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Abstract. For a non-trivial Kéhler magnetic field on a Kéhler manifold, we consider bow-shapes as substitu-
tions for triangles on a Riemannian manifold. We give a comparison theorem for bow-shapes on a manifold whose
sectional curvature is bounded from above.

1. Introduction

In papers [1, 2, 3] the author studied Kéhler manifolds from Riemannian geometric point
of view by using Kihler magnetic fields. On a Kéhler manifold (M, J, (, )) a closed 2-form
B, = «B,; which is a constant multiple of the Kéhler form B; on M is said to be a Kihler
magnetic field. A smooth curve y parameterized by its arc-length is called a trajectory for B,
if it satisfies the equation V¥ = kJy. As it is a geodesic when k = 0, the author would like
to investigate Kidhler manifolds by use of some properties of trajectories for Kéhler magnetic
fields.

In Riemannian geometry it is a basic idea to compare the geometry of an arbitrary Rie-
mannian manifold with geometry of a space of constant curvature. Powerful results were first
obtained by Rauch, Alexandrov, Toponogov and Bishop, and active development was done by
many geometers. In [2] the author studied a comparison theorem on Kahler magnetic Jacobi
fields, which was generalized by N. Gouda[8] for general magnetic fields. He gave interesting
results on geometry of general manifolds with uniform magnetic fields in [8, 9]. In this paper,
in order to give another light on the study of non-trivial Kédhler magnetic fields on general
Kihler manifolds, we consider “bow-shapes” which are consisted of trajectories and a kind
of geodesics and study a theorem of comparison type. Through out of this paper we suppose
Kk # 0.
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2. Jacobi fields associated with a trajectory

Let y be a trajectory for a non-trivial Kéhler magnetic field B, on a complete Kihler
manifold M. We shall call a map « : R> — M a variation of geodesics associated with y if it
satisfies the following conditions;

) y@s) =als,0),
ii) for each s the map o5 (-) = «(s, ) is a geodesic,
iii) %—‘;‘(s, 0) is parallel to Jy (s) and satisfies K(%—‘;‘(s, 0), Jy (s)) > 0.

LEMMA 1. For a variation o of geodesics associated with a trajectory y for By, we
consider a Jacobi field Y = g—‘;‘(so, -) along a geodesic o = a(s, -). Then it satisfies

DY) = (s,

2) FHEIYOIP],_y = (VorY(0), 7 (s0)) = —kc(a”(0), Ty (50)) <O,

3) V4o Y(0) is contained in the complex vector subspace spanned by y (so).
If a is a variation of normal geodesics, that is H %—‘;‘ (s, 1) || = 1 forevery s, then Y also satisfies
(VoY (0), Jy(s0)) = 0.

PROOF. Since E;—‘;‘(s, 0) is parallel to Jy (s), we see

0= i<8—a(s, 0), JP(S)> = <i(a—a>(s, 0), J?(S)> + <a—a(s, 0), KJJ?(S)> )
ds\ ot ds \ ot ot
which shows the second assertion.

If a (local) vector field V along y is orthogonal to both y (s) and Jy (s) at each s, we find
V;V is also orthogonal to both y (s) and Jy (s) by differentiating both sides of the equalities
(V(s), y(s)) = 0and (V(s), Jy(s)) = 0. Differentiating both sides of (%—‘f(s, 0),V(s)) =0,
we see

do dor
<vy~¥(s, 0). V(s)> = —<§(s, 0), Vy V(S)> =0,

and obtain the third assertion.
We find the last assertion by differentiating both sides of H %—‘f (s, 1) || o by s. a

Following Lemma 1, we shall say that a Jacobi field Y along a geodesic o is associated
with a trajectory for B, if it satisfies

i) Y(0) = —sgn(k)Jo'(0)/llo"(0)]l,

ii) V,/Y(0)is contained in the complex vector subspace spanned by o/(0) and satisfies
(VoY (0). Jo' (0)) = kllo”(0)]>.

