Boundary Theta Curves in S^{3}

José Eduardo Prado Pires de CAMPOS

Universidade de São Paulo
(Communicated by K. Taniyama)

Abstract

It is introduced a split extension of groups $1 \rightarrow P_{2} \rightarrow C_{1,2} \rightarrow \Theta \rightarrow 1$, where P_{2} is the group of pure braids in 2 strings, $C_{1,2}$ is the group of cobordism classes of (pure) 2-string links and Θ is the group of cobordism classes of theta curves. The concept of boundary theta curve is introduced and it is proved that the group of boundary cobordism classes of boundary theta curves is isomorphic to the group of boundary cobordism classes of boundary string links in 2 strings.

1. Introduction

One way of trying to detect how intertwined are the different components of a link is the concept of boundary link (that is, a link whose components bound disjoint Seifert surfaces). This paper introduces a similar concept for theta curves.

It is divided in two parts. In the first part we relate the group of cobordism of theta curves with the group of cobordism classes of 2-string links. String links were introduced in [2] and there it was observed that since the group of cobordism classes of (pure) n-string links contains the group of (pure) n-braids, it is non abelian if $n \geq 3$, on the other side, if $n=1$, it coincides with the group of cobordism classes of knots and therefore is abelian. The case $n=2$ was open, but it follows from Proposition 2 below that it is non abelian.

In the second part we introduce the group of boundary cobordism classes of boundary theta curves and prove that it is isomorphic to the group BSL(2) of boundary cobordism classes of boundary 2 -string links, introduced in [1].

2. Theta curves in \mathbf{S}^{3}

The group of cobordism of theta curves was introduced in [5]. We recall it. We work in the piecewise linear category.

A labelled theta curve, or simply theta curve, is a graph θ with two vertices v_{1} and v_{2} and three edges e_{1}, e_{2} and e_{3} each of which joins v_{1} and v_{2}. We give an orientation from v_{1} to v_{2} to each edge.

[^0]Key words. Boundary theta curves; Cobordism; String Links; Seifert Surfaces; Braids.

Figure 1.

Figure 2.

Let $f: \theta \rightarrow S^{3}$ be an embedding of θ into the three-sphere S^{3}. Then f is called a spatial embedding and the image $f(\theta)$ is called a spatial theta curve. Then $f\left(e_{2} \cup e_{3}\right), f\left(e_{3} \cup e_{1}\right)$ and $f\left(e_{1} \cup e_{2}\right)$ together with the orientation of e_{2}, e_{3} and e_{1} respectively are oriented knots in S^{3} which are called constituent knots of f and denoted by $k_{1}(f), k_{2}(f)$ and $k_{3}(f)$ respectively.

Two embedding $f, g: \theta \rightarrow S^{3}$ are said to be cobordant if there is a 'locally flat' embed$\operatorname{ding} \Phi: \theta \times[0,1] \rightarrow S^{3} \times[0,1]$ such that $\left.\Phi\right|_{\theta \times\{0\}}: \theta \times\{0\} \rightarrow S^{3} \times\{0\}$ equals to f and $\left.\Phi\right|_{\theta \times\{1\}}: \theta \times\{1\} \rightarrow S^{3} \times\{1\}$ equals to g, where 'locally flat' means that the image of Φ in $S^{3} \times[0,1]$ is locally homeomorphic to the standard disk pair $\left(D^{4}, D^{2}\right)$ or $\left(D^{3}, Y\right) \times D^{1}$ where $\left(D^{3}, Y\right)$ is shown in Figure 1.

The cobordism class of f is denoted by [f]. For two spatial embeddings $f: \theta \rightarrow S_{1}^{3}$, $g: \theta \rightarrow S_{2}^{3}$, remove small balls centered at $f\left(v_{2}\right)$ and $g\left(v_{1}\right)$ from S_{1}^{3} and S_{2}^{3} respectively, then identify the boundaries such that the images of the i-th edge are joined for each i. Then we obtain a new embedding of θ into $S^{3}=S_{1}^{3} \# S_{2}^{3}$ which is called the vertex connected sum of f and g and denoted by $f \# g$. The vertex connected sum is well defined up to ambient isotopy [6].

Proposition 1 (Taniyama). The cobordism classes of embeddings of θ into S^{3} form a group under the vertex connected sum.

The inverse of $[f]$ is $[f!]$ where f ! is the reflected inverse of f. See Figure 2.
We denote this group by Θ.
For an embedding $f: \theta \rightarrow S^{3}$, choose a regular neighbourhood N of $f\left(e_{i}\right)$ in S^{3}, $i \in\{1,2,3\}$. Then the pair $(N, N \cap f(\theta))$ is homeomorphic to $\left(D^{3}, A\right)$ of Figure 3.

Let $h_{i}:\left(D^{3}, A\right) \rightarrow(N, N \cap f(\theta))$ be a homeomorphism such that $(f(\theta) \backslash N) \cup h_{i}(B)$ is a 2-component link with linking number zero, where B is a pair of strings in D^{3} as illustrated in Figure 4.
h_{i} is called a 0 -framing of $f\left(e_{i}\right)$ and the link is called the i-th parallel link of f and denoted by $\ell_{i}(f)$.

