On the Iwasawa λ -Invariant of the Cyclotomic \mathbf{Z}_2 -Extension of a Real Quadratic Field

Takashi FUKUDA and Keiichi KOMATSU

Nihon University and Waseda University

Abstract. We study the λ -invariant of the cyclotomic \mathbb{Z}_2 -extension of $\mathbb{Q}(\sqrt{pq})$ with $p \equiv 3 \pmod 8$, $q \equiv 1 \pmod 8$ and $\left(\frac{q}{p}\right) = -1$. With further conditions on q, we show that λ -invariant is zero.

1. Introduction

The Iwasawa λ -invariant of the cyclotomic \mathbb{Z}_2 -extension of a real quadratic field was studied by Ozaki and Taya [3]. They obtained the following result:

THEOREM 1.1. Let $k = \mathbb{Q}(\sqrt{m})$ or $\mathbb{Q}(\sqrt{2m})$. Suppose that m is one of the following:

- (1) $m = p, p \equiv 1 \pmod{8}$ and $(\frac{2}{p})_4(\frac{p}{2})_4 = -1$,
- (2) m = pq, $p \equiv q \equiv 3 \pmod{8}$,
- (3) $m = pq, p \equiv 3, q \equiv 5 \pmod{8}$,
- (4) m = pq, $p \equiv 5$, $q \equiv 7 \pmod{8}$,
- (5) m = pq, $p \equiv q \equiv 5 \pmod{8}$,

where p and q are distinct prime numbers, and $\left(\frac{*}{*}\right)_4$ denotes the biquadratic residue symbol defined by $\left(\frac{2}{p}\right)_4 \equiv 2^{(p-1)/4} \pmod{p}$ and $\left(\frac{p}{2}\right)_4 = 1$ or -1 according as $p \equiv 1$ or $9 \pmod{16}$. Then the Iwasawa λ -invariant λ_k of the cyclotomic \mathbb{Z}_2 -extension of k is zero.

In this paper, we study the λ -invariant of the cyclotomic \mathbb{Z}_2 -extension of $k = \mathbb{Q}(\sqrt{pq})$ with $p \equiv 3 \pmod 8$, $q \equiv 1 \pmod 8$ and $\left(\frac{q}{p}\right) = -1$, where $\left(\frac{q}{p}\right)$ is the Legendre symbol. The first result of this paper is Theorem 2.1 which follows from Kida's formula (cf. [2]) and claims that the λ -invariant λ_k of the cyclotomic \mathbb{Z}_2 -extension k_∞ of k is zero or 2^m , where 2^m shall be defined in Theorem 2.1. The second result is Theorem 2.2 which shows that $\lambda_k = 0$ if $2^{(q-1)/4} \not\equiv 1 \pmod q$.

2. Notations and Theorems

We begin by explaining the notations. We denote by **Z** and **Q** the ring of rational integers and the field of rational numbers, respectively. For elements g_1, g_2, \dots, g_r of a group G, we denote by $\langle g_1, g_2, \dots, g_r \rangle$ the subgroup of G generated by g_1, g_2, \dots, g_r . For a finite algebraic extension K of k, (K:k) means the degree of K over k, $N_{K/k}$ means the norm mapping of K over k, and if K is a Galois extension over k, G(K/k) means the Galois group of K over K. If K is an algebraic number field, we denote by \mathfrak{O}_k and K0 the integer ring of K1 and the unit group of K2, respectively.

Let n be a non-negative integer, $a_n = 2\cos(2\pi/2^{n+2})$ and $\mathbf{Q}_n = \mathbf{Q}(a_n)$. Then $\mathbf{Q}_n \subset \mathbf{Q}_{n+1}$ by $a_{n+1} = \sqrt{2+a_n}$. It is well known that \mathbf{Q}_n is a cyclic extension of \mathbf{Q} of degree 2^n . This means that $\mathbf{Q}_{\infty} = \bigcup_{n=0}^{\infty} \mathbf{Q}_n$ is the unique \mathbf{Z}_2 -extension of \mathbf{Q} . For prime numbers p and q with $p \equiv 3 \pmod{8}$ and $q \equiv 1 \pmod{8}$, we put $k = \mathbf{Q}(\sqrt{pq})$, $k_n = k\mathbf{Q}_n$ and $k_\infty = k\mathbf{Q}_\infty$. Our main purpose is to prove the following theorems:

THEOREM 2.1. Let k and k_{∞} be as above. We assume $q \equiv 1 \pmod{2^{m+2}}$ and $q \not\equiv 1 \pmod{2^{m+3}}$. If the Legendre symbol $\left(\frac{q}{p}\right)$ is -1, then the Iwasawa λ -invariant λ_k of k_{∞} over k is zero or 2^m .

