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Abstract. We give a correspondence among a Hamiltonian minimal Lagrangian cone in Cm, a Legendrian

minimal Legendrian submanifold in the unit sphere S2m−1(1) and a Hamiltonian minimal Lagrangian submanifold

in the complex projective space CPm−1. As an application of this result, we prove that a Hamiltonian minimal La-
grangian cone in Cm such that the first Betti number of its link is 0 must be a special Lagrangian cone. Moreover, we

construct Hamiltonian minimal (non-minimal) Lagrangian cones in C3 with a toroidal link, which are parametrized
by a triple of relatively prime positive integers (p, q, r), and discuss their Hamiltonian stabilities.

1. Introduction

The notion of special Lagrangian submanifolds in Cm was introduced by Harvey and
Lawson [2] as examples of calibrated submanifolds. Recently, motivated by physical prob-
lems mainly concerned with mirror symmetry (see e.g. [9]), special Lagrangian m-folds in Cm

have been studied by many mathematicians intensively. In particular, Haskins [3] constructed

many explicit examples of special Lagrangian cones in C3. His results were generalized and
extended by Joyce [4] to higher dimensional case.

In the meantime, Oh [5] introduced the notion of Hamiltonian minimal (H-minimal)
Lagrangian submanifolds and initiated the study of volume minimizations of Lagrangian sub-
manifolds under Hamiltonian deformations in Kähler manifolds. A Lagrangian submanifold
in a Kähler manifold is said to be H-minimal if the volume is stationary for compactly sup-
ported smooth variations arising from Hamiltonian deformations.

Inspired by these developments, we start the study of H-minimal Lagrangian cones in
Cm as a generalization of the notion of special Lagrangian cones in Cm. In the study of
special Lagrangian cones in Cm, a correspondence among a special Lagrangian cone in Cm,

a minimal Legendrian submanifold in S2m−1(1) and a minimal Lagrangian submanifold in

CPm−1 is fundamental and used effectively by Haskins in [3].
In this paper, first of all, we establish a correspondence between an H-minimal La-

grangian cone in Cm and an L-minimal Legendrian submanifold (see Section 3) in the unit

sphere S2m−1(1) (Theorem 4.1). Using this theorem and the classification of H-minimal
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Lagrangian cones in C2 obtained by Schoen and Wolfson [8, Section 7], we determine all

L-minimal Legendrian closed curves in S3(1). Moreover, we give a correspondence between
an L-minimal Legendrian submanifold in a Sasakian manifold and an H-minimal Lagrangian
submanifold in the corresponding Kähler manifold (Theorem 4.4). We apply these results
to proving that an H-minimal Lagrangian cone in Cm such that the first Betti number of its
link is 0 must be a special Lagrangian cone. Therefore, to obtain examples of H-minimal
Lagrangian cones which are not minimal, we must find cones of which links have non-zero
first Betti numbers. We shall construct H-minimal (non-minimal) Lagrangian cones in Cm

with a toroidal link. Finally, we examine the structure of these examples in detail in the case
where m = 3 and prove that there exists infinitely many Hamiltonian unstable H-minimal

Lagrangian cones with a flat torus link in C3.

2. H-minimal Lagrangian submanifolds in a Kähler manifold

In this section, we review some facts about H-minimal Lagrangian submanifolds in a
Kähler manifold. Let (Nm, J, 〈, 〉, ω) be a connected complex m-dimensional Kähler mani-
fold with complex structure J and Kähler form ω. Let Lm be a real m-dimensional connected
manifold. In this paper all manifolds, maps, etc. are supposed to be of class C∞. An immer-
sion l : Lm → Nm is said to be Lagrangian if l∗ω = 0. This condition is equivalent to the
condition that

J (l∗X) ⊥ l∗Y

for any vector fields X,Y ∈ Γ (T L) on L, that is, we have

Tl(p)N = l∗TpL ⊕ J (l∗TpL)

for any p ∈ L.
From now on, we assume that Lm is compact without boundary. Then we have the linear

isomorphism

ω̃ : Γ (T ⊥L) → Ω1(L) ,

V 	→ l∗(V �ω) =: αV

where T ⊥L denotes the normal bundle of the immersion l. This map is also isometric, i.e.,
we have

〈V,W 〉 = 〈αV , αW 〉
for any V,W ∈ Γ (T ⊥L).

DEFINITION 2.1 ([5]). A variational vector field V ∈ Γ (T ⊥L) of l is called Hamilton-
ian variation when αV is exact.