The following result was suggested to us by J. Levine.
Proposition 2. There is a split extension of groups

$$
1 \rightarrow P_{2} \rightarrow C_{1,2} \xrightarrow{\alpha} \Theta \rightarrow 1
$$

Figure 3.

Figure 4.

Figure 5.
where P_{2} is the group of pure braids in 2 strings and $C_{1,2}$ is the group of cobordism classes of 2 -string links. (see [1] for definitions and notation)

Proof. Considering $D \times I \subseteq \mathbb{R}^{3} \subseteq S^{3}$ and three intervals I_{0}, I_{1}, I_{2} embedded in S^{3}, I_{0} connecting $\left(a_{1}, 0\right)$ to $\left(a_{2}, 0\right), I_{1}$ connecting $\left(a_{1}, 1\right)$ to $\left(a_{2}, 1\right)$ and I_{2} connecting the midpoints of I_{0} and I_{1}, we can associate to each 2 -string link a theta curve (see Figure 5).

A cobordism between 2 -string links can clearly be extended to a cobordism between the respective theta curves. Besides this association provides a homomorphism $\alpha: C_{1,2} \rightarrow \Theta$. α is surjective since given a theta curve one can, without changing its cobordism class, push one of its vertices along one of its edges until obtain one unknotted edge that does not undercross nor overcross the others.

According to [2], the inclusion map $j_{k}: P_{k} \rightarrow C_{1, k}$ is a monomorphism, that is, two pure braids in k strings are ambient isotopic if and only if they are cobordant as k-string links.

Let $b(f)$ be the unique pure braid in 2 strings whose linking number between the strings is the same as the linking number between the 2 strings of a given 2 -string link f.

By [5] (Theorem 5), the class of cobordism of f is in the kernel of α if and only if the closure of $b\left(f^{-1}\right) \cdot f$ is slice but, by [3], this happens if and only if $b\left(f^{-1}\right) \cdot f$ is slice (i.e., cobordant to the trivial string link). Since P_{2} is in the center of $C_{1,2}$, the map β : $C_{1,2} \rightarrow C_{1,2}$ that sends the cobordism class of f to the cobordism class of $b\left(f^{-1}\right) \cdot f$ is also a homomorphism. The cobordism class of f belongs to $\operatorname{ker} \beta$ if and only if f is cobordant to $b\left(f^{-1}\right)^{-1}=b(f)$, that is, if and only if $f \in \operatorname{im} j_{2}$. Therefore $\operatorname{ker} \alpha=\operatorname{ker} \beta=\operatorname{im} j_{2} \cong P_{2}$ and we have an extension of groups

$$
1 \rightarrow P_{2} \rightarrow C_{1,2} \xrightarrow{\alpha} \Theta \rightarrow 1
$$

It is clear that $\alpha \circ \beta=\alpha$. This equation together with the fact that $\operatorname{ker} \alpha=\operatorname{ker} \beta$ implies that α maps the image of β isomorphically onto Θ. Thus the extension splits as stated.

Le Dimet has observed that $C_{1,1}$ is commutative (the group of cobordism of knots) while $C_{1, k}$ for $k \geq 3$ is not (since there is a monomorphism $j_{k}: P_{k} \rightarrow C_{1, k}$). From Proposition 2 it follows that $C_{1,2}$ is not commutative since, by [4], the theta curve cobordism group Θ is not commutative.

3. Boundary theta curves

Definition 1. A Seifert surface for a θ-curve f is a pair (S_{1}, S_{2}) of oriented connected surfaces in S^{3} such that ∂S_{1} and ∂S_{2} are two different constituent knots of f, $S_{i} \cap f(\theta)=\partial S_{i}(i=1,2)$ and $\left(S_{1} \backslash \partial S_{1}\right) \cap\left(S_{2} \backslash \partial S_{2}\right)=\emptyset$. A θ-curve that has a Seifert surface is a boundary θ-curve ${ }^{1}$.

If f is a boundary θ-curve, given any two constituent knots of f there are Seifert surfaces as in the definition. This can be seen geometrically but we shall follow a different approach.

Let us represent a general θ-curve f as in Figure 6.
Let us call top meridians of f the following elements x_{1}, x_{2} and x_{3} of $\pi_{1}(f)$ (where $\pi_{1}(f)$ stands for the fundamental group of the complement of $\left.f(\theta).\right)$

They are obtained by taking the homotopy class of the following loops: beginning at the eye of the reader the loop goes straight to the beginning of one arrow, follows that arrow until its end and goes back to the eye of the reader.

Similarly one defines bottom meridians y_{1}, y_{2} and y_{3} (see Figure 8).
DEFINITION 2. Let $F(2)$ be the free group in 2 generators α_{1} and α_{2}. An epimorphism $\eta: \pi_{1}(f) \rightarrow F(2)$ that sends two top meridians $x_{i} \neq x_{j}, i, j \in\{1,2,3\}$, to α_{1} and α_{2} respectively and send the corresponding bottom meridians y_{i} to α_{1} and y_{j} to α_{2} is called a splitting for the θ-curve f.