THEOREM 2.2. Let k and k_{∞} be as above. If $\left(\frac{q}{p}\right) = -1$ and if $2^{\frac{q-1}{4}} \not\equiv 1 \pmod{q}$, than the Iwasawa λ - invariant λ_k is zero.

3. Proof of Theorems 2.1 and 2.2

We first consider the norms of $2 - a_n$ and $-1 - a_n$.

LEMMA 3.1. We have $N_{k_n/k}(2-a_n) = 2$ and $N_{k_n/k}(-1-a_n) = -1$.

PROOF. Since $k_n = k(a_n) = k_{n-1}(\sqrt{2+a_{n-1}})$, we have $N_{k_n/k_{n-1}}(2-a_n) = (2-a_n)(2+a_n) = 2-a_{n-1}$ and $N_{k_n/k_{n-1}}(-1-a_n) = -1-a_{n-1}$. Hence we have $N_{k_n/k}(2-a_n) = N_{k_{n-1}/k}(2-a_{n-1}) = 2-a_0 = 2$ and $N_{k_n/k}(-1-a_n) = -1-a_0 = -1$.

Since a_n is an algebraic integer of k_n , the above lemma implies $2\mathfrak{D}_{\mathbf{Q}_n} = (2-a_n)^{2^n}\mathfrak{D}_{\mathbf{Q}_n} = (2+a_n)^{2^n}\mathfrak{D}_{\mathbf{Q}_n}$. Hence the ideal $(2-a_n)\mathfrak{D}_{\mathbf{Q}_n} = (2+a_n)\mathfrak{D}_{\mathbf{Q}_n}$ is the unique prime ideal of \mathbf{Q}_n lying above 2. Therefore the square of the prime ideal \mathfrak{L}_n of k_n lying above 2 is $(2-a_n)\mathfrak{D}_{k_n}$.

Now, let L_n be the 2-Hilbert class field of k_n . Since $\left(\frac{q}{p}\right) = -1$, and since $k(\sqrt{q})$ is the genus field of k, we have $L_0 = k(\sqrt{q})$. This shows that there exists an element α_0 of k such that $\mathfrak{L}_0 = \alpha_0 \mathfrak{D}_k$ because $q \equiv 1 \pmod{8}$.

The following proposition plays an important role in this paper:

PROPOSITION 3.2. The norm mapping N_{k_n/k_0} of the unit group E_{k_n} to E_{k_0} is surjective, namely $N_{k_n/k_0}(E_{k_n}) = E_{k_0}$.

PROOF. Let A_n be the 2-Sylow subgroup of the ideal class group of k_n , B_n the subgroup of A_n consisting of ideal classes invariant under the action of $Gal(k_n/k)$ and B'_n the subgroup of B_n consisting of ideal classes containing ideals invariant under the action of $Gal(k_n/k)$. Since the prime ideal \mathfrak{L}_n of k_n is the unique prime ideal of k_n ramifying in k_n over k, the cardinality of B'_n is

$$\frac{2}{(E_k:N_{k_n/k}(E_{k_n}))}\,,$$

where $(E_k: N_{k_n/k}(E_{k_n}))$ is the index of $N_{k_n/k}(E_{k_n})$ in E_k . Hence, if \mathfrak{L}_n is not principal in k_n , then $N_{k_n/k}(E_{k_n}) = E_k$. We assume that \mathfrak{L}_n is principal in k_n . Then there exists an element α_n of k_n with $\mathfrak{L}_n = \alpha_n \mathfrak{D}_{k_n}$, which means $\alpha_n^2/(2-a_n) \in E_{k_n}$. Since

$$N_{k_n/k}\left(\frac{\alpha_n^2}{2-\alpha_n}\right) = \frac{N_{k_n/k}(\alpha_n)^2}{2}$$

by Lemma 3.1, $N_{k_n/k}(\frac{\alpha_n^2}{2-\alpha_n})$ is an odd power of the fundamental unit of k because $\sqrt{2} \notin k$. Hence we have $N_{k_n/k}(E_{k_n}) = E_k$ by Lemma 3.1.

