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Partial Survival and Extinction of Species in Discrete
Nonautonomous Lotka-Volterra Systems

Yoshiaki MUROYA1

Waseda University

Abstract. In this paper, we consider the partial survival and extinction of species in model governed by the
following discrete model of nonautonomous Lotka-Volterra type:




Ni(p + 1) = Ni(p) exp{ci (p) −
n∑

j=1

m∑
l=0

al
ij (p)Nj (p − kl )} , p ≥ 0 , 1 ≤ i ≤ n ,

Ni(p) = Nip ≥ 0 , p ≤ 0 , and Ni0 > 0 , 1 ≤ i ≤ n ,

where each ci (p) and al
ij

(p) are bounded for p ≥ 0 and

m∑
l=0

( inf
p≥0

al
ii (p)) > 0 , al

ij (p) ≥ 0 , i ≤ j ≤ n , 1 ≤ i ≤ n , kl ≥ 0 , 0 ≤ l ≤ m .

To the above discrete system, we extend results on the principle of competitive exclusion in nonautonomous Lotka-
Volterra differential systems which has been established by Shair Ahmad (1999, Proceedings of the American Mathe-
matical Society 127, 2905–2910), that is, if the coefficients satisfy certain inequalities, then any solution with positive
components at some point will have all of its last n − 1 components tend to zero, while the first one will stabilize at
a certain solution of a discrete logistic equation.

1. Introduction

Consider the following nonautonomous Lotka-Volterra competitive differential system

x ′
i(t) = xi(t){ci(t) + pi(t) −

n∑
j=1

aij (t)xj (t)} , 1 ≤ i ≤ n , (1.1)

where aij (t) is continuous and bounded above and below by positive constants, ci(t) is con-

tinuous and T -periodic, pi(t) is continuous (not necessarily periodic) and |pi(t)| ≤ δie
−γi t ,

where δi and γi are positive constants. It is not assumed that the growth rate ci(t) is positive;

instead it is assumed that the average c̄i = 1
T

∫ t0+T

t0
ci(t)dt is positive for some t0 ≥ 0. To this
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differential system, Ahmad [2] showed that if for each i = 2, 3, · · · , n, there exist numbers
λi1, λi2, · · · , λi,i−1 ≥ 0, λi1 + λi2 + · · · + λi,i−1 > 0, such that

c̄i

aij (t)
<

λi1c̄1 + λi2c̄2 + · · · + λi,i−1c̄i−1

λi1a1j (t) + λi2a2j (t) + · · · , λi,i−1ai−1,j (t)
, for j = 1, 2, · · · , i , (1.2)

and t ≥ t0 for some t0, then, xi(t) → 0, 2 ≤ i ≤ n and x1(t) → x∗(t), where x∗ is the
unique positive solution of the logistic equation

x ′(t) = x(t){c1(t) − a11(t)x(t)} . (1.3)

Earlier, Gopalsamy [9,10] had studied the existence and stability of periodic solutions
for system (1.1) under the assumption that the growth rates are positive and periodic, and the
rest of the coefficients are positive constants with pi(t) ≡ 0, 1 ≤ i ≤ n. Alvarez and Lazer
[7] extended this result to the case where all the coefficients were assumed to be positive and
periodic (see also Tineo and Alvarez [18]). Ahmad [1] first extended principle of competitive
exclusion from autonomous systems to nonautonomous systems for two species, that is, under
some algebraic inequalities, there can be no coexistence of the two species; one of them will
be driven to extinction while the other will stabilize at a certain solution of a logistic equation.
Ahmad and Lazer [3, 4], Ahmad and Oca [6], Battauz and Zanolin [8], Ortega and Tineo
[15], Redheffer [16, 17], and Oca and Zeeman [14] have extended the result in Ahmad [1]
and obtained other similar studies. In particular, Oca and Zeeman [14] have shown that if
the coefficients are continuous and bounded above and below by positive constants, and if for
each i = 2, 3, · · · , n, there exists an integer ki such that

1 ≤ ki < i and
ciM

aijL

<
ckiL

akijM

, j = 1, 2, · · · , i , (1.4)

then xi(t) → 0 exponentially for 2 ≤ i ≤ n, and x1(t) → x∗(t), where x∗(t) is a certain
solution of a logistic equation. Here, as in earlier studies, given a function f (t), fM and fL

denote supt≥t0
f (t) and inft≥t0 f (t), respectively for some t0 ≥ 0. Note that the inequalities

(1.4) imply (1.2), since one can take λi1 = 1 and λij = 0 for 2 ≤ j ≤ i − 1.
For a fairly nice and detailed geometric interpretation of (1.4), the reader is referred to

[14]. Some of Ahmad and Lazer’s results in [3–5] were extended by the author to discrete
models in [11] and to cases with delays in [12]. Applying the similar techniques in [11, 12],
the author [13] gave some extentions of the result in Ahmad [2] to delay differential systems.

