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Abstract. We study the A-invariant of the cyclotomic Z;-extension of Q(,/pg) with p = 3 (mod 8),¢g =1

(mod 8) and (%) = —1. With further conditions on ¢, we show that A-invariant is zero.

1. Introduction

The Iwasawa A-invariant of the cyclotomic Z,-extension of a real quadratic field was
studied by Ozaki and Taya [3]. They obtained the following result:

THEOREM 1.1. Let k = Q(/m) or Q(x/2m). Suppose that m is one of the following:
(1) m=p, p=1 (mod8)and(3),(5),=-1,
(2) m=pq, p=qg =3 (mod 3),
3) m=pqg, p=3,g=5 (mod 8),
4 m=pq, p=5,qg=7 (mod8),
5) m=pg, p=g=5 (mod 8),
where p and q are distinct prime numbers, and (z) 4 denotes the biquadratic residue sym-
bol defined by (%)4 = 2(=D/4 (mod p) and (%)4 = 1 or —1 according as p = 1 or 9

(mod 16). Then the Iwasawa A-invariant Ay of the cyclotomic Z;-extension of k is zero.

In this paper, we study the A-invariant of the cyclotomic Z;-extension of k = Q(,/pq)
with p = 3 (mod 8), ¢ = 1 (mod 8) and (%) = —1, where (%) is the Legendre symbol.
The first result of this paper is Theorem 2.1 which follows from Kida’s formula (cf. [2]) and
claims that the A-invariant A; of the cyclotomic Z,-extension ko, Of k is zero or 2", where 2™
shall be defined in Theorem 2.1. The second result is Theorem 2.2 which shows that A = 0
if 2¢=D/4 £ 1 (mod ¢q).
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2. Notations and Theorems

We begin by explaining the notations. We denote by Z and Q the ring of rational integers
and the field of rational numbers, respectively. For elements g, ¢, -+, g of a group G,
we denote by (g1, ¢2, -+, gr) the subgroup of G generated by g1, ¢2,---, g-. For a finite
algebraic extension K of k, (K : k) means the degree of K over k, Nx,x means the norm
mapping of K over k, and if K is a Galois extension over k, G (K /k) means the Galois group
of K over k. If k is an algebraic number field, we denote by 9 and Ej the integer ring of k
and the unit group of k, respectively.

Let n be a non-negative integer, a, = 2cos(27/2"2) and Q, = Q(a,). Then Q, C
Qi1 by any1 = /2 + a,. Itis well known that Q,, is a cyclic extension of Q of degree 2".
This means that Qo = UZOZO Q,, is the unique Z;-extension of Q. For prime numbers p and
g with p =3 (mod 8) andg = 1 (mod 8), we putk = Q(,/pq), ky = kQ, and koo = kQoo.
Our main purpose is to prove the following theorems:

THEOREM 2.1. Let k and koo be as above. We assume g = 1 (mod 22 and q # 1

(mod 2"+3). If the Legendre symbol (%) is —1, then the Iwasawa \-invariant Ly of koo Over

k is zero or 2™.

-1
THEOREM 2.2. Let k and koo be as above. If(%) = —1 and iquT # 1 (mod q),
than the Iwasawa A- invariant Ay is zero.

3. Proof of Theorems 2.1 and 2.2

We first consider the norms of 2 — g, and —1 — a,,.

LEMMA 3.1. We have Ny, ;1 (2 — ay) =2 and Ny, k(=1 — a,) = —1.

PROOF. Since k, = k(ap) = ky—1(J/2+au—1), we have Ny, /k, 2 —ap) = (2 —
an)(2+ay) = 2—ay—1 and Ny, /,_, (—1—a,) = —1—a, 1. Hence we have Ny, /x (2—ay,) =
Ni, 1/k(2—ay—1) =2 —ag=2and Ny, /k (=1 —ay,) = -1 —ay = —1. O

Since ay, is an algebraic integer of k,,, the above lemma implies 20¢q, = (2—a,,)2” 0q, =
2+ a,l)anQn . Hence the ideal (2 —a,)Dq, = (24 a,)Oq, is the unique prime ideal of Q,
lying above 2. Therefore the square of the prime ideal £, of k, lying above 2 is (2 — a,) Oy, .