REMARK. We should note that the order of B_n and B'_n are 2 by Proposition 3.2.

COROLLARY 3.3. *let* \mathfrak{q} *be the prime ideal of* k *lying above* q. *If* \mathfrak{L}_n *is principal in* k_n , then $\mathfrak{q}\mathfrak{D}_{k_n}$ is not principal in k_n .

PROOF. For an ideal \mathfrak{a} of k_n , we denote by $\mathrm{cl}(\mathfrak{a})$ the ideal class of k_n containing the ideal \mathfrak{a} . We note $B'_n = \langle \mathrm{cl}(\mathfrak{L}_n), \mathrm{cl}(\mathfrak{q}\mathfrak{D}_{k_n}) \rangle$ by $\left(\frac{q}{p}\right) = -1$. Proposition 3.2 shows that the order of B'_n is 2. This implies that if \mathfrak{L}_n is principal in k_n , then $\mathfrak{q}\mathfrak{D}_{k_n}$ is not principal in k_n .

PROPOSITION 3.4. If there exists a positive integer n_0 such that \mathfrak{L}_{n_0} is not principal in k_{n_0} , then $\lambda_k = 0$

PROOF. We note $B_n = B'_n = \langle \operatorname{cl}(\mathfrak{L}_n) \rangle$ for any integer $n \geq n_0$ by proposition 3.2. Since $N_{k_n/k_{n_0}}(\mathfrak{L}_n) = \mathfrak{L}_{n_0}$, the norm mapping $N_{k_n/k_{n_0}}$ induces the isomorphism B_n onto B_{n_0} , which shows that the intersection of B_n and the kernel C_n of the norm mapping of A_n to A_{n_0} is trivial. This implies that C_n is trivial. Hence, since $N_{k_n/k_{n_0}}(A_n) = A_{n_0}$, A_n is isomorphic to A_{n_0} , which shows $\lambda_k = 0$.

COROLLARY 3.5. If there exists a positive integer n_0 such that $\mathfrak{q}\mathfrak{O}_{k_{n_0}}$ is principal, then $\lambda_k = 0$.

PROOF. If $\mathfrak{q}\mathfrak{O}_{k_{n_0}}$ is principal, then \mathfrak{L}_{n_0} is not principal in k_{n_0} by Proposition 3.2. Hence we have $\lambda_k = 0$ by Proposition 3.4.

In order to prove Theorem 2.1, we use the following lemma:

LEMMA 3.6. Let p be a prime number, G a p-group of order p^n , M a $\mathbb{Z}/p\mathbb{Z}[G]$ -module generated by an element m_0 of M and e the order of M. If $e < p^{p^n}$, then $\sum_{g \in G} gm_0 = 0$.

PROOF. We define a G-homomorphism φ of $\mathbb{Z}/p\mathbb{Z}[G]$ onto M by $\varphi(\sum_{g\in G}i_gg)=\sum_{g\in G}i_ggm_0$. The kernel $\operatorname{Ker}\varphi$ of φ is non-trivial by $e< p^{p^n}$. Hence $\operatorname{Ker}\varphi$ contains a non-trivial G-invariant element, which implies $\sum_{g\in G}g\in \operatorname{Ker}\varphi$.

For an algebraic extension F of \mathbb{Q} , we denote by P_F the group of principal ideals of F. We put

$$P_{k_{\infty}}^{G(k_{\infty}/\mathbf{Q}_{\infty})} = \{ (\alpha) \in P_{k_{\infty}} \mid (\alpha^{\sigma}) = (\alpha) \text{ for all } \sigma \in G(k_{\infty}/\mathbf{Q}_{\infty}) \}.$$

We note that the factor group $P_{k_{\infty}}^{G(k_{\infty}/\mathbf{Q}_{\infty})}/P_{\mathbf{Q}_{\infty}}$ is a vector space over the finite field $\mathbf{Z}/2\mathbf{Z}$. Let d be the dimension of the vector space $P_{k_{\infty}}^{G(k_{\infty}/\mathbf{Q}_{\infty})}/P_{\mathbf{Q}_{\infty}}$ over $\mathbf{Z}/2\mathbf{Z}$. Then we have

(1)
$$\lambda_k = \sum_{w \nmid 2} (e(w) - 1) - d$$

by Kida's formula for plus part given by Iwasawa (cf. [2, P. 287] and [1, Corollary 3.4]), where w ranges over all finite primes of k_{∞} which are prime to 2 and e(w) is the ramification index of w with respect to k_{∞} over \mathbb{Q}_{∞} .