This paper is a discrete version of [13]. Motivated the above results, we extend results
for partial survival and extinction of species in Ahmad [2] to discrete nonautonomous Lotka-
Volterra systems.

Consider the following discrete model of nonautonomous Lotka-Volterra type.



Ni(p + 1) = Ni(p) exp{ci(p) −
n∑

j=1

m∑
l=0

al
ij (p)Nj (p − kl)} , p ≥ 0 ,

Ni(p) = Nip ≥ 0, p ≤ 0, and Ni0 > 0 , 1 ≤ i ≤ n ,

(1.5)
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where each ci(p) and al
ij (p) are bounded for p ≥ 0 and

m∑
l=0

(
inf
p≥0

al
ii(p)

)
> 0 , al

ij (p) ≥ 0 , i ≤ j ≤ n ,

1 ≤ i ≤ n , kl ≥ 0 , 0 ≤ l ≤ m .

(1.6)

Let



āi(p) =
m∑

l=0

al
ii (p) , āl

ii(p) ≡ 0 , āl
ij (p) = al

ij (p) , j �= i , 0 ≤ l ≤ m ,

āiL =
m∑

l=0

(
inf
p≥0

al
ii(p)

)
, āiM =

m∑
l=0

(
sup
p≥0

al
ii(p)

)
, ciL = inf

p≥0
ci(p) ,

ciM = sup
p≥0

ci(p) , āl−
ij (p) = min(0, āl

ij (p)) , āl+
ij (p) = max(0, āl

ij (p)) ,

b̄−
ijL =

m∑
l=0

(
inf
p≥0

āl−
ij (p)

)
, and b̄+

ijM =
m∑

l=0

(
sup
p≥0

āl+
ij (p)

)
, 1 ≤ i, j ≤ n ,

m[ci] = lim
p→∞ inf

{
1

p2 − p1

p2−1∑
q=p1

ci(q)

∣∣∣∣ 0 ≤ p1 < p2 and p2 − p1 ≥ p

}
,

and

M[ci] = lim
p→∞ sup

{
1

p2 − p1

p2−1∑
q=p1

ci(q)

∣∣∣∣ 0 ≤ p1 < p2 and p2 − p1 ≥ p

}
,

1 ≤ i ≤ n .

(1.7)

Note that b̄−
iiL = b̄+

iiM = 0 and ciL ≤ m[ci] ≤ M[ci] ≤ ciM, 1 ≤ i ≤ n.

Put


k̄ = max
0≤l≤m

kl ,

k̄i = max{kl | al
ii(p) �= 0, for some p ≥ 0, 0 ≤ l ≤ m}, 1 ≤ i ≤ n,

Ñ1 = c1M

ā1L

, N̄1 = Ñ1 exp(c1Mk̄1) ,

Ñi =
(

ciM −
i−1∑
j=1

b̄−
ijLN̄j

)/
āiL , N̄i = Ñi exp

{(
ciM −

i−1∑
j=1

b̄−
ijLN̄j

)
k̄i

}
,

2 ≤ i ≤ n − 1 ,

Ñn =
(

cnM −
n−1∑
j=1

b̄−
njLN̄j

)/
ānL , N̄n = Ñn exp

{(
cnM −

n−1∑
j=1

b̄−
njLN̄j

)
k̄n

}
,

(1.8)
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and assume

ciM −
i−1∑
j=1

b̄−
ijLN̄j > 0 , 1 ≤ i ≤ n . (1.9)

Then,

N̄i ≥ Ñi > 0 , 1 ≤ i ≤ n . (1.10)

The following theorems are our main results.