Here sgn(a) is the signature of a real number a. It is clear that every Jacobi field associated

with a trajectory for B, can be obtained by some variation of geodesics associated with this

trajectory. When o is a normal geodesic, that is a geodesic of unit speed, we find a Jacobi

field ¥ associated with a trajectory for B, is of the form ¥ = at6 (1) —sgn(x)g(t)J& (1) + Y+

with a constant a, a function g and a vector field Y+ along o which is orthogonal to both
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6 (1) and J& (¢) at every ¢. The function ¢ and the vector field Y+ satisfy ¢(0) = 1, ¢/(0) =
—liel, Y£(©0) =0, V5Y+(0) =0,

LEMMA 2. We consider a surface formed by a variation a of geodesics associated with
a trajectory for By, which may have singularities. This surface is a complex line if and only if

the vector R(J %—‘;‘, %—‘;‘) %—‘f is parallel to J %—‘f at each point. In this case it is totally geodesic.

PROOF. The variation o forms a complex line if and only if the corresponding Jacobi
field Y satisfies Y- = 0. Such case occurs if and only if R(J%—‘;‘, %—‘;‘)%—‘;‘ is parallel to J%—‘;‘.
We show « forms a totally geodesic surface in this case. For the sake of simplicity, we may
only treat the case that « is a variation of normal geodesics. In this case we have %—‘;‘(s, 1) =

—sgn(x)g(s, t)J%—”,‘(s, t) with a function g satisfying
829

0 0
—(s, 1) + g(s, H)HR el (s,)) =0, g@,00=1, o9 (5,0) = —|«],
at? ot ot

where HR(v) denotes the holomorphic sectional curvature of the line spanned by a unit vector
v. Thus we have

0
Vou oa _ 0,
a ot
v do v do )V Jaa ( )agJBa
o« T = o — = —SgNn(K o — | = —SgnK)—J —,
e ot & as £ & 9 Jat & Jat ot
v do )V J8a ) 89J8a+ v Jda
o« — = —Sgn(k) Ve — ) = —sgn(k)| —J— o« — | .
5 Bs BV ENI o g as o IR
Hence these vectors V%a %—‘;‘, V?Ta %—‘;‘, V?Ta %—‘;‘ are contained in the tangent space of a surface
t N N
formed by «, and the surface is totally geodesic. O

We call a point o (f9) a B, -trajectory focal point of ¢ (0) if there is a Jacobi field along o
associated with a B, -trajectory which vanishes at 7o, and call the value 1y/||o”’|| a B, -trajectory
focal value of o (0). The minimum positive B, -trajectory focal value is said to be the first B, -
trajectory focal value of ¢ (0), and is denoted by 77 (o (0); o, k) or t (o (0); k). In case every
point o (), t > 0 is not a B, -trajectory focal point of o (0) we put #7(0(0); 0,k) = oo.
We denote the maximum negative B, -trajectory focal value by —1, (o (0); o, k). We also put
t,(0(0); o, k) = oo if there are no negative B, -trajectory focal values.

We here study B, -trajectory focal values for a complex space form CM"(c), which is a
complex projective space CP"(c) of constant holomorphic sectional curvature ¢, a complex
Euclidean space C" or a complex hyperbolic space CH" (¢) of constant holomorphic sectional
curvature ¢ according c is positive, null or negative. On a complex Euclidean space C", a
trajectory for By is a circle of radius 1/|«| in the sense of Euclidean geometry. Thus geodesics
associated with a trajectory meet at its center, hence the first B, -trajectory focal value is 1 /|« |
and has no negative B, -trajectory focal values.
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On a complex projective space CP"(c), every trajectory lies on some totally geodesic
sphere CP!(c) and is a small circle. If we regard this as a latitude line, geodesics associated
with this trajectory meet at poles of CP!(c) which are the center of this small circle and its
anti-podal point. Hence the first B, -trajectory focal value is (1//c) tan~!(/c/|«|) and the
maximum negative B -trajectory focal value is —(1/./c){m —tan~!(\/c/|«|)}. A Jacobi field
along a normal geodesic o associated with a trajectory for B, on CP”(c) is of the form

Y. (1) = até (1) + { — sgn(k) cos +/ct + % sin ﬁt}]d(r)
c
with a constant a.
On a complex hyperbolic space CH" (¢), every trajectory lies on some totally geodesic
real hyperbolic plane CH'(c). A Jacobi field along a normal geodesic o associated with a
trajectory for B, on CH"(c) is of the form

Y () = ato(t) + { — sgn(k) cosh /|c|t + \/% sinh |c|t}]c’r(t)

with a constant a. Therefore, if || < +/|c|, there are no B,-trajectory focal points,
and if |x| > +/[c], the first B, -trajectory focal value is (1/2+/]c]) log(+/Tc[ + |k 1)/ (|k | — /]c])
and there is no negative B -trajectory focal values.

