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Abstract. Let (M, ω) be a symplectic manifold and L ⊂ M be a Lagrangian submanifold. In [Oh2], the cyclic
condition of L was defined. Y.-G. Oh proved that, in [Oh2], if (M, ω) is Kähler-Einstein with non-zero scalar curva-
ture and L is minimal, then L is cyclic. In this article, first, we prove that L is cyclic if and only if the “mean cuvature
cohomology class” of L is rational, when (M,ω) is Kähler-Einstein with non-zero scalar curvature. Secondly, we
see that there are non-cyclic minimal Lagrangian submanifolds when (M, ω) is a prequantizable Ricci-flat Kähler
manifold. Thirdly, if (M,ω) is Kähler-Einstein with non-zero scalar curvature, there are not minimal Lagrangian
fibration structures on M by a result of [Oh2]. Nevertheless we construct Hamiltonian minimal Lagrangian fibration.

1. Introduction

Let (M,ω) be a symplectic manifold. We define the period group Γω of (M,ω) as

Γω = {〈[ω], A〉|A ∈ H2(M; Z)} .

Following A. Weinstein [W], we call (M,ω) prequantizable if Γω is trivial or discrete. More-
over, when H1(M; Z) = 0, we call a Lagrangian submanifold L in M cyclic if

Γω,L = {〈[ω], B〉|B ∈ H2(M,L; Z)}
is a discrete subgroup of R. Note that Γω is a subgroup of Γω,L for any L.

One of the main theorems in [Oh2] is the following.

THEOREM 1.1 ([Oh2]). Let (M, J, ω) be a Kähler-Einstein manifold with non-zero
scalar curvature, H1(M; Z) = 0, and i : L ↪→ M be a Lagrangian submanifold with its
mean curvature vector H . Suppose that the one form αH = i∗(H�ω) on L is exact. Then L
is cyclic. Moreover, the following holds:

1. When L is orientable, then nL|γc1 .
2. When L is not orientable, then nL|2γc1 ,

where nL = γω/γω,L for Γω = γωZ, Γω,L = γω,LZ and Γc1 = γc1Z (c1 is the first Chern
class of (M, J )).
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For example, if (M, J, ω) is Kähler-Einstein with non-zero scalar curvature and
H1(M; Z) = 0, then minimal Lagrangian submanifolds are cyclic. In Section 2, as the gener-
alization of Theorem 1.1, we prove the following theorem.

THEOREM 1.2. Let (M, J, ω) be a Kähler-Einstein manifold with non-zero scalar cur-
vature, H1(M; Z) = 0, and i : L ↪→ M be a Lagrangian submanifold with its mean cur-
vature vector H . Then L is cyclic if and only if there is a positive integer γα,L such that

γα,L[αH ] ∈ Image(H 1(L; 2πZ) → H 1(L; R)), where we choose γα,L as the minimal inte-
ger which satisfies such condition. Moreover the following holds:

1. When L is orientable, then nL = lγα,L, where l is a divisor of γc1 .
2. When L is not orientable, then 2nL = lγα,L, where l is a divisor of 4γc1 .

In contrast with Theorem 1.1, if (M, J, ω) is prequantizable Ricci-flat Kähler, there are
non-cyclic minimal Lagrangian submanifolds.

THEOREM 1.3. Let (M, J, ω) be a prequantizable Ricci-flat K3 surface. Then one of
the following holds.

1. There are not embedded Lagrangian tori L with 0 �= [L] ∈ H2(M; Z).
2. There are non-cyclic minimal Lagrangian tori.

We can obtain such examples by considering special Lagrangian fibrations and their
action-angle coordinates.

On the other hand, if (M, J, ω) is Kähler-Einstein with non-zero scalar curvature, then
M cannot admit “(local) minimal Lagrangian fibration”, by Theorem 1.1 and an action-angle
coordinate of a (local) Lagrangian fibration. However we can see that “Hamiltonian minimal
Lagrangian fibration” is admissible. Here, a Lagrangian submanifold L in a Kähler mani-
fold (M, J, ω) is called Hamiltonian minimal if the first variation of volume is zero for all
Hamiltonian deformations of L.

THEOREM 1.4. Let (M, J, ω) be a compact Kähler manifold with its real dimension
2n. Suppose that we have an effective isometric Hamiltonian T n-action on M . Then any
connected regular fiber of the moment map is Hamiltonian minimal.

Note here that, E. Goldstein proved in [G] that there is a minimal regular fiber of the mo-
ment map, which maximizes volume among the fibers. Therefore, these fibers are examples
of non-minimal Hamiltonian minimal Lagrangian submanifolds.