THEOREM 1.1 (Cf. Lemma 2.3 in Muroya [11]). For (1.7) and (1.8), assume (1.9).
Then, for solutions Ni(p), 1 ≤ i ≤ n of the system (1.5)–(1.6),

lim sup
p→∞

Ni(p) ≤ N̄i , 1 ≤ i ≤ n . (1.11)

Moreover, suppose that there exists a nonempty subset Q ⊂ {1, 2, · · · , n} such that

ciL −
∑
j �∈Q

b+
ijMN̄j > 0 , f or any i ∈ Q, (1.12)

then partial survival holds, that is,

lim inf
p→∞

∑
i∈Q

Ni(p) > 0 . (1.13)

THEOREM 1.2. For (1.7) and (1.8), assume (1.9) and (1.12). If there exist numbers
nd ∈ {1, 2, · · · , n − 1} and λr1, λr2, · · · , λr,i−1, r = n, n − 1, · · · , nd + 1, such that



lim inf
p→∞ {al

rj (p) −
r−1∑
i=1

λria
l
ij (p)} > 0 , 1 ≤ j ≤ n , 0 ≤ l ≤ m ,

cr(p) ≤
r−1∑
i=1

λrici(p) , r = n , n − 1 , · · · , nd + 1 , p ≥ 0 .

(1.14)

Then,

Ni(p) → 0 exponentially for i = n, n − 1, · · · , nd + 1 ,

and lim inf
p→∞

nd∑
i=1

Ni(p) > 0 .
(1.15)

In particular, if nd = 1, then

N1(p) → N∗(p) as p → ∞ , (1.16)

where N∗(p) is the unique positive solution of the discrete logistic equation

N(p + 1) = N(p) exp

{
c1(p) −

m∑
l=0

al
11(p)N(p − kl

11)

}
. (1.17)
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The organization of this paper is as follows. In Section 2, using the same techniques in
Ahmad and Lazer [1] and Muroya [11], we prove that (1.9) ⇒ (1.11), and (1.11) and (1.12)
⇒ (1.13), and (1.13) and (1.14) ⇒ (1.15) and in particular, if nd = 1, then (1.16) holds.

2. Partial survival and extinction of species

Consider the partial survival and extinction of species in discrete models governed by
nonautonomous Lotka-Volterra type (1.5) and (1.6).

We have a lemma.

LEMMA 2.1. For the system (1.5) and (1.6) and 1 ≤ i ≤ n,

Ni(p) = Ni(0) exp

( p−1∑
q=0

{
ci(q) −

n∑
j=1

m∑
l=0

al
ij (q)Nj (q − kl)

})
, p ≥ 0 , (2.1)

and every solutions Ni(p), 1 ≤ i ≤ n, exist and remain positive for all p ≥ 0.

PROOF. From (1.5), we have for any p ≥ 0,

Ni(p + 1) = Ni(p) exp

( p∑
q=0

{
ci(q) −

n∑
j=1

m∑
l=0

al
ij (q)Nj (q − kl)

})
= 0 , 1 ≤ i ≤ n ,

from which we get the conclusion. �

We have the following lemma (cf. Theorem 1 in Muroya [12]).

LEMMA 2.2. For (1.7) and (1.8), assume (1.9). Then, any solutions Ni(p), 1 ≤ i ≤ n

of the system (1.5) and (1.6), are bounded above and

lim sup
p→∞

Ni(p) ≤ N̄i , 1 ≤ i ≤ n . (2.2)

PROOF. If for some p ≥ 0, N1(p+1)−N1(p) ≥ 0, then by (1.5) and (1.6), there exists

a nonnegative integer l̄1p such that 0 ≤ l̄1p ≤ m and N1(p − kl̄1p
) ≤ c1M

ā1L
= Ñ1.

Because, if

min
0≤l≤m

N1(p − kl) >
c1M

ā1L

,

then

c1(p) −
n∑

j=1

m∑
l=0

al
1j (p)Nj (p − kl) ≤ c1M − ā1L( min

0≤l≤m
N1(p − kl)) < 0 ,

which implies N1(p + 1) < N1(p), by (1.5).

Therefore, by (2.1), N1(p+1) ≤ N1(p−kl̄1p
) exp(c1Mkl̄1p

) ≤ N̄1. Thus, if N1(p) > N̄1

for some p ≥ 0, then we have
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N1(p + 1) < N1(p) .

Now, let us consider the case that N1(p) is eventually decreasing and bounded below by N̄1.