We denote by t ¢ (c; k) and —t,(c; k) the first B, -trajectory focal value and the maximum
negative B, -trajectory focal value on a complex space form of constant holomorphic sectional
curvature c. Then we see

1 —1 4/ i
ﬁtan W, lfC>O,
L, ifc=0,
tr(c; k) = ‘K‘l Tl
ZJWlOg\K\* o if c < 0and |k| > /]c],
0, ifc < 0and |«] < /|c],
1 —1 e ;
—(|m7 —tan™" %), ifc>0,
= | (= o )
00, ifc <0.

We here give comparison results on first B, -focal values.

PROPOSITION 1. Let M be a Kdhler manifold and o be a normal geodesic on M. If
the sectional curvatures of 2-planes spanned by & (t) and a vector orthogonal to 6 (t) are not
greater than c for 0 <t < ty(c(0); o, k), then we have the following:

(1) 170 (0): 0,6) = t7(c: ).

(2) LetY be a Jacobi field along a geodesic o which is associated with a trajectory for
By, and Y be a Jacobi field along a normal geodesic & which is associated with a trajectory

for By on a simply connected surface M =CM! (¢) of constant sectional curvature c.
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If Y is orthogonal to 6 and Y is orthogonal to 3, then ||Y ()| > ||I?(t) || for every t with
0 <t < ty(c; k). The equality ||Y (1) = ||1?(t0)|| (0 < to < ty(c; k)) holds if and only if
Y (¢) is parallel to J6 (t) and the holomorphic sectional curvature of the line spanned by ¢ (t)
is equal to c for0 <t < 1y.

PROOF. For the sake of simplicity, we suppose ¥ > 0. We denote ¥ and Y by Y =hE
and ¥ = —gJé with functions g, 4 and a vector field E along o satisfying 2(0) = ¢(0) =
1,|E|l=1and (E,6) =0. As (Vs E, E) =0and (Vs V4 E, E) = —|| Vs E|?, we see

h" +h((R(E,6)6,E) — |V E|*) =0.
Therefore, for 0 < ¢t < min{t7(c(0); 0, &), t7(c; k)} we have

(h'g —hg") = hg(IVs E|I* — (R(E,6)6, E) +¢)
> hg(c — (R(E,o0)5,E)) >0.

By the definition of Jacobi fields associated with trajectories for B, we see h'(0) = ¢'(0) =
—« and (W' g — hg’)(0) = 0. Therefore we find (h/g)’ > 0, hence h > g.

The equality i (t9) = g(tp) at some point 0 < fy < t7(c; k) holds if and only if Vs E =0
and (R(E,o0)o, E) = cfor 0 <t < tg. This is the case that £ = —J¢ and the holomorphic
sectional curvature of the complex line spanned by o () is ¢ for 0 < t < 1. O

The proof of Proposition 1 also guarantees the following.

PROPOSITION 2. Let M be a Kdhler manifold and o be a normal geodesic on M. If
the sectional curvatures of 2-planes spanned by & (t) and a vector orthogonal to 6 (t) are not
greater than c fort < 0, then t,,(c(0); o, k) > t,(c; k).

For two unit tangent vectors v, w € UM (v # Z£w), we denote by Riem(v, w) the
sectional curvature of the plane spanned by v, w. In view of the values 7 7 (c; «) of the first B, -
focal value on a complex space form and f, (c; «), these propositions guarantee the following.

COROLLARY 1. On a Kdhler manifold M whose sectional curvature satisfies Riem <
¢ with some nonpositive constant c, every variation of geodesics associated with a trajectory
for By forms an immersed surface without singularities if |k| < /|c|.

3. Crescents and Bow-shapes

In Riemannian geometry, a comparison theorem for triangles plays quite an important
role. This Toponogov theorem says that triangles on a manifold of large sectional curvature
are fatter than triangles on a manifold of small sectional curvature. We here prepare a corre-
sponding result for trajectories. As a substitute for a triangle we consider a bow-shape, which
is consisted of a trajectory segment and a kind of geodesic segment.