Figure 6.

Figure 7.

Figure 8.

[^1]It follows from Thom-Pontryagin construction that a θ-curve has a splitting if and only if it is a boundary θ-curve.

By composing η with automorphisms of $F(2)$ we see that the existence of the splitting does not depend upon which meridians have index i and j.

From this it follows easily that the vertex connected sum of boundary θ-curves is a boundary θ-curve.

If F is a cobordism between θ-curves f_{1} and f_{2}, there are homomorphism $i_{j}: \pi_{1}\left(f_{j}\right) \rightarrow$ $\pi_{1}(F)$ induced by the inclusion maps. If f_{1} and f_{2} are boundary θ-curves with splittings η_{1} and η_{2} respectively, an epimorphism $\eta: \pi_{1}(F) \rightarrow F(2)$ such that $\eta \circ i_{j}=\eta_{j}, j=1,2$, is called a splitting for the cobordism F. A cobordism F that has a splitting η is called a boundary cobordism between f_{1} and f_{2} and in this case, f_{1} and f_{2} are said to be boundary cobordant (boundary) θ-curves.

Of course the reflected inverse of a boundary θ-curve is a boundary θ-curve and we have a group $B \Theta$ of boundary cobordism classes of boundary θ-curves.

If f is a boundary string-link in two strings, its associated θ-curve is a boundary θ-curve. In fact, there is a splitting $\eta: \pi_{1}(f) \rightarrow F(2)$ sending x_{1} and y_{1} to α_{1} and x_{2} and y_{2} to α_{2}. If \tilde{f} is the associated θ-curve, then $\pi_{1}(\tilde{f}) \cong \pi_{1}(f)$ and we have the correspondent splitting $\tilde{\eta}: \pi_{1}(\tilde{f}) \rightarrow F(2)$.

Besides if f_{1} and f_{2} are boundary cobordant (boundary) string links with splittings η_{1} and η_{2} and if F is a boundary cobordism between them with splitting η, we have that F induces a boundary cobordism \widetilde{F} between the θ-curves \tilde{f}_{1} and \tilde{f}_{2} with a splitting $\widetilde{\eta}$ that extends $\widetilde{\eta}_{1}$ and $\widetilde{\eta}_{2}$.

Therefore there is an epimorphism $\beta: \operatorname{BSL}(2) \rightarrow B \Theta, \beta(f)=\widetilde{f}$, where $\operatorname{BSL}(2)$ is the group of boundary cobordism classes of boundary string links in 2 strings.

Let f be a boundary string-link in two strings and \tilde{f} its associated θ-curve. Since f is a boundary string link, the linking number between its strings is zero, so one of the parallel links of \tilde{f}, let us call it $\ell_{1}(\tilde{f})$, is just the closure \widehat{f} of f (see [1] for definition.)

Clearly \tilde{f} is boundary slice (that is, represents the unit element of $B \Theta$) if and only if $\ell_{1}(\tilde{f})$ is a boundary slice link, but $\ell_{1}(\widetilde{f})=\widehat{f}$ and, by [1], Theorem $14, \widehat{f}$ is boundary slice if and only if f is. Therefore we have

Proposition 3. $\beta: B S L(2) \rightarrow B \Theta$ is an isomorphism.
A question that still remains is if $B \Theta$ is abelian.
Acknowledgements. The author would like to thank Professor Jerome Levine and Professor Ozíride Manzoli Neto for their encouragement. This research was partially supported by CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil.

References

[1] J. E. P. P. DE CAMPOS, Boundary string links, Journal of Knot Theory and Its Ramifications, vol. 8, no. 7 (1999), 855-878.
[2] J. Y. Le Dimet, Cobordism d'enlacements de disques, Memoire de la Société Mathématique de France, 32, Supplément au Bulletin de la S.M.F., Tome 116, fascicule 2 (1988)
[3] N. HABEGGER and X. S. Lin, The classification of links up to homotopy, Journal of the American Mathematical Society, vol. 3, no. 2 (1990), 389-419.
[4] K. MiYazaki, The theta-curve cobordism group is not abelian, Tokyo J. Math., vol. 17, no. 1 (1994), 165169.
[5] K. Taniyama, Cobordism of theta curves in S^{3}, Math. Proc. Cambridge Philos. Soc., vol. 113 (1993), 97106.
[6] K. Wolcott, The knotting of theta curves and other graphics in S^{3}, Geometry and Topology, edited by C. Mc Crory and T. Shifrin, Marcel Dekker, New York (1987), 325-346.

Present Address:
Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo,
Caixa Postal 668, 13560-970, São Carlos, SP-Brazil.
e-mail: jeppc@icmc.usp.br

[^0]: Received December 8, 2003; revised April 20, 2004

[^1]: ${ }^{1}$ At the time of revision it was brought to our attention that R. Shinjo and R. Nikkuni are also working with this concept, in a different direction.