PROOF OF THEOREM 2.1. It is suffcient to prove that if $\lambda_k \neq 0$ then $\lambda_k = 2^m$. Assume that $\lambda_k \neq 0$. Then $\operatorname{cl}(\mathfrak{q}\mathfrak{D}_{k_n})$ is non-trivial for any n > 0 by Corollary 3.5, especially for any $n \geq m$. Let h be the class number of \mathbf{Q}_m . We note that h is odd. Let $\mathfrak{q}_1, \dots, \mathfrak{q}_{2^m}$ be the prime ideals of k_n lying above \mathfrak{q} . Then the order of the $G(k_m/k)$ -module $\langle \operatorname{cl}(\mathfrak{q}_1^h), \dots, \operatorname{cl}(\mathfrak{q}_{2^m}^h) \rangle$ generated by $\operatorname{cl}(\mathfrak{q}_1^h), \dots, \operatorname{cl}(\mathfrak{q}_{2^m}^h)$ is 2^{2^m} by Lemma 3.6, which shows $P_{k_\infty}^{G(k_\infty/\mathbf{Q}_\infty)}/P_{\mathbf{Q}_\infty} = \langle (\sqrt{pq}\mathfrak{D}_{k_\infty})P_{\mathbf{Q}_\infty} \rangle$ because the 2-part of the ideal class group of \mathbf{Q}_∞ is trivial. This means d=1. Hence we have $\lambda_k = 2^m$ by (1).

From now on, we assume $2^{(q-1)/4} \not\equiv 1 \pmod{q}$. Since $q \equiv 1 \pmod{8}$, there exist positive integers r, s with $q = (r + s\sqrt{2})(r - s\sqrt{2})$. We put $q_1 = r + s\sqrt{2}$ and $q_2 = r - s\sqrt{2}$. Then there exist integers a, b, c, d with $q_1 = a + b\sqrt{2} + 4\sqrt{2}(c + d\sqrt{2})$, which shows $q = q_1q_2 \equiv a^2 - 2b^2 \pmod{16}$. Hence if $q \equiv 1 \pmod{16}$, then we have

(2)
$$q_i \equiv \pm 1, \pm (1 + \sqrt{2})^2 \pmod{4\sqrt{2}}$$

and if $q \equiv 9 \pmod{16}$, then we have

(3)
$$q_i \equiv \pm 3, \pm (1 + 2\sqrt{2}) \pmod{4\sqrt{2}}$$
.

Using class field theory, we can prove the following:

LEMMA 3.7. If $q \equiv 1 \pmod{16}$, then the ray class field $\mathbf{Q}_1 \pmod{q_i}$ of $\mathbf{Q}_1 \pmod{q_i}$ does not contain any quadratic extension of \mathbf{Q}_1 . If $q \equiv 9 \pmod{16}$, then $\mathbf{Q}_1 \pmod{q_i}$ contains a quadratic extension of \mathbf{Q}_1 .

PROOF. We first note

$$(2+\sqrt{2})^{\frac{q-1}{2}} = (\sqrt{2}(1+\sqrt{2}))^{\frac{q-1}{2}} = 2^{\frac{q-1}{4}}(1+\sqrt{2})^{\frac{q-1}{2}}.$$

We assume $q \equiv 1 \pmod{16}$. Then q splits completely in $\mathbf{Q}(a_2)$ which means $(2+\sqrt{2})^{\frac{q-1}{2}} \equiv 1 \pmod{q}$. This shows $(1+\sqrt{2})^{\frac{q-1}{2}} \equiv -1 \pmod{q}$ from $2^{\frac{q-1}{4}} \not\equiv 1 \pmod{q}$. Hence the ray class field $\mathbf{Q}_1 \pmod{q_i}$ does not contain any quadratic extension of \mathbf{Q}_1 by class field theory.