This condition implies that the infinitesimal deformation of l with variational vector field
V preserves the Lagrangian constraint. But the converse is not true in general.
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DEFINITION 2.2 ([5]). Let N be a Kähler manifold. A Lagrangian immersion l : L →
N is said to be H-minimal if it satisfies

d

dt
Vol(lt (L))

∣∣∣∣
t=0

= 0

for all smooth deformations φ = {lt }−ε≤t≤ε of l = l0 with Hamiltonian variation vector field
V .

The following two facts are used in Sections 4 and 5.

LEMMA 2.3 ([5]). Let (Nm,ω) be a Kähler manifold. A Lagrangian immersion l :
L → N is H-minimal if and only if the mean curvature vector H of l satisfies

δαH = 0 ,

where δ is the codifferential operator on L with respect to the induced metric.

COROLLARY 2.4 ([5]). Assume that (Nm,ω) is a Kähler-Einstein manifold and let l :
L → N be an H-minimal Lagrangian immersion. If H 1(L; R) = 0, then l : L → N must be
minimal.

Since we will treat Lagrangian cones in Cm later, we must consider the case where a
Lagrangian submanifold L is non-compact. In this case, an immersed Lagrangian submani-
fold is said to be minimal (resp. H-minimal) if the volume is critical for compactly supported
smooth (resp. Hamiltonian) variations. Then we have the same criterion as Lemma 2.3 states
for any open subset U of L such that its closure is compact in L.

3. L-minimal Legendrian submanifolds in a Sasakian manifold

Let (M2m−1, 〈, 〉; η, ξ, ϕ) be a connected (2m − 1)-dimensional Sasakian manifold with
contact form η, characteristic vector field ξ and structure tensor field ϕ. Let Lm−1 be an
(m − 1)-dimensional connected manifold. An embedding i : Lm−1 → M2m−1 is said to be
Legendrian if i∗η = 0. This condition implies that

i∗X ⊥ ξ

for any vector field X ∈ Γ (T L) on L, that is, we have

i∗TpL ⊂ Hi(p),∀p ∈ L ,

where H denotes the horizontal subbundle (Rξ)⊥ of T M . By Reckziegel’s results (see [7]),
the Legendrian embedding i has the following properties:

(i) i is anti-invariant, i.e., for any p ∈ L, we have

i∗TpL ⊥ ϕ(i∗TpL) .

(ii) The second fundamental form B̃ of i takes its values in H.
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(iii) If π : M → N is a canonical fibration of M , then π ◦ i : L → N is a Lagrangian

immersion into the Kähler manifold N and its second fundamental form is given by π∗B̃ .

From now on, we assume that Lm−1 is compact without boundary. Then we have the
following linear isomorphism

χ : Γ (T ⊥L) → C∞(L) ⊕ Ω1(L) ,

V 	→ (η(V ), α̃V )

where α̃V := −i∗(V �dη) and T ⊥L denotes the normal bundle of the embedding i. Moreover,
we have

〈V,W 〉 = η(V )η(W) + 〈α̃V , α̃W 〉
for any V,W ∈ Γ (T ⊥L) (cf. [6, Lemma 3.2]).

DEFINITION 3.1. A variational vector field V ∈ Γ (i∗(T M)) of i is called Legendrian

variation if V ⊥ = χ−1(η(V ⊥), d(η(V ⊥))).

This condition means that the infinitesimal deformation of i with variational vector field V

preserves the Legendrian constraint.
Next, we introduce the notion of Legendrian minimal (abbreviated as L-minimal) Legen-

drian submanifolds in a Sasakian manifold.

DEFINITION 3.2. Let (M2m−1, η) be a Sasakian manifold. A Legendrian embedding
i : L → M is said to be L-minimal if it satisfies

d

dt
Vol(it (L))

∣∣∣∣
t=0

= 0

for all smooth deformations φ = {it }−ε≤t≤ε of i = i0 with Legendrian variation vector field
V .

In virtue of the first variation formula for volume, the above condition is equivalent to the
condition that ∫

L

〈H̃ , V 〉dvol = 0

for all Legendrian variations V ∈ Γ (i∗(T M)). Here H̃ denotes the mean curvature vector

field of i defined by H̃ := trace B̃.
The Euler-Lagrange equation of this variational problem is given as follows.