A crescent for B, on a Kéhler manifold M is a pair C = (y, t) of a trajectory segment
y : [0, L] - M for B, and a nonnegative function 7 : [0, L] — [0, co) satisfying 7(0) =
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(L) =0and 0 < 7(s) < t7(y(s); k) for every s. For a crescentC = (y, t) we call y the arc
of C. If o : [0, L] xR — M is the variation of normal geodesics associated with y, we call the
set Rep(C) = {a(s, 1) |0 <s < L,0 <t < t(s)} the represented shape of C. We denote by
pc thecurve [0, L] 5 s — «a(s, T(s)) € M. If acrescent 3 with arc y has the minimum length
of periphery among crescents C with arc y, that is, length(pc) > length(pg), we shall call it
a bow-shape with arc y, and call the curve pg the bow-string of 3. As a matter of course,
a bow-shape does not necessarily exists for every trajectory segment. Roughly speaking, if
a bow-string pg exists for a trajectory segment y its image is an image of minimal geodesic
joining the origin and terminus of y on a part of a surface formed by a variation of geodesics
associated with y. We here make mention of bow-shapes on a complex space form CM" (c) of
constant holomorphic sectional curvature c. For bow-strings we sometimes call their images
also bow-strings.

EXAMPLE 1. On a complex Euclidean space C”, for a trajectory segment y for B,
with length(y) < 7/|k|, we have a unique bow-shape B whose bow-string pg is an image of
a geodesic segment and satisfies

2 1
length(pp) = ﬁ sin <§|K|length(y)) .
K

The image of this bow-shape lies on a totally geodesic C!. But if length(y) > 7/|«|, there
does not exist bow-shapes with arc y.
EXAMPLE 2. On a complex projective space CP"(c), for a trajectory segment y for

B, with length(y) < 7/~/k2 + ¢, we have a unique bow-shape B whose bow-string o3 is an
image of a geodesic segment and satisfies

Jcsin <%\/ k2 4c length(y)) = VK2 + csin (%\/Z length(pg)) .

In particular, we see length(pg) < (2/+/¢) sin~! y/¢/(k2 + ¢). The image of this bow-shape
lies on some totally geodesic standard sphere CP'!(c), and its periphery consists of a part of
a small circle and a part of a great circle.

For a trajectory segment y with length(y) > 7/+/k2 + ¢, there does not exist bow-
shapes with arc y.

EXAMPLE 3. Let y be a trajectory segment for B, on a complex hyperbolic space
CH" (o).

(1) When |k| < 4/|c[, we have a unique bow-shape B whose bow-string pg is an image
of a geodesic segment and satisfies

; 2
Vel sinh(y/[c| — k2 length(y)/2) i 1| < V.
= y/le| — k2 sinh(y/|c| length(pp)/2) ,
Vel length(y) = 2 sinh(+/|c| length(pg)/2) , if k = +4/|c]|.
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(2) When || > +/[c], if length(y) < 7/+/k?+ ¢, we have a unique bow-shape B
whose bow-string pp is an image of a geodesic segment and satisfies

1 1
Vlc|sin <§\/K2 +c length(y)) = +v/k2 + csinh <§\/ | length(plg)) }

In particular, we see length(pg) < (2/+/[c]) log(lk| + +/Ic[)/~vk2 + ). But if length(y) >
7/ k2 + c, there does not exist bow-shapes with arc y.

(3) Every image of above bow-shapes is contained in some totally geodesic real hyper-
bolic plane CH'(c).

Needless to say that on CM"(c) the represented shape of each bow-shape is simply
connected. As a matter of fact, it is an image of a simply connected subset of the tangent
space through the exponential map. For example, when B is a bow-shape on C" whose arc
y 1[0, £] — C" is a trajectory for B, then we see

<9<
Rep(B) = expy(o)({ U(M, 9) = Ty(O)Cn 0 = 0 = IKIE/Z, }) ’

0<u < (2/|«|)sinf

where v(u, 0) = ucos6 y(0) + sgn(k)u sinf Jy(0).

We now give a comparison theorem on bow-shapes.

THEOREM 1. Let M be a Kdhler manifold satisfying Riem < c¢ with a constant c. If a
B -crescent C = (y, 1) satisfies

i) length(y) < 7/~/k2 + ¢ when k> + ¢ > 0,

i) t(s) <ty(c; k) foreverys,
then length(pc) is not smaller than the length length(pp) of a bow-string of a B,.-bow-shape
B on a complex space form CM"(c) whose length of arc is length(y).