Now, let L,, be the 2-Hilbert class field of k,,. Since (%) = —1, and since k(,/q) is the
genus field of k, we have Lo = k(,/q). This shows that there exists an element o9 of k such
that £9 = oy because ¢ = 1 (mod 8).

The following proposition plays an important role in this paper:

PROPOSITION 3.2. The norm mapping Ny, /i, of the unit group Ey, to Ey, is surjec-
tive, namely Ny, ik, (Er,) = E,.



A-INVARIANT OF A REAL QUADRATIC FIELD 261

PROOF. Let A, be the 2-Sylow subgroup of the ideal class group of k,,, B,, the subgroup
of A, consisting of ideal classes invariant under the action of Gal(k, /k) and B;, the subgroup
of B, consisting of ideal classes containing ideals invariant under the action of Gal(k,/k).
Since the prime ideal £, of k, is the unique prime ideal of k, ramifying in k, over k, the
cardinality of B), is

2
(Ek : N,k (Ex,))
where (Ey : Ny, k(E,)) is the index of Ny, /x(Ey,) in Ej. Hence, if £, is not principal in &,
then Ny, /k(Ey,) = Er. We assume that £, is principal in k,,. Then there exists an element o,
of k, with £, = a, O

which means o2 /(2 — a,) € Ey,. Since

n?

N o2\ Nii(n)?
2w ) T 2

o,

2
by Lemma 3.1, Ny, /k (522 n) is an odd power of the fundamental unit of k because V2 & k.

Hence we have Ny, /¢ (E,) = Er by Lemma 3.1. O
REMARK. We should note that the order of B, and B), are 2 by Proposition 3.2.

COROLLARY 3.3. let q be the prime ideal of k lying above q. If £, is principal in ky,
then qOx, is not principal in k.

PROOF. For an ideal a of k,, we denote by cl(a) the ideal class of k, containing the
ideal a. We note B,, = (cl(£,), cl(qOy,)) by (%) = —1. Proposition 3.2 shows that the order

of B, is 2. This implies that if £, is principal in k,, then qOy, is not principal in k. O

PROPOSITION 3.4. Ifthere exists a positive integer ng such that £, is not principal in
kng, then A =0

PROOF. We note B, = B;, = (cl(£,)) for any integer n > ng by proposition 3.2. Since
N,/ g (£n) = £y, the norm mapping Ny, g induces the isomorphism B, onto B, which
shows that the intersection of B, and the kernel C,, of the norm mapping of A, to Ay, is
trivial. This implies that Cj, is trivial. Hence, since Nkn/kno (An) = Ay, Ay is isomorphic to
Ay,» which shows A, = 0. O

COROLLARY 3.5. Ifthere exists a positive integer ng such that qunO is principal, then
M =0.

PROOF. If qO g is principal, then £, is not principal in k,, by Proposition 3.2. Hence
we have A = 0 by Proposition 3.4. O

In order to prove Theorem 2.1, we use the following lemma:
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LEMMA 3.6. Let p be a prime number, G a p-group of order p", M a Z/pZ[G]-
module generated by an element mo of M and e the order of M. If e < ppn, then
deG gmgo = 0.

PROOF. We define a G-homomorphism ¢ of Z/pZ[G] onto M by @(deG igg) =

> geG Lggmo. The kernel Ker¢ of ¢ is non-trivial by e < pP". Hence Kerg contains a
non-trivial G-invariant element, which implies ) geG Y9 € Ker ¢.

For an algebraic extension F' of Q, we denote by Pr the group of principal ideals of F.
We put

Pk(o;o(koo/Qoo) ={(@) € P, | (@) = (@) forall o € G(koo/Qc0) } -

G(koo/Qoo)/PQ

We note that the factor group P, - 1s a vector space over the finite field Z/27Z.

o0

Let d be the dimension of the vector space Pk(;(kw Q) /Pq., over Z/2Z. Then we have

(1) =) (ew)—1)—d

wjf?2

by Kida’s formula for plus part given by Iwasawa (cf. [2, P. 287] and [1, Corollary 3.4]),
where w ranges over all finite primes of ko, Which are prime to 2 and e(w) is the ramification
index of w with respect to koo over Qoo-