LEMMA 3.3. Let (M2m−1, η) be a Sasakian manifold. Then a Legendrian embedding

i : L → (M, η) is L-minimal if and only if the mean curvature vector H̃ of i satisfies that

δα̃H̃ = 0 ,

where α̃H̃ = −i∗(H̃�dη) and δ is the codifferential operator on L with respect to the induced
metric from M .
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PROOF. By definition, a Legendrian embedding i : L → M is L-minimal if and only if

0 =
∫

L

〈H̃ , V 〉dvol

=
∫

L

η(H̃ )η(V ⊥)dvol +
∫

L

〈α̃H̃ , α̃V ⊥〉dvol

for all Legendrian variations V . Here V ⊥ denotes the normal component of V . Since i is

Legendrian, we obtain η(H̃ ) = 0 by the fact (ii). And the Legendrian constraint of the
normal variation V ⊥ implies that α̃V ⊥ = d

(
η(V ⊥)

)
. Hence, we have

0 =
∫

L

〈α̃H̃ , df 〉dvol =
∫

L

(δα̃H̃ )f dvol

for all smooth functions f ∈ C∞(L) on L, which is equivalent to

δα̃H̃ = 0 . �

4. H-minimal Lagrangian cones in Cm

In this section, we introduce the notion of H-minimal Lagrangian cones in the complex
Euclidean space Cm. We note that this object is first investigated by Schoen and Wolfson [8]
in the case where m = 2.

Let Ln be an n-dimensional closed connected manifold. Let i : Ln → S2m−1(1) be
an embedding of L into the unit sphere in Cm. We abuse the notation L also to denote the

embedded submanifold i(L) in S2m−1(1). The cone over L is defined as

C(L) = {tx|t ∈ [0,∞), x ∈ L} .

The intersection L of C = C(L) and S2m−1(1) is called the link of the cone C. In this
paper the link of a cone is supposed to be oriented. An H-minimal Lagrangian cone in Cm

is defined as a Lagrangian cone in Cm such that its volume is stationary for all compactly
supported Hamiltonian variations which leave the cone vertex fixed.

THEOREM 4.1. Let i : Lm−1 → S2m−1(1) ⊂ Cm be an embedding. Then C(L) is an
H-minimal Lagrangian cone in Cm if and only if L is an L-minimal Legendrian submanifold

in S2m−1(1).

PROOF. Let �x denote the position vector at a point x ∈ S2m−1(1). Let J be the standard

complex structure on Cm. Then ξx := −J �x (
x ∈ S2m−1(1)

)
forms a Killing vector field ξ on

S2m−1(1) and H := ξ⊥ defines a Sasakian structure (η, ξ, ϕ) on S2m−1(1) (see [1, p. 30–32]).

Then we see that C(L) − {0} is Lagrangian in Cm if and only if L is Legendrian in S2m−1(1).

Next, we relate the mean curvature vector H̃t of tL in the sphere S2m−1(t) of radius t

to the mean curvature vector HC(L) of C(L) in Cm at tx. This is accomplished by following
Simons’ argument (see [10, Proposition 6.1.1]) precisely. We fix our notation. We denote
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the Levi-Civita connections of tLm−1, S2m−1(t) and Cm by ∇,∇S and ∇̄, respectively. The

second fundamental form and the mean curvature vector field of tL in S2m−1(t) are denoted

by B̃t and H̃t , respectively. The second fundamental form of S2m−1(t) in Cm is denoted by

B̄t . For simplicity we denote H̃1 by H̃ . Let ν denote the unit radial vector field on C(L)

corresponding to the coordinate t . Then νx is an outer unit normal vector at x ∈ S2m−1(t).
Since νx is the velocity vector at x of the radial geodesic through x ∈ Cm − {0}, we have

∇̄νν = 0 .

Let {e1, · · · , em−1} be an orthonormal basis of TxL, x ∈ L ⊂ S2m−1(1). Extend them to
a local orthonormal frame {E1, · · · , Em−1} on L such that ∇Ei Ej (x) = 0 for any i, j . By
parallel translation in Cm, extend them up and down along radial geodesics, then we get a local

orthonormal frame {E1(x, t), · · · , Em−1(x, t), νtx} on C(L) − {0}. At tx ∈ tL ⊂ S2m−1(t),
we have

H̃t =
m−1∑
i=1

B̃t (Ei, Ei) =
m−1∑
i=1

(∇S
Ei

Ei − ∇Ei Ei)

=
m−1∑
i=1

(∇̄Ei Ei − B̄t (Ei, Ei))

=
m−1∑
i=1

(
∇̄Ei Ei + 1

t
〈Ei,Ei〉νtx

)

=
m−1∑
i=1

∇̄Ei Ei + m − 1

t
νtx .

Hence, we have

∇̄νν +
m−1∑
i=1

∇̄Ei Ei = H̃t − m − 1

t
ν . (1)

Because the normal component of the left hand side is nothing but the mean curvature vector
HC(L) of C(L) ⊂ Cm at tx, equation (1) yields

HC(L) = H̃t .