The equality length(pc) = length(pg) holds if and only if the represented shape of C
is complex analytically isometrically immersed image of the represented shape of B and is
totally geodesic. In this case, it is a bow-shape with arc y.

PROOF. Put L = length(y). We take a trajectory segment y on M = CM"(c) satis-
fying length(y) = L, and consider a crescent ¢ = (7,7). Leta : [0, L] x R — M and
& : [0, L] x R — M be variations of normal geodesics associated with y and y respectively.

As we have (92, 82) — (0& "84 _ ), we find by Proposition 1 that

L L da
length(pc) =/ loc (s)llds =/ Ha—(s, 7(s))
0 0 N

[

> length(pp) -

2
+ 1/(s)2 ds

da 2
—(s5,7(s))| +7/(s)? ds = length(pp)
as
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The equality holds if and only if H g—‘; (s, T(s)) H = H % (s, T(s)) || holds for every s and ¢ =B.
Again by Proposition 1, we see it is the case that the holomorphic sectional curvature of the
line spanned by g—‘;‘(s, t) is ¢ for every (s, t) with 0 < 1 < 7(s). O

REMARK. The above proof also shows that the length of smooth curve on a surface
A={a(s,1) |0<s <L, 0=t =<ty(c;«)}joining y(0) and y (L) is not smaller than the
length of bow-string length(pp) of a bow-shape B on CM" (c).

If a crescent C = (¥, T) on M does not lie on A, as we have so with 7(sg) > t7(c; k), we
find length(pz) > 2t¢(c; k) > length(pp). In particular, if there is a crescent C on M with
length(pz) = length(pp), then it should lie on A.

When «2 + ¢ < 0, or when k2+c>0and L < n/\//c2—+c, we denote by £(«, L; ¢)
the length of a bow-string of a bow-shape for B, on a complex space form CM" (c) whose
length of arc is L. We set §(k, ¢) = m/~/k? + ¢ when k2+c¢ > 0and 8(k, c) = oo when
k2 + ¢ < 0. By standing another point of view, we can conclude the following.

PROPOSITION 3. Let M be a Kdihler manifold satisfying Riem < c¢ with a constant c.
If a bow-shape C for B, on M satisfies length(pc) = £(k, L; ¢) for some positive L satisfying
L < §(k, ¢), then the length of the arc of C is not longer than L.

If a trajectory segment y for B, on a Kdhler manifold satisfying Riem < ¢ has a bow-
shape B with arc y and length(pg) = £(k, length(y); ¢), then the holomorphic sectional
curvature of the complex line spaned by y is ¢. Taking account of this we shall say that a
trajectory y for B, (k # 0) on a Kihler manifold is of c-space type if there exists a sequence
{sj}fl’.‘;_oo satisfying the following conditions:

1) limj s =8k, c)andlim; ., _s; = —d(k, ),

ii) for each s; (sj # 0), the trajectory segment y|;;, which is a restriction of y on
the interval I;, has a bow-shape B; = (y|;,, t;) with length(pg_/) = L(«,|sjl; c), where
I; =10,s;]fors; > 0and I; = [s;,0] fors; <O.
It is needless to say that every trajectory on a complex space form CM" (c) is of c-space type.
A trajectory y for B, on CM" (c) is closed if and only if k% + ¢ > 0. In this case its minimal
period length(y) is 27 /+/k% + ¢ = 28(k, ¢) and the geodesic with initial vector sgn(x)Jy (0)
goes through the point y (§(k, ¢)) (see [1]).

As a direct consequence of Theorem 1 we have

COROLLARY 2. Let M be a Kihler manifold satisfying Riem < c.

(1) Ifb > c, there does not exist a trajectory of b-space type.

(2) Ifk* +c¢ > 0, every trajectory y of c-space type for B is closed and length(y) =
27 /A/ k% + c. For a variation a of normal geodesics associated with y , the interior

Fo ={als, 1) | Is| =8(k;0), 0=t <ty(c; )}

is totally geodesic, complex and of constant curvature c.
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PROOF. (1) Since €(x, L;b) < £(x, L; ¢) when b > c, the first assertion is trivial by
Theorem 1.