PROOF OF THEOREM 2.1. Itis suffcient to prove that if A; # 0 then A = 2. Assume
that A # 0. Then cl(qOy,) is non-trivial for any n > 0 by Corollary 3.5, especially for any
n > m. Let h be the class number of Q,,. We note that / is odd. Let q1, - - -, qo= be the prime
ideals of k, lying above q. Then the order of the G (k,,/k)-module (cl(q?), S cl(qgm))

generated by cl(q]), - - -, cl(gl,) is 22" by Lemma 3.6, which shows P,(GOO(]%O/QW)/PQoo =

((/Pq9ks) Po., ) because the 2-part of the ideal class group of Qu is trivial. This means
d = 1. Hence we have Ay = 2 by (1). O

From now on, we assume 2¢~D/4 = [ (mod ¢). Since ¢ = 1 (mod 8), there exist
positive integers r, s with ¢ = (r +5+/2)(r —s+/2). We put g1 = r +s+/2 and g2 = r — s/2.
Then there exist integers a, b, ¢, d with g1 = a + b2 + 4ﬁ(c + dﬁ), which shows
g = q1q> = a® — 2b* (mod 16). Hence if g = 1 (mod 16), then we have

2 gi=+1, £(14++/2)? (mod 4v2)
andif ¢ =9 (mod 16), then we have
(&) gi=+3, £(1+2v2) (mod 42).

Using class field theory, we can prove the following:
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LEMMA 3.7. Ifq = 1 (mod 16), then the ray class field Q(mod q;) of Q1 mod q;
does not contain any quadratic extension of Q1. If ¢ = 9 (mod 16), then Q1 (mod g;) con-
tains a quadratic extension of Q.

PROOF. We first note
@+VD)T = (V21 +VD)'T =27 (1+VD)'T .

We assume g = 1 (mod 16). Then ¢ splits completely in Q(az) which means (2 + ﬁ) o =

I (mod g). This shows (1 —i—\/f)q%l = —1 (mod ¢) from 2% # 1 (mod ¢g). Hence the ray

class field Q; (mod ¢;) does not contain any quadratic extension of Qp by class field theory.
Now, we assume ¢ = 9 (mod 16). Then we have (2 + \/Z)qz;l = —1 (mod ¢q), which

implies (1 + ﬁ)% = 1 (mod ¢g). Hence we obtain our assertion again by class field
theory. |

We refer to the following well known fact for our proof of Theorem 2.2:

LEMMA 3.8. (cf. [4, Exercise 9.3 in P. 183]) Let a be an element of Q1 which is prime
10 2. Then there exists an element « of Q1 with «> = a (mod 4) if and only if Q(/a)/Qy is
unramified at all primes of Q1 above 2. Moreover there exists an element o of Q1 with a® = a

(mod 4+/2) if and only if all primes of Q1 above 2 split in Q; (Va) over Qy.

PROOF OF THEOREM 2.2. We note that
4) o> =1o0r3+2v2 (mod4v2)

for any element « in O¢, which is prime to 2. We assume ¢ = 9 (mod 16). The quadratic
extension Qi (,/g;) of Q is contained in the ray class field of Q; mod g; by Lemma 3.7,
which means that all primes of Q; above 2 are unramified in Q(,/g;) over Q1. This implies
gi = 1,3+ 2+/2 (mod 4) by Lemma 3.8, which shows ¢; = —3, —(1 4+ 2+/2) (mod 4+/2)
by (3). Moreover, k1(,/q;) is an unramified quadratic extension of k1. Since £ does not split
in k1 (,/q;) by Lemma 3.8 and (3), £ is not principal in k1. This shows A; = 0 by Proposition
34.

Now, we assume ¢ = 1 (mod 16). We have ¢; = —1, —(3 + 2+/2) (mod 4+/2) by
Lemma 3.7, Lemma 3.8 and (2). This implies pg; = —3, —(1 + 24/2) (mod 4+/2). Hence
£1 does not split in the unramified extension ki(,/pg;) over ki, which shows that £, is not
principal in k1. Hence we have A; = 0 by Proposition 3.4. O
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