Consider the 1-form αHC(L)
= 〈JHC(L), ·〉 on C(L)−{0}. We calculate the codifferential

of αHC(L)
. Since HC(L) = H̃t = 1

t
H̃ , we have

δαHC(L)
= −

m−1∑
i=1

Ei(αHC(L)
(Ei)) − ν(αHC(L)

(ν))

= −
m−1∑
i=1

Ei〈JHC(L), Ei〉 − ν〈JHC(L), ν〉
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= 1

t

m−1∑
i=1

Ei〈H̃ , ϕEi〉 − ν

(
1

t
〈ϕH̃ , ν〉

)

= 1

t

m−1∑
i=1

Ei(dη(H̃ ,Ei))

= 1

t
δα̃H̃ , (2)

where the term 〈ϕH̃ , ν〉 vanishes because ϕH̃ ∈ H and therefore ϕH̃ is perpendicular to ν.
By Oh’s criterion (Lemma 2.3), Lemma 3.3 and equation (2) above, we conclude that

C(L) is H-minimal if and only if L is L-minimal. �

Here, we want to explain examples of H-minimal Lagrangian cones in C2 given by
Schoen and Wolfson [8, Section 7]. In the process of their study of area minimization problem
among Lagrangian surfaces in a Kähler surface, they completely classified admissible singu-
lar points of area minimizing Lagrangian surfaces. These singularities are locally modelled

by H-minimal Lagrangian cones in C2 (see [8, Theorem 7.1]).

THEOREM 4.2 (Schoen-Wolfson). All H-minimal Lagrangian cones C(γ ) in C2 are
the cones over the curves γ below.

γ (s) = 1√
p + q

(√
qe

√−1
√

p
q s

,
√−1

√
pe

−√−1
√

q
p s

)
, (3)

where s is an arc length parameter and 0 ≤ s ≤ 2π
√

pq . They are parameterized by a pair
of relatively prime positive integers (p, q).

So Theorem 4.1 yields the following immediately.

COROLLARY 4.3. All L-minimal Legendrian closed curves γ in S3(1) are given by the
equation (3). They are torus knots of type (p, q).

Next, we give a correspondence between an L-minimal Legendrian submanifold in a
Sasakian manifold and an H-minimal Lagrangian submanifold in the corresponding Kähler
manifold under the canonical fibration.

THEOREM 4.4. Let π : M → N be a canonical fibration of a Sasakian manifold

(M2m−1, η). If i : L → M is a Legendrian embedding of closed (m − 1)-dimensional
manifold L into M , then π◦i : L → N is a Lagrangian immersion. Moreover, the Legendrian
embedding i is L-minimal if and only if the Lagrangian immersion π ◦ i is H-minimal.

PROOF. The former part of this theorem is a well-known result and is nothing but the
fact (iii) in Section 3. We shall prove the latter part. By Lemma 3.3, the Legendrian embed-

ding i is L-minimal if and only if its mean curvature vector H̃ satisfies that

δα̃H̃ = 0 .



98 HIROSHI IRIYEH

The complex structure and the Kähler form of N are denoted by J and ω, respectively.
For horizontal vector fields X,Y ∈ Γ (H), we have

dη(X, Y ) = 〈X,ϕY 〉
= −〈ϕX, Y 〉
= −〈π∗ϕX,π∗Y 〉N
= −〈Jπ∗X,π∗Y 〉N
= −ω(π∗X,π∗Y )

= −π∗ω(X, Y ) ,

where 〈·, ·〉N denotes the Kähler metric on N . Using this formula and the fact (iii), we have

α̃H̃ = −i∗(H̃�dη)

= −dη(H̃ , i∗(·))
= π∗ω(H̃ , i∗(·))
= ω(π∗H̃ , (π ◦ i)∗(·))
= ω(H, (π ◦ i)∗(·))
= (π ◦ i)∗(H�ω)

= αH ,

where H denotes the mean curvature vector field of π ◦ i and αH ∈ Ω1(L) is defined for the
Lagrangian immersion π ◦ i : L → N .

Thus, by Lemma 2.3, we complete the proof. �

5. The comparison of H-minimal Lagrangian cones with special Lagrangian cones
in Cm

Harvey and Lawson proved in [2] that the notion of special Lagrangian submanifolds in
Cm is equivalent (up to the action by unitary groups) to oriented minimal Lagrangian subman-
ifolds. Of course, minimal Lagrangian submanifolds are H-minimal, but the converse is not
true in general. In this section, we give a sufficient condition for an H-minimal Lagrangian
cone in Cm to be minimal, i.e., a special Lagrangian cone. This is an easy consequence of our
main theorems.

PROPOSITION 5.1. Let C be an H-minimal Lagrangian cone in Cm. Let L be the link

of C, i.e., L = C ∩ S2m−1(1). If H 1(L; R) = 0, then C must be a special Lagrangian cone.