2. Cyclic condition of Lagrangian submanifolds

In this section, we review the notion of the cyclic condition of Lagrangian submanifolds
(see [Oh2] or [W]). Let (M,ω) be a prequantizable symplectic manifold, namely, there exists
a non-negative number γω such that the period group Γω = {〈[ω], A〉|A ∈ H2(M; Z)} ⊂ R
of (M,ω) satisfies Γω = γωZ. It is well-known that if (M,ω) is prequantizable, then there is
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a complex line bundle E → M with a connection ∇ such that its curvature R∇ satisfies

R∇ = 2πi

γω

ω .

We call (E,∇) a prequantization bundle. In general, there are many equivalence classes of
such connections (see e.g [K]). However, if we suppose H1(M; Z) = 0, then there is an

unique equivalence class of connections which satisfies R∇ = 2πi
γω

ω and the holonomy of ∇
around a loop l ⊂ M is equal to

exp

(
2πi

γω

∫
S

ω

)
, (2.1)

where S ⊂ M is a surface with ∂S = l (see e.g. [K]).
Let i : L ↪→ M be a Lagrangian submanifold. Then (i∗E, i∗∇) is flat and we

have its holonomy homomorphism HolL : π1(L) → S1. We call L cyclic if the image

of HolL is cyclic in S1. Since L is Lagrangian, L is cyclic if and only if the subgroup
Γω,L = {〈[ω], B〉|B ∈ H2(M,L; Z)} of R is discrete.

Let (M, J, ω) be Kähler-Einstein with its Ricci form ρ = cω, c �= 0. In this case,
(M,ω) is prequantizable. Moreover if H1(M; Z) = 0, then the prequantization bundle (E,∇)

satisfies

(K,∇LC) =
{

(E⊗m,∇⊗m) (when c > 0) ,

((E∗)⊗m, (∇∗)⊗m) (when c < 0) ,
(2.2)

where K is the canonical bundle of M , ∇LC is the connection on K induced from the Levi-
Civita connection and m satisfies {〈c1(M),A〉|A ∈ H2(M; Z)} = mZ.

LEMMA 2.1. Let (M,ω) be a Kähler manifold and ι : L ↪→ M be a Lagrangian
submanifold.

1. If L is orientable, then the holonomy of (ι∗K, ι∗∇LC) along a loop γ ⊂ L is
exp(i

∫
γ αH ), where H is the mean curvature vector of ι and αH = ι∗(H�ω).

2. If L is not orientable, then the holonomy of (ι∗K⊗2, ι∗∇⊗2
LC) along a loop γ ⊂ L is

exp(2i
∫
γ αH ).

PROOF. If L is orientable, then there is the non-vanishing section Ω of ι∗K , which is
the complex extension of the volume form of L. By Proposition 2.2 in [Oh2], the connection
form with respect to this trivialization is iαH . Hence 1. is proved. The proof of non-orientable
case is similar. �

PROOF OF THEOREM 1.2. Since the proof for the case c < 0 is similar, we prove the
theorem only for the case c > 0. Let L be a cyclic Lagrangian submanifold in M . Then we
have, for any loop γ ⊂ L,

(Hol(γ ))nL = 1 , (2.3)
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where Hol is the holonomy of (ι∗E, ι∗∇) and nL = γω

γω,L
.

On the other hand, by (2.2) and Lemma 2.1, we have the following.{
If L is orientable, then (Hol(γ ))γc1 = exp(i

∫
γ

αH ) .

If L is non-orientable, then (Hol(γ ))2γc1 = exp(2i
∫
γ

αH ) .
(2.4)

Hence, by (2.3) and (2.4), we have the following.{
If L is orientable, then nL[αH ] ∈ Image(H 1(L; 2πZ) → H 1(L; R)) .

If L is non-orientable, then 2nL[αH ] ∈ Image(H 1(L; 2πZ) → H 1(L; R)) .
(2.5)

Conversely, suppose that there is the positive integer γα,L such that γα,L[αH ] ∈
Image(H 1(L; 2πZ) → H 1(L; R)) for a Lagrangian submanifold L. Here, we choose γα,L

as the minimal integer which satisfies the condition above. Then the following holds;

exp

(
iγα,L

∫
γ

αH

)
= 1 (2.6)

for any loop γ ⊂ L. Hence, by (2.2), (2.6) and Lemma 2.1, we have the following.{
If L is orientable, then (Hol(γ ))γα,Lγc1 = 1 .

