) ≥

π/
√

κ2 + c, there does not exist bow-shapes with arc γ .
(3) Every image of above bow-shapes is contained in some totally geodesic real hyper-

bolic plane CH 1(c).

Needless to say that on CMn(c) the represented shape of each bow-shape is simply
connected. As a matter of fact, it is an image of a simply connected subset of the tangent
space through the exponential map. For example, when B is a bow-shape on Cn whose arc
γ : [0, 	] → Cn is a trajectory for Bκ , then we see

Rep(B) = expγ (0)

({
v(u, θ) ∈ Tγ (0)C

n

∣∣∣∣ 0 � θ � |κ |	/2,

0 � u � (2/|κ |) sin θ

})
,

where v(u, θ) = u cos θ γ̇ (0) + sgn(κ)u sin θ J γ̇ (0).
We now give a comparison theorem on bow-shapes.

THEOREM 1. Let M be a Kähler manifold satisfying Riem ≤ c with a constant c. If a
Bκ -crescent C = (γ, τ ) satisfies

i) length(γ ) < π/
√

κ2 + c when κ2 + c > 0,
ii) τ (s) < tf (c; κ) for every s,

then length(ρC) is not smaller than the length length(ρB) of a bow-string of a Bκ -bow-shape
B on a complex space form CMn(c) whose length of arc is length(γ ).

The equality length(ρC) = length(ρB) holds if and only if the represented shape of C
is complex analytically isometrically immersed image of the represented shape of B and is
totally geodesic. In this case, it is a bow-shape with arc γ .

PROOF. Put L = length(γ ). We take a trajectory segment γ̂ on M̂ = CMn(c) satis-

fying length(γ̂ ) = L, and consider a crescent Ĉ = (γ̂ , τ ). Let α : [0, L] × R → M and

α̂ : [0, L] × R → M̂ be variations of normal geodesics associated with γ and γ̂ respectively.

As we have
〈
∂α
∂s

, ∂α
∂t

〉 = 〈
∂α̂
∂s

, ∂α̂
∂t

〉 = 0, we find by Proposition 1 that

length(ρC) =
∫ L

0
‖ρ′

C(s)‖ds =
∫ L

0

√∥∥∥∥∂α

∂s
(s, τ (s))

∥∥∥∥2

+ τ ′(s)2 ds

≥
∫ L

0

√∥∥∥∥∂α̂

∂s
(s, τ (s))

∥∥∥∥2

+ τ ′(s)2 ds = length(ρĈ)

≥ length(ρB) .
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The equality holds if and only if
∥∥ ∂α

∂s
(s, τ (s))

∥∥ = ∥∥ ∂α̂
∂s

(s, τ (s))
∥∥ holds for every s and Ĉ = B.

Again by Proposition 1, we see it is the case that the holomorphic sectional curvature of the

line spanned by ∂α
∂s

(s, t) is c for every (s, t) with 0 ≤ t ≤ τ (s). �

REMARK. The above proof also shows that the length of smooth curve on a surface
A = {α(s, t) | 0 ≤ s ≤ L, 0 ≤ t ≤ tf (c; κ)} joining γ (0) and γ (L) is not smaller than the
length of bow-string length(ρB) of a bow-shape B on CMn(c).

If a crescent C̃ = (γ, τ̃ ) on M does not lie on A, as we have s0 with τ (s0) > tf (c; κ), we

find length(ρC̃) ≥ 2tf (c; κ) > length(ρB). In particular, if there is a crescent C̃ on M with
length(ρC̃) = length(ρB), then it should lie on A.

When κ2 + c ≤ 0, or when κ2 + c > 0 and L < π/
√

κ2 + c, we denote by 	(κ, L; c)

the length of a bow-string of a bow-shape for Bκ on a complex space form CMn(c) whose

length of arc is L. We set δ(κ, c) = π/
√

κ2 + c when κ2 + c > 0 and δ(κ, c) = ∞ when

κ2 + c ≤ 0. By standing another point of view, we can conclude the following.

PROPOSITION 3. Let M be a Kähler manifold satisfying Riem ≤ c with a constant c.
If a bow-shape C for Bκ on M satisfies length(ρC) = 	(κ, L; c) for some positive L satisfying
L < δ(κ, c), then the length of the arc of C is not longer than L.

If a trajectory segment γ for Bκ on a Kähler manifold satisfying Riem ≤ c has a bow-
shape B with arc γ and length(ρB) = 	(κ, length(γ ); c), then the holomorphic sectional
curvature of the complex line spaned by γ̇ is c. Taking account of this we shall say that a
trajectory γ for Bκ (κ �= 0) on a Kähler manifold is of c-space type if there exists a sequence
{sj }∞j=−∞ satisfying the following conditions:

i) limj→∞ sj = δ(κ, c) and limj→−∞ sj = −δ(κ, c),
ii) for each sj (sj �= 0), the trajectory segment γ |Ij , which is a restriction of γ on

the interval Ij , has a bow-shape Bj = (γ |Ij , τj ) with length(ρBj
) = 	(κ, |sj |; c), where

Ij = [0, sj ] for sj > 0 and Ij = [sj , 0] for sj < 0.
It is needless to say that every trajectory on a complex space form CMn(c) is of c-space type.