PROOF. By Theorem 4.1, the link L is an L-minimal Legendrian submanifold in

S2m−1(1). Let π : S2m−1(1) → CPm−1(4) be the Hopf fibration. Here CPm−1(4) denotes
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the (m − 1)-dimensional complex projective space with the Fubini-Study metric of constant

holomorphic sectional curvature 4. This is a canonical fibration of S2m−1(1) with the stan-
dard Sasakian structure. By Theorem 4.4, π(L) is a closed H-minimal immersed Lagrangian

submanifold in CPm−1(4). Since H 1(L; R) = 0, π(L) must be minimal by Corollary 2.4.

Hence, L and C = C(L) must be also minimal by the equations π∗H̃ = H and HC(L) =
H̃ . �

REMARK 5.2. As an easy application of the above proposition and the well-known

pinching result of minimal Lagrangian 2-sphere in CP 2 obtained by Yau (see [11, Theorem
7]), we can weaken the assumption of a theorem by Haskins (see [3, Theorem B]):

Let C be an H-minimal Lagrangian cone in C3 such that its link is a 2-sphere. Then C

must be a special Lagrangian 3-plane.

6. Examples: H-minimal Lagrangian cones in Cm with a toroidal link

As Proposition 5.1 implies, to obtain examples of H-minimal Lagrangian cones which
are not minimal, we must find cones of which links have non-vanishing first cohomology
groups with real coefficients. In this section, we construct many examples of H-minimal La-
grangian cones in Cm such that their links are flat tori. These examples are higher dimensional
analogues of Schoen-Wolfson’s examples.

Let p1, p2, · · · , pm be positive integers such that p1 ≤ p2 ≤ · · · ≤ pm and
gcd(p1, p2, · · · , pm) = 1. We consider the following m-dimensional torus in Cm:

S1
(√

p1∑m
i=1 pi

)
× · · · × S1

(√
pm∑m
i=1 pi

)
⊂ S2m−1(1) .

We denote by (z1, · · · , zm) the standard coordinates on Cm. Then we can parameterize it as

z1 =
√

p1∑m
i=1 pi

e

√−1

√ ∑m
i=1 pi
p1

θ1
, · · · , zm =

√
pm∑m
i=1 pi

e

√−1

√ ∑m
i=1 pi
pm

θm
, (4)

where each θj (j = 1, · · · ,m) is a real parameter and

0 ≤ θj ≤ 2π

√
pj∑m
i=1 pi

.

On this torus with coordinates (θ1, · · · , θm), the direction of the characteristic vector field
(which generates the Hopf action) is represented by

ξ :=
(√

p1∑m
i=1 pi

, · · · ,
√

pm∑m
i=1 pi

)
.
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The codimension one torus of the above torus, which is perpendicular to the direction ξ and

through the point (

√
p1/(

∑m
i=1 pi), · · · ,

√
pm/(

∑m
i=1 pi)) on Cm, is represented as follows:

T m−1
(p1,···,pm) :=

{
(z1, · · · , zm) satisfying (4)

∣∣∣∣
m∑

i=1

√
piθi = 2πl√∑m

i=1 pi

(l ∈ Z)

}

By definition, T m−1
(p1,···,pm) is an (m − 1)-dimensional Legendrian flat torus in S2m−1(1). The

image of T m−1
(p1,···,pm) by the Hopf fibration π : S2m−1(1) → CPm−1 is a Lagrangian flat torus

in CPm−1.

REMARK 6.1. Here we consider a moment map µ : CPm−1 → Rm−1

[z1 : · · · : zm] 	−→
( |z2|2∑m

i=1 |zi |2 , · · · , |zm|2∑m
i=1 |zi |2

)
,

which associates with the following isometric T m−1-action on CPm−1 :
(
e
√−1t1, · · · , e

√−1tm−1
) · [z1 : · · · : zm] = [z1 : e

√−1t1z2 : · · · : e
√−1tm−1zm] .

Then the image of π(T m−1
(p1,···,pm)) by this moment map µ corresponds to an inner rational point

of the following closed convex polytope in Rm−1 :

{
(q1, · · · , qm−1) ∈ Rm−1

∣∣∣∣
m−1∑
i=1

qi ≤ 1; qi ≥ 0, i = 1, · · · ,m − 1

}

More precisely,

µ(π
(
T m−1

(p1,···,pm)

)
) =

(
p2∑m
i=1 pi

, · · · , pm∑m
i=1 pi

)
∈ Qm−1 .

Since it is well-known that π(T m−1
(p1,···,pm)) is an H-minimal Lagrangian torus in CPm−1,

we obtain an H-minimal Lagrangian cone C(T m−1
(p1,···,pm)) in Cm by Theorems 4.1 and 4.4.