Now, we assume $q \equiv 9 \pmod{16}$. Then we have $(2+\sqrt{2})^{\frac{q-1}{2}} \equiv -1 \pmod{q}$, which implies $(1+\sqrt{2})^{\frac{q-1}{2}} \equiv 1 \pmod{q}$. Hence we obtain our assertion again by class field theory.

We refer to the following well known fact for our proof of Theorem 2.2:

LEMMA 3.8. (cf. [4, Exercise 9.3 in P. 183]) Let a be an element of \mathbf{Q}_1 which is prime to 2. Then there exists an element α of \mathbf{Q}_1 with $\alpha^2 \equiv a \pmod{4}$ if and only if $\mathbf{Q}_1(\sqrt{a})/\mathbf{Q}_1$ is unramified at all primes of \mathbf{Q}_1 above 2. Moreover there exists an element α of \mathbf{Q}_1 with $\alpha^2 \equiv a \pmod{4\sqrt{2}}$ if and only if all primes of \mathbf{Q}_1 above 2 split in $\mathbf{Q}_1(\sqrt{a})$ over \mathbf{Q}_1 .

PROOF OF THEOREM 2.2. We note that

(4)
$$\alpha^2 \equiv 1 \text{ or } 3 + 2\sqrt{2} \pmod{4\sqrt{2}}$$

for any element α in $\mathfrak{D}_{\mathbf{Q}_1}$ which is prime to 2. We assume $q \equiv 9 \pmod{16}$. The quadratic extension $\mathbf{Q}_1(\sqrt{q_i})$ of \mathbf{Q}_1 is contained in the ray class field of $\mathbf{Q}_1 \pmod{q_i}$ by Lemma 3.7, which means that all primes of \mathbf{Q}_1 above 2 are unramified in $\mathbf{Q}_1(\sqrt{q_i})$ over \mathbf{Q}_1 . This implies $q_i \equiv 1$, $3 + 2\sqrt{2} \pmod{4}$ by Lemma 3.8, which shows $q_i \equiv -3$, $-(1 + 2\sqrt{2}) \pmod{4\sqrt{2}}$ by (3). Moreover, $k_1(\sqrt{q_i})$ is an unramified quadratic extension of k_1 . Since \mathfrak{L}_1 does not split in $k_1(\sqrt{q_i})$ by Lemma 3.8 and (3), \mathfrak{L}_1 is not principal in k_1 . This shows $\lambda_k = 0$ by Proposition 3.4.

Now, we assume $q \equiv 1 \pmod{16}$. We have $q_i \equiv -1$, $-(3+2\sqrt{2}) \pmod{4\sqrt{2}}$ by Lemma 3.7, Lemma 3.8 and (2). This implies $pq_i \equiv -3$, $-(1+2\sqrt{2}) \pmod{4\sqrt{2}}$. Hence \mathfrak{L}_1 does not split in the unramified extension $k_1(\sqrt{pq_i})$ over k_1 , which shows that \mathfrak{L}_1 is not principal in k_1 . Hence we have $\lambda_k = 0$ by Proposition 3.4.

References

- [1] T. FUKUDA, K. KOMATSU, M. OZAKI and H. TAYA, On Iwasawa λ_p-invariants of relative real cyclic extensions of degree p, Tokyo J. Math. 20-2 (1997), 475–480.
- [2] K. IWASAWA, Riemann-Hurwitz formula and p-adic Galois representation for number fields, Tohoku Math. J. 33 (1981), 263–288.

- [3] M. OZAKI and H. TAYA, On the Iwasawa λ_2 -invariants of certain family of real quadratic fields, Manuscripta Math. **94** (1997), 437–444.
- [4] L. C. WASHINGTON, Introduction to Cyclotomic Fields, 2nd edition, Graduate Texts in Math., 83, Springer-Verlag, New York, Heidelberg, Berlin (1997).

Present Address:

DEPARTMENT OF MATHEMATICS, COLLEGE OF INDUSTRIAL TECHNOLOGY,

NIHON UNIVERSITY,

2-11-1 Shin-ei, Narashino, Chiba, Japan.

e-mail: fukuda@math.cit.nihon-u.ac.jp

DEPARTMENT OF MATHEMATICAL SCIENCE, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY,

3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

e-mail: kkomatsu@mse.waseda.ac.jp