Then, limp→∞ N1(p) exists. Set β = limp→∞ N1(p) − N̄1 ≥ 0. We will show that β = 0.
Indeed, suppose β > 0. Let take any positive constant η. Then, there exists p̃0 ≥ 0 such

that

β ≤ N1(q) − N̄1 ≤ β + η , for q ≥ p̃0 ,

since N1(p) − N̄1 eventually decreases to β. Thus, we have

N1(p + 1) ≤ N1(p) exp

{
c1M −

n∑
j=1

m∑
l=0

al
11(p)N1(p − kl)

}

≤ N1(p) exp(−ā1Lβ) , for p ≥ p̃1 ≡ p̃0 + k̄ .

Therefore, we have

N1(p + 1) ≤ N1(p̃1) exp

{
− β

p−1∑
q=p̃1

ā1L

}
,

which in turn implies, due to
∑∞

q=p̃1
ā1L = +∞, limp→∞ N1(p) = 0. This contradicts

N1(p) ≥ N̄1 + β > 0. Thus, limp→∞ N1(p) = N̄1.
Hence, we have

lim sup
p→∞

N1(t) ≤ N̄1 .

Then, for any fixed positive constant ε, there exists a constant p̄1 ≥ p̄0 = 0 such that N1(p) ≤
N̄1, for any p ≥ p̄1 − k̄.

Next, for some 2 ≤ i ≤ n, suppose inductively that for any fixed positive constant ε,
there exists a constant p̄i−1 ≥ p̄i−2 such that

Nj(p) ≤ N̄j + ε , for any p ≥ p̄i−1 − k̄ , 1 ≤ j ≤ i − 1 .

If for some p ≥ p̄i , Ni(p + 1) ≥ Ni(p), then there exists a nonnegative integer lip such

that 0 ≤ lip ≤ m and

Ni(p − klip
) ≤

{
ciM −

i−1∑
j=1

b̄−
ijL(N̄j + ε)

}/
āiL ≤ Ñi +

{(
−

i−1∑
j=1

b̄−
ijL

)/
āiL

}
ε.

Because, if

min
0≤l≤m

Ni(p − kl) >

(
ciM −

n∑
j=1

b̄−
ijL(N̄j + ε)

)/
āiL ,
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then

ci(p) −
n∑

j=1

m∑
l=0

al
ij (p)Nj (p − kl) ≤ ciM −

i−1∑
j=1

b̄−
ijL(N̄j + ε)

− āiL

(
min

0≤l≤m
(Ni(p − kl))

)
< 0 ,

which implies Ni(p + 1) < Ni(p), by (1.5).
Therefore, by (2.1),

Ni(p + 1) ≤ Ni(p − klip
) exp

{(
ciM −

i−1∑
j=1

b̄−
ijL(N̄j + ε)

)
klip

}

≤ N̄ε
i ≡

[
N̄i +

{(
−

i−1∑
j=1

b̄−
ijL

)/
āiM

}
ε exp

{(
ciM −

i−1∑
j=1

b̄−
ijLN̄j

)
klip

}]

× exp

{(
−

i−1∑
j=1

b̄−
ijL

)
εklip

}
.

Thus, if there exists a constant p̃i ≥ p̄i−1 such that Ni(p) > N̄ε
i for some p ≥ p̃i , then

Ni(p + 1) < Ni(p) .

If Ni(p) is eventually decreasing and bounded below by N̄ε
i . Then, as similar to the above

discussions of i = 1, we see lim
p→∞ Ni(p) = N̄ε

i .

Since ε > 0 is any positive constant, we have that by inductions of i = 1, 2, · · · , n,

lim sup
p→∞

Ni(p) ≤ N̄i , 1 ≤ i ≤ n .

This completes the proof. �

Now, we prove Theorems 1.1 and 1.2.

PROOF OF THEOREM 1.1. By assumptions to (1.5)–(1.6), there exist positive con-

stants γ , b̄l, 0 ≤ l ≤ m such that for i ∈ Q and p ≥ 0,

ciL −
∑
j �∈Q

b̄+
ijMN̄j > γ , and al

ij (p) ≤ b̄l , j ∈ Q, 0 ≤ l ≤ m .

By (1.7), it follows that for i ∈ Q and a sufficiently large integer p0 ≥ 0,

Ni(p + 1) ≥ Ni(p) exp

{
ci(p) −

∑
j �∈Q

m∑
l=0

al+
ij (p)Nj (p − kl) −

∑
j∈Q

m∑
l=0

al
ij (p)Nj (p − kl)

}
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≥ Ni(p) exp

{
γ −

m∑
l=0

b̄l

∑
j∈Q

Nj (p − kl)

}
, p ≥ p0 .