If (p2/(
∑m

i=1 pi), · · · , pm/(
∑m

i=1 pi)) �= (1/m, · · · , 1/m), then π(T m−1
(p1,···,pm)

) is not

minimal in CPm−1.
If (p2/(

∑m
i=1 pi), · · · , pm/(

∑m
i=1 pi)) = (1/m, · · · , 1/m), then we have

(p1, · · · , pm) = (1, · · · , 1) and π(T m−1
(1,···,1)) is minimal in CPm−1. This is the so-called Clif-

ford torus in CPm−1.
Therefore, we obtain many examples of non-minimal H-minimal Lagrangian cones in

Cm of which links are flat tori.
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7. A family of infinitely many Hamiltonian unstable H-minimal Lagrangian cones
in C3

In this section, we examine the structure of H-minimal Lagrangian cones in C3 with a
flat torus link. Let us review the description of the preceeding section:

C(T 2
(p,q,r)) :=

{
(tz1, tz2, tz3) ∈ C3

∣∣∣∣ t ≥ 0 , z1 =
√

p

p + q + r
e

√−1
√

p+q+r
p

θ1
,

z2 =
√

q

p + q + r
e

√−1
√

p+q+r
q θ2

, z3 =
√

r

p + q + r
e

√−1
√

p+q+r
r θ3 ,

√
pθ1 + √

qθ2 + √
rθ3 = 2πl√

p + q + r
(l ∈ Z)

}
,

where p, q, r are positive integers, p ≤ q ≤ r and gcd(p, q, r) = 1. We call it H-minimal
Lagrangian cone of type (p, q, r).

From now on, we concentrate our study on H-minimal Lagrangian cones of type (1, q, r).
It seems to me that the following parameterization of general case (p, q, r) is difficult.

We write down the second variation formula for H-minimal Lagrangian cone of type
(1, q, r) by using Oh’s formula (Theorem 7.3). So we must calculate the second fundamental
form and the mean curvature vector of it. First of all, we shall decide the structure of the
lattice of the link T 2

(1,q,r)
and give a parameterization along its lattice.

Consider R3 with the coordinate (θ1, θ2, θ3) above. Then we see that one edge of the

fundamental domain of T 2
(1,q,r) lies in the (θ1, θ2)-plane and another in the plane defined

by θ2 = 2π
√

q/(1 + q + r). A simple calculation shows that Z-basis of the lattice Γ =
Zv1 ⊕ Zv2 of T 2

(1,q,r) is given by the following two vectors:

v1 = 2π

√
q(1 + q)

1 + q + r

(√
q

1 + q
,−

√
1

1 + q
, 0

)
,

v2 = 2π

√
r(1 + r)

1 + q + r

(
−

√
r

1 + r
, 0,

√
1

1 + r

)
.

Any point on T 2
(1,q,r) = R2/Γ is represented by the coordinate (θ1, θ2, θ3) as

(√
q

1 + q
,−

√
1

1 + q
, 0

)
s1 +

(
−

√
r

1 + r
, 0,

√
1

1 + r

)
s2 ,

where s1 and s2 are arc length parameters and satisfy that

0 ≤ s1 ≤ 2π

√
q(1 + q)

1 + q + r
, 0 ≤ s2 ≤ 2π

√
r(1 + r)

1 + q + r
.
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Therefore, we have the following parameterization of C(T 2
(1,q,r)) ⊂ C3:

z1 =
√

1

1 + q + r
t e

√−1
√

1+q+r
1

(√
q

1+q s1−
√

r
1+r s2

)
,

z2 =
√

q

1 + q + r
t e

−√−1
√

1+q+r
q

(√
1

1+q s1

)
,

z3 =
√

r

1 + q + r
t e

√−1
√

1+q+r
r

(√
1

1+r s2

)
.

We denote the position vector of C
(
T 2

(1,q,r)

)
in C3 by P(t, s1, s2). Put

e1 := ∂P

∂t
, e2 := ∂e1

∂s1

(
= 1

t

∂P

∂s1

)
, e3 :=

∂e1
∂s2

− 〈 ∂e1
∂s2

, e2〉e2∥∥∥ ∂e1
∂s2

− 〈 ∂e1
∂s2

, e2〉e2

∥∥∥ ,

where 〈·, ·〉 (resp. ‖ · ‖) denotes the standard inner product (resp. norm) on C3 ∼= R6. Then

{e1, e2, e3} is an orthonormal frame on C(T 2
(1,q,r)). An easy calculation shows that

e1 = 1√
1 + q + r

×
(

e

√−1
√

1+q+r
1

(√
q

1+q s1−
√

r
1+r s2

)
,
√

qe
−√−1

√
1+q+r
q(1+q)

s1,
√

re

√−1
√

1+q+r
r(1+r)

s2

)
,

e2 =
√−1√
1 + q

(√
qe

√−1
√

1+q+r
1

(√
q

1+q s1−
√

r
1+r s2

)
,−e

−√−1
√

1+q+r
q(1+q)

s1, 0

)
,

e3 =
√−1√

(1 + q)(1 + q + r)

×
(

− √
re

√−1
√

1+q+r
1

(√
q

1+q s1−
√

r
1+r s2

)
,−√

qre
−√−1

√
1+q+r
q(1+q)

s1, (1 + q)e

√−1
√

1+q+r
r(1+r)

s2

)
,

and e3 is represented by ∂P
∂s1

and ∂P
∂s2

as

e3 = 1

t

(√
qr

1 + q + r

∂P

∂s1
+

√
(1 + q)(1 + r)

1 + q + r

∂P

∂s2

)
.