(2) If there is a crescent C = (8, ) on M with length(8) < 8(k, ¢) and length(p¢)
= {(k, length(B); c¢), then by Theorem 1 and Remark we see the represented shape of C is
totally geodesic and of holomorphic sectional curvature c. We put v; = /5C,- )/ ||/5C,- O e
Uy(s;yM. Since the represented shape of B; is complex analytically isometrically immersed
image of the represented shape of a bow-shape on CM"(c) whose length of arc is [s;|, we
find that lim; oo v; = lim;, oo v; = sgn(k)Jy(0). This shows y (§(k, ¢)) = y (=d(«, ¢)),
hence y is closed and length(y) = 2§(«, ¢). O

In the last stage we make mention of bow-shapes on a product of complex space forms.
On a product M = M; x M; of Kihler manifolds M;, every trajectory y is of the form
y(t) = (y1(A11), y2(Aat)). Here, A1, A> are nonnegative constants with X% + )»% =1, and
vi is a trajectory for B,/,; on M; when A; > 0 and is a point curve on M; when A; = 0
(see [3, 4]). One can easily compute the length of bow-string on a product of complex space
forms. For example, on a product CP"(c1) x - -- x CP"7(c)) of complex projective spaces,

a trajectory segment y of the form y (1) = (y1(A1t), - -, yp(Apt)) for B, with nonnegative
)4
i=

length(y) < min {rr/,//c2 + cia?

The length of its bow-string is given by ,/ Zf’zl d,.2 with d; satisfying

2/ sin (,/K2 + ol length(y)/2> = JK2 + 22 sin(\/G di/2)) .

We here consider a subset Sy (¢) of the unit tangent space U, M given by

constants A, - - -, A, satisfying > I Al.z = 1 has a bow-shape if

A #£0,15i<p).

there is a positive ¢ such that for every
Si(c) =3 v e UM |k with 0 < |k| < ¢ the trajectory for B,
with initial vector v is of c-space type

For a complex space form CM"(c) we see U,CM"(c) = Si(c) at each point, and for a
product of complex space forms M = CM"(c1) x --- x CM"r(cp), we see that Sx(c) is
either an empty set or a disjoint sum of spheres; Sy(c) = §2a =t 44 52! where
¢ =cy for1 < j < g¢q,c; # cfori # ij. Here, if we denote x € M by (x1,---,xp),

the set S~/ corresponds to U Xi/CM "j(c). For a Hermitian symmetric space M of rank

r, it was pointed out by Ikawa[10] that every trajectory lies on a totally geodesic r-product
CM'(c) x ---x CM'(c), where ¢ is the maximum sectional curvature when M is of compact
type and is the minimum sectional curvature when M is of noncompact type. We hence see
that for this ¢ the set Sy (c) contains a r-sum S! + - - - 4+ S! of circles S!.
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COROLLARY 3. Let M be a simply connected Kiihler manifold of Riem < c for some
nonnegative c. If Sx(c) # @ at some point x, then M contains a totally geodesic CM(c).

PROOF. For v € Sx(c) we denote by y, (0 < |k| < &) a trajectory of c-space type for
B, with y,(0) = v, and by «, the variation of normal geodesics associated with y,. Since M
satisfies Riem < ¢, we see Fy, is totally geodesic and of constant curvature c. Moreover, as M
is simply connected, the condition that y, is of c-space type guarantees that F, is contained
in the inside of the geodesic ball centered at y (0) whose radius is the injectivity radius at y (0).
Thus F,, is an image of a simply connected subset of {ay(0) + bJy(0) | a € R, b > 0}
through the exponential map exp,, ) whenx > 0 and is an image of a simply connected subset
of {ay(0)+bJy(0) | a € R, b<0} through this exponential map when x < 0. We hence find
that F,, is simply connected and that ]-"% ) ‘7:05'(2 ifO0<ky <ky<eor0>k| >ky > —¢.

Therefore we see F = U0<|K|<8 Fa, 1s totally geodesic and is complex analytically isometric

to CM'(c) \ {image of a geodesic on CM ! (c)}. Since the topological closure
F = F U {the image of the geodesic with initial vector v}
of F is of constant curvature c, we see it is complex analytically isometric to CM ! (c). O

If we restrict ourselves on Hermitian symmetric spaces, as every trajectory lies on a
totally geodesic r-product of CM s, the following is trivial.

COROLLARY 4. [fa Hermitian symmetric space M satisfies Sy(c) = Uy M for some
¢, then M is CM" (c).
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