A trajectory γ for Bκ on CMn(c) is closed if and only if κ2 + c > 0. In this case its minimal

period length(γ ) is 2π/
√

κ2 + c = 2δ(κ, c) and the geodesic with initial vector sgn(κ)J γ̇ (0)

goes through the point γ (δ(κ, c)) (see [1]).
As a direct consequence of Theorem 1 we have

COROLLARY 2. Let M be a Kähler manifold satisfying Riem ≤ c.
(1) If b > c, there does not exist a trajectory of b-space type.
(2) If κ2 + c > 0, every trajectory γ of c-space type for Bκ is closed and length(γ ) =

2π/
√

κ2 + c. For a variation α of normal geodesics associated with γ , the interior

Fα = {α(s, t) | |s| ≤ δ(κ; c), 0 ≤ t ≤ tf (c; κ)}

is totally geodesic, complex and of constant curvature c.
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PROOF. (1) Since 	(κ, L; b) < 	(κ,L; c) when b > c, the first assertion is trivial by
Theorem 1.

(2) If there is a crescent C = (β, τ ) on M with length(β) < δ(κ, c) and length(ρC)

= 	(κ, length(β); c), then by Theorem 1 and Remark we see the represented shape of C is
totally geodesic and of holomorphic sectional curvature c. We put vj = ρ̇Cj

(0)/‖ρ̇Cj
(0)‖ ∈

Uγ (sj )M . Since the represented shape of Bj is complex analytically isometrically immersed

image of the represented shape of a bow-shape on CMn(c) whose length of arc is |sj |, we
find that limj→∞ vj = limj→−∞ vj = sgn(κ)J γ̇ (0). This shows γ (δ(κ, c)) = γ (−δ(κ, c)),
hence γ is closed and length(γ ) = 2δ(κ, c). �

In the last stage we make mention of bow-shapes on a product of complex space forms.
On a product M = M1 × M2 of Kähler manifolds Mi , every trajectory γ is of the form

γ (t) = (γ1(λ1t), γ2(λ2t)). Here, λ1, λ2 are nonnegative constants with λ2
1 + λ2

2 = 1, and
γi is a trajectory for Bκ/λi on Mi when λi > 0 and is a point curve on Mi when λi = 0
(see [3, 4]). One can easily compute the length of bow-string on a product of complex space
forms. For example, on a product CPn1 (c1) × · · · × CPnp (cp) of complex projective spaces,
a trajectory segment γ of the form γ (t) = (γ1(λ1t), · · · , γp(λpt)) for Bκ with nonnegative

constants λ1, · · · , λp satisfying
∑p

i=1 λ2
i = 1 has a bow-shape if

length(γ ) < min
{
π

/√
κ2 + ciλ

2
i

∣∣∣ λi �= 0, 1 ≤ i ≤ p
}

.

The length of its bow-string is given by
√∑p

i=1 d2
i with di satisfying

λi
√

ci sin
(√

κ2 + ciλ
2
i length(γ )

/
2
)

=
√

κ2 + ciλ
2
i sin(

√
ci di/2)) .

We here consider a subset Sx(c) of the unit tangent space UxM given by

Sx(c) =
v ∈ UxM

∣∣∣∣∣∣
there is a positive ε such that for every
κ with 0 < |κ | ≤ ε the trajectory for Bκ

with initial vector v is of c-space type

 .

For a complex space form CMn(c) we see UxCMn(c) = Sx(c) at each point, and for a
product of complex space forms M = CMn1(c1) × · · · × CMnp(cp), we see that Sx(c) is

either an empty set or a disjoint sum of spheres; Sx(c) = S2ni1 −1 + · · · + S
2niq −1, where

c = cij for 1 ≤ j ≤ q , ci �= c for i �= ij . Here, if we denote x ∈ M by (x1, · · · , xp),

the set S
2nij corresponds to Uxij

CM
nij (c). For a Hermitian symmetric space M of rank

r , it was pointed out by Ikawa[10] that every trajectory lies on a totally geodesic r-product
CM1(c)×· · ·×CM1(c), where c is the maximum sectional curvature when M is of compact
type and is the minimum sectional curvature when M is of noncompact type. We hence see

that for this c the set Sx(c) contains a r-sum S1 + · · · + S1 of circles S1.
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COROLLARY 3. Let M be a simply connected Kähler manifold of Riem ≤ c for some

nonnegative c. If Sx(c) �= ∅ at some point x, then M contains a totally geodesic CM1(c).

PROOF. For v ∈ Sx(c) we denote by γκ (0 < |κ | < ε) a trajectory of c-space type for
Bκ with γ̇κ (0) = v, and by ακ the variation of normal geodesics associated with γκ . Since M

satisfies Riem ≤ c, we see Fακ is totally geodesic and of constant curvature c. Moreover, as M

is simply connected, the condition that γκ is of c-space type guarantees that Fακ is contained
in the inside of the geodesic ball centered at γ (0) whose radius is the injectivity radius at γ (0).
Thus Fακ is an image of a simply connected subset of {aγ̇ (0) + bJ γ̇ (0) | a ∈ R, b > 0}
through the exponential map expγ (0) when κ > 0 and is an image of a simply connected subset

of {aγ̇ (0)+bJ γ̇ (0) | a ∈ R, b<0} through this exponential map when κ < 0. We hence find
that Fακ is simply connected and that Fακ1

⊃ Fακ2
if 0 < κ1 < κ2 < ε or 0 > κ1 > κ2 > −ε.

Therefore we see F = ⋃
0<|κ|<ε Fακ is totally geodesic and is complex analytically isometric

to CM1(c) \ {image of a geodesic on CM1(c)}. Since the topological closure

F = F ∪ {the image of the geodesic with initial vector v}
of F is of constant curvature c, we see it is complex analytically isometric to CM1(c). �

If we restrict ourselves on Hermitian symmetric spaces, as every trajectory lies on a

totally geodesic r-product of CM1’s, the following is trivial.

COROLLARY 4. If a Hermitian symmetric space M satisfies Sx(c) = UxM for some
c, then M is CMn(c).
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