With respect to the orthonormal frame {e1, e2, e3}, the second fundamental form of H-
minimal Lagrangian cone of type (1, q, r) is as follows.

LEMMA 7.1. Let B be the second fundamental form of C
(
T 2

(1,q,r)

)
in C3. Then

Be1,e1 = Be1,e2 = Be1,e3 = 0 ,

Be2,e2 = 1

t

{√
1 + q + r

q(1 + q)
(q − 1)J e2 −

√
r

1 + q
J e3

}
,
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Be2,e3 = −1

t

√
r

1 + q
J e2 ,

Be3,e3 = 1

t

1 + q − r√
(1 + q)r

J e3 ,

where J denotes the standard complex structure on C3.

Hence, the mean curvature vector field H of C(T 2
(1,q,r)) in C3 is given by

H = 1

t

{√
1 + q + r

q(1 + q)
(q − 1)J e2 + 1 + q − 2r√

(1 + q)r
J e3

}
. (5)

Here, we want to explain the notion of Hamiltonian stability of H-minimal Lagrangian
submanifolds.

DEFINITION 7.2. Let N be a Kähler manifold. Suppose that a Lagrangian embedding
l : L → N is H-minimal. Then the Lagrangian embedding l (or Lagrangian submanifold L)
is said to be Hamiltonian stable if it satisfies that

d2

dt2 Vol(lt (L))

∣∣∣∣
t=0

≥ 0

for all smooth deformations φ = {lt }−ε≤t≤ε of l = l0 with Hamiltonian variation vector field
V .

The next theorem is the second variation formula for H-minimal Lagrangian submani-
folds possibly with boundary (see [5, Theorem 3.4] and [8, Theorem 6.4]).

THEOREM 7.3 (Oh). Let l : L → N be an H-minimal Lagrangian submanifold of a
Kähler manifold N . Let φ : (−ε, ε) × L → N be a smooth Hamiltonian variation of l = l0

with normal variation vector field V , which leaves the boundary fixed. Then

d2

dt2 Vol(lt (L))

∣∣∣∣
t=0

=
∫

L

{〈δαV , δαV 〉 − Ric(V , V ) + 〈V,H 〉2 − 2〈V,BJH,JV 〉}dvol ,

where αV = l∗(V �ω) is a closed 1-form on L, δ is the adjoint of d on L and Ric is the Ricci
curvature of N .

Next, we apply the second variation formula to Hamiltonian variations of the H-minimal

Lagrangian cone C
(
T 2

(1,q,r)

)
. For simplicity C(T 2

(1,q,r)) is denoted by C1,q,r . The following

proposition is easily verified by Lemma 7.1, equation (5) and Theorem 7.3.

PROPOSITION 7.4. Let V be a compactly supported Hamiltonian variation, V =
J∇f , f ∈ C∞

c (C1,q,r ), which leaves the cone vertex fixed. Then the second variation with
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variation vector field V is given by

d2

dt2
Vol(lt (L))

∣∣∣∣
t=0

=
∫

C1,q,r

(∆f )2 − 1

t4

(1 + q)(1 + r)

1 + q + r

×
{

1 − 2q + r

q

(
∂f

∂s1

)2

− 2(3qr − q − r − 1)√
qr(1 + q)(1 + r)

∂f

∂s1

∂f

∂s2
+ 1 + q − 2r

r

(
∂f

∂s2

)2 }
dvol .

(6)

Now we are ready to state and prove our main theorem in this section.

THEOREM 7.5. Let r be a positive integer and r ≥ 2. Then the H-minimal Lagrangian

cone of type (1, 1, r) in C3 is unstable for Hamiltonian variations fixing a neighborhood of
the cone vertex.

REMARK 7.6. The minimal Lagrangian cone of type (1, 1, 1) is nothing but a special

Lagrangian cone in C3. Hence, C1,1,1 is strictly (Hamiltonian) stable.

PROOF OF THEOREM 7.5. Our proof is based on Schoen-Wolfson’s method, but the
calculation is slightly complicated since in our case the link is not a curve but a surface.