This shows that if

V (p) =
∑
j∈Q

Nj (p) ,

then

V (p + 1) ≥ V (p) exp

{
γ −

m∑
l=0

b̄lV (p − kl)

}
, p ≥ p0 . (2.3)

Now, suppose that lim infp→∞ V (p) = 0. Then, there exists a sequence {pq}∞q=1 such that

V (pq + 1) ≤ V (pq) , and lim
q→∞ V (pq) = 0 .

Since V (p) > 0 and for V ∗ = γ /(
∑m

l=0 b̄l) > 0,

V (p + 1) ≥ V (p) exp

{ m∑
l=0

b̄l(V
∗ − V (p − kl))

}
,

it holds that for each q ≥ 1, there exists an lq ∈ {0, 1, 2, · · · ,m} such that

V (pq − klq ) ≥ V ∗ .

Similar to (2.1), it follows from (2.3) that

V (pq) ≥ V (pq − klq ) exp

( pq−1∑
r=kq−klq

{
γ −

m∑
l=0

b̄lV (r − kl)

})
.

By Lemma 2.2 and assumptions, there is a positive constant V̄ such that for V (p) ≤ V̄ , p ≥ 0

and for k̄ = max0≤l≤m kl , we have that

V (pq) ≥ β ≡ V ∗ exp

(
k̄ min

{
γ −

m∑
l=0

b̄l V̄ , 0

})
> 0 , q ≥ 1 ,

which is a contradiction.
Therefore,

lim inf
p→∞ V (p) > 0 ,

and hence, (1.13) holds. �
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PROOF OF THEOREM 1.2. First, let us consider the case nd = n − 1 in (1.14). Eq.
(1.5) can be written as

ln

(
Ni(p + 1)

Ni(p)

)
= ci(p) −

n∑
j=1

m∑
l=0

al
ij (p)Nj (p − kl) , 1 ≤ i ≤ n − 1 , (2.4)

and

ln

(
Nn(p + 1)

Nn(p)

)
= cn(p) −

n∑
j=1

m∑
l=0

al
nj (p)Nj (p − kl) . (2.5)

Thus, similar to the proof of Theorem 3.1 in Ahmad [2], (2.5) and multiplying Eq. (2.4) by
λni and summing over 1 ≤ i ≤ n − 1, and subtracting, we obtain

ln

(
Nn(p + 1)

Nn(p)

)
−

n−1∑
i=1

λni ln

(
Ni(p + 1)

Ni(p)

)

=
(

cn(p) −
n−1∑
i=1

λnici(p)

)
−

m∑
l=0

n∑
j=1

(
al
nj (p) −

n−1∑
i=1

λnia
l
ij (p)

)
Nj (p − kl) ,

(2.6)

In view of Eqs. (1.13) and (1.14), there exist positive numbers α and β such that for p ≥ 0,



n∑
j=1

Nj (p − kl) ≥ α ,

al
nj (p) −

n−1∑
i=1

λnia
l
ij (p) ≥ β , 1 ≤ j ≤ n , 0 ≤ l ≤ m .

(2.7)

Then, for a constant γ = (m + 1)αβ > 0, one can write

ln

(
Nn(p + 1)

Nn(p)

)
−

n−1∑
i=1

λni ln

(
Ni(p + 1)

Ni(p)

)
≤ −β

m∑
l=0

n∑
j=1

Nj (p − kl) ≤ −γ , for p ≥ 0 .

(2.8)

Summating both sides from 0 to p − 1, we obtain

ln
Nn(p)

n−1∏
i=1

N
λni

i (p)

≤ −γp . (2.9)

Therefore,

Nn(p) ≤
( n−1∏

i=1

N
λni

i (p)

)
e−γp . (2.10)
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Since by (1.12), there is a positive constant δ such that 0 < Ni(p) ≤ δ for p ≥ 0, 1 ≤ i ≤
n − 1, it follows that Nn(p) → 0, exponentially, as p → ∞.

Next, we need to show that Ni(p) → 0 exponentially for i = 2, 3, · · · , n − 1. We
accomplish this by rewriting the system Eq. (1.5) as

Ni(p + 1) = Ni(p) exp

{
ci(p) −

n−1∑
j=1

m∑
l=0

al
ij (p)Nj (p − kl)

}
,

i = 1, 2, · · · , n − 1 . (2.11)

We note that the inequalities in (1.14) are independent of the smaller system Eq. (2.11) still
satisfy inequalities (1.14). Hence, applying the induction hypothesis to the smaller system
Eq. (2.11), it follows that for nd + 1 ≤ i ≤ n − 1, Ni(p) → 0 exponentially, as p → ∞.

Now, we need to show that the theorem holds for 1 ≤ i ≤ nd . For 1 ≤ i ≤ nd , similar
to the proof of Theorem 3.1 in Ahmad [2], the system (1.5) reduces to the following discrete
Lotka-Volterra smaller system

Ni(p + 1) = Ni(p) exp

{
ci(p) −

nd∑
j=1

m∑
l=0

al
ij (p)Nj (p − kl)

}
, 1 ≤ i ≤ nd . (2.12)

Hence, by Theorem 1.1, we obtain lim infp→∞
∑nd

i=1 Ni(p) > 0.
In particular, suppose that nd = 1. Then, by assumptions, we have that Q = {1}, (1.11)

and (1.13) hold. Thus, similar to the proof of Lemma 2.8 in Muroya [11], we can show that
N1(p) → N∗(p) as p → ∞, where N∗(p) is the unique positive solution of the discrete
logistic equation (1.17). The proof of theorem is now complete. �

Consider the system


Ni(p + 1) = Ni(p) exp{ci(p) −
n∑

j=1

m∑
l=0

al
ij (p)Nj (p − kl)} , p ≥ 0 ,

Ni(p) = Nip ≥ 0, p ≤ 0 , and Ni0 > 0 , 1 ≤ i ≤ n ,

(2.13)

where each al
ij (p) are bounded for p ≥ 0 and (1.6) holds. The growth rate ci(p) is bounded

but we do not assume ci(p) is positive; instead we assume that


c̄i = lim
p→∞

1

p

p−1∑
q=0

ci(q) > 0 , 1 ≤ i ≤ n exist

and Ri(p) =
p−1∑
q=0

(ci(q) − c̄i ) is bounded for p ≥ 0 .

(2.14)

If ci(p) = bi(p) + qi(p) and bi(p) is bounded and T -periodic, qi(p) is bounded (not
necessarily periodic) and |qi(p)| ≤ δie

−γip for p ≥ 0, where δi and γi are positive constants,
then (2.14) is satisfied (see Ahmad [2]).
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If ci(p) = c̄i + (p + 1)s and s < −1, then (2.14) is also satisfied.
Therefore, condition (2.14) is an extension of the case in Ahmad [2] to discrete cases.
We easily obtain the following lemma (see the proof of Lemma 2.2 in Ahmad [2]).

LEMMA 2.3. For the system (2.13), assume (2.14). Letting Qi(p) = eRi(p) and mak-
ing the transformation Ni(p) = Qi(p)Mi(p) in (2.13) leads to the system:

Mi(p + 1) = Mi(p) exp

{
c̄i −

n∑
j=1

m∑
l=0

āl
ij (p)Mj (p − kl)

}
, (2.15)

where the coefficients āl
ij (p) = al

ij (p)Q(p − kl) are bounded above and below by positive
constants.

Thus, by applying Theorem 1.1 to the system (2.15), we obtain the following corollary
(cf. Lemma 2.2 in Ahmad [2]).

COROLLARY 2.1. For system (2.13), assume (2.14). If col(N1(p),N2(p), · · · , Nn(p))

is a solution of (2.13) such that Ni(0) > 0, 1 ≤ i ≤ n, then there exist positive numbers δ

and ∆ such that δ ≤ ∑n
i=1 Ni(p) ≤ ∆ for all p ≥ 0.

PROOF. For the system (2.15), by (2.14), the corresponding conditions (1.9) and (1.11)
for Q = {1, 2, · · · , n} are satisfied. Thus, by Theorem 1.1, we obtain the conclusion of this
corollary. �

By Lemma 2.3, Corollary 2.1 and Theorem 1.2, we obtain the following corollary (cf.
Theorem 2.3 in Ahmad [2]).

COROLLARY 2.2. For the system (2.13), assume the condition (1.14) and (2.14) holds.
If col(N1(p),N2(p), · · · , Nn(p)) is any solution of (2.13) such that Ni(0) > 0, 1 ≤ i ≤ n,
then Ni(p) → 0 for i = 2, 3, · · · , n, and N1(p) → N∗(p) as p → ∞, where {N∗(p)}∞p=0 is

the unique positive solution of (1.17).
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