Consider the following function on C1,1,r which is constant with respect to s2:

f (t, s1, s2) = ζ(t) cos

(√
2 + r

2
s1

)
, 0 ≤ s1 ≤ 2π

√
2

2 + r
,

where ζ(t) ∈ C∞
c (R+) is defined as follows:

ζ(t) =



δ(t) , 0 ≤ t ≤ ε

t , ε ≤ t ≤ 1
η(t) , 1 ≤ t

where η satisfies
• η has support on [1, 2];
• η(1) = 1, dη/dt (1) = 1, d2η/dt2(1) = 0;
• 0 ≤ η ≤ c, |dη/dt| ≤ c, |d2η/dt2| ≤ c for some constant c > 0;

and δ satisfies
• δ has support on [ε/2, ε];
• δ(ε) = ε, dδ/dt (ε) = 1, d2δ/dt2(ε) = 0;
• 0 ≤ δ ≤ ε, |dδ/dt| ≤ 4, |d2δ/dt2| ≤ 4/ε;

and ε is a real parameter satisfying 0 < ε < 1.
The Laplace-Beltrami operator on C1,1,r is given by

∆ = ∂2

∂t2 + 2

t

∂

∂t
+ 1

t2

2(1 + r)

2 + r

{
∂2

∂s2
1

+
√

2r

1 + r

∂2

∂s1∂s2
+ ∂2

∂s2
2

}
.
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Hence, we have

∆f = ∆ζ cos

(√
2 + r

2
s1

)
+ ζ∆ cos

(√
2 + r

2
s1

)

=
(

∂2ζ

∂t2
+ 2

t

∂ζ

∂t
− (1 + r)ζ

t2

)
cos

(√
2 + r

2
s1

)
.

By the second variation formula (6),

d2

dt2 Vol(lt (L))

∣∣∣∣
t=0

=
∫

C1,1,r

{(
∂2ζ

∂t2 + 2

t

∂ζ

∂t
− (1 + r)ζ

t2

)2

cos2
(√

2 + r

2
s1

)

− t−4(r2 − 1)ζ 2 sin2
(√

2 + r

2
s1

)}
dvol .

Since the volume element is calculated as

dvol =
√

2 + r

2(1 + r)
tdtds1ds2 ,

we have

d2

dt2 Vol(lt (L))

∣∣∣∣
t=0

= π
√

2r

∫ ∞

0

{(
∂2ζ

∂t2 + 2

t

∂ζ

∂t
− (1 + r)ζ

t2

)2 ∫ 2π

√
2

2+r

0
cos2

(√
2 + r

2
s1

)
ds1

− t−4(r2 − 1)ζ 2
∫ 2π

√
2

2+r

0
sin2

(√
2 + r

2
s1

)
ds1

}
tdt

= 2π2
√

r

2 + r

∫ ∞

0

{(
∂2ζ

∂t2
+ 2

t

∂ζ

∂t
− (1 + r)ζ

t2

)2

− t−4(r2 − 1)ζ 2
}
tdt . (7)

Using the function ζ defined above, (7) becomes three integrals:

2π2
√

r

2 + r

∫ ε

ε
2

{(
∂2δ

∂t2 + 2

t

∂δ

∂t
− (1 + r)δ

t2

)2

− t−4(r2 − 1)δ2
}
tdt

+ 2π2
√

r

2 + r

∫ 1

ε

(2 − 2r)
dt

t

+ 2π2
√

r

2 + r

∫ 2

1

{(
∂2η

∂t2
+ 2

t

∂η

∂t
− (1 + r)η

t2

)2

− t−4(r2 − 1)η2
}
tdt .

It is easy to check that the absolute value of the first integral is bounded by a constant
which depends on r but is independent of ε. The third integral is obviously bounded. The
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second integral equals

4π2
√

r

2 + r
(r − 1) log ε .

Therefore, for sufficiently small ε, the right hand side of equation (7) is negative. �

8. Open questions

Finally, we pose some problems related to this paper. We proved in Section 7 that H-

minimal Lagrangian cones in C3 of type (1, 1, r) (r ≥ 2) are Hamiltonian unstable. However,
the following problem still remains:

PROBLEM A. Determine all Hamiltonian stable H-minimal Lagrangian cones of type

(p, q, r) in C3.

We will investigate this problem in the future.
Another question we want to raise is concerned with the construction of H-minimal La-

grangian cones in C3 other than of type (p, q, r). Each cone of type (p, q, r) possesses

T 2-symmetry, so it is natural to consider the following problem:

PROBLEM B. Construct new examples of H-minimal Lagrangian cones in C3 with S1-
symmetries.

This problem was treated by Haskins [3] in the case of special Lagrangian cones.
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