If L is non-orientable, then (Hol(γ ))2γα,Lγc1 = 1 .
(2.7)

Thus L is cyclic.
Moreover, when L is orientable, there are non-zero integers l and l′ such that lγα,L = nL

and γα,Lγc1 = l′nL, by (2.5) and (2.7). Hence γc1 = ll′ and lγα,L = nL. The proof for the
case L is non-orientable is similar. �

If (M, J, ω) is Ricci-flat, there is not the relationship between the prequantization bundle
of (M,ω) and the canonical bundle of (M, J ). Hence it is an interesting question that whether
minimal Lagrangian submanifolds in Ricci-flat (M, J, ω) are cyclic. In the next section, we
see that there are non-cyclic minimal Lagrangian submanifolds in K3-surfaces.

3. Lagrangian fibrations

To construct examples of non-cyclic minimal Lagrangian submanifolds in a Ricci-flat
Kähler manifold, we use Lagrangian fibrations and their action-angle coordinates. Since we
only use a local fibration structure, if we say “π : M → B is a Lagrangian fibration”, then it
may admit singular fibers.

Let (M2n, ω) be a symplectic manifold which has a Lagrangian fibration π : M → Bn.
It is well-known that a compact connected regular fiber π−1(b0) is a Lagrangian torus and

that there is an action-angle coordinate of an open neighborhood of π−1(b0) as follows (see
e.g. [A], [D]);
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there is an open neigborhood U of π−1(b0) in M and a diffeomorphism

(a, α) : U → V × T n

with V open in Rn, such that a = χ ◦ π for some diffeomorphism χ : π(U) → V and

ω =
n∑

j=1

dαj ∧ daj on U .

We can construct the map χ = (χ1, · · · , χn) : π(U) → V as follows. Let γi(b), i = 1, · · · , n,

be loops in π−1(b), depending smoothly on b ∈ π(U), such that their homology classes form

a basis in H1(π
−1(b); Z). Then we define the maps

χi(b) =
∫

γi(b)

θ ,

where θ is an 1-form on U such that ω = dθ on U .

PROPOSITION 3.1. Let (M,ω) be a prequantizable symplectic manifold with
H1(M; Z) = 0. Suppose that (M,ω) has a Lagrangian torus fibration π : M → B. If
π−1(b0) is a cyclic regular fiber, then π−1(b) is not cyclic for almost all b ∈ B near b0.

PROOF. Let π−1(b0) be a cyclic regular fiber and (a, α) : U → V × T n be an action-
angle coordinate around π−1(b0). There are tubes Σi(b) ⊂ U connecting the loops γi(b0)

with γi(b) such that the action coordinate is

a(b) = a(b0) +
( ∫

Σ1(b)

ω, · · · ,
∫

Σn(b)

ω

)
.

By the definition of the cyclic condition, we see that π−1(b), if it is regular orbit, is cyclic if
and only if a(b) − a(b0) ∈ (γωQ)n. �

By Proposition 3.1, there are not cyclic Lagrangian fibrations, even locally. Hence, by
Theorem 1.1, we have the following corollary.

COROLLARY 3.2. Let (M, J, ω) be Kähler-Einstein with non-zero scalar curvature
and H1(M; Z) = 0. Then there are not minimal Lagrangian torus fibration structures of M ,
even locally.

On the other hand, it is well-known that there are Ricci-flat Kähler manifolds which have
“special Lagrangian fibrations”. Here we recall special Lagrangian submanifolds (see [HL]).

Let (X, J ) be an n-dimensional Calabi-Yau manifold with a Ricci-flat Kähler metric g ,
Kähler form ω, and holomorphic n-form Ω . An n-dimensional real submanifold ι : L ↪→ X

is special Lagrangian if ι∗ω = 0 and ι∗(ImΩ) = 0. Any special Lagrangian submanifold is
homologically volume minimizing in X, i.e., Vol(L) ≤ Vol(L′) for any submanifold L′ ⊂ X

such that [L] = [L′] ∈ Hn(X; Z). Hence special Lagrangian submanifolds are minimal.
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Next, we see examples of prequantizable Ricci-flat Kähler manifolds with special La-
grangian fibrations. By Proposition 3.1, generic fibers of such fibrations are non-cyclic mini-
mal Lagrangian submanifolds.

Example(K3 surface) Let (M, J ) be a K3-surface with a Ricci-flat Kähler metric g ,
Kähler form ω, and holomorphic n-form Ω . In [Gr], it was proved that (M, J, ω) has special

Lagrangian fibration if and only if there is a nonzero cohomology class E ∈ H 2(M; Z) such
that E · E = 0 and [ω] · E = 0 by using hyperKähler trick. Therefore, by using Proposition
3.1, Theorem 1.3 holds.

PROOF OF THEOREM 1.3. Suppose that there is an embedded Lagrangian torus L with
0 �= [L] ∈ H2(M; Z). Note that, since L is a Lagrangian embedded torus, the normal bundle

NL is trivial. Hence [L] · [L] = 0. Then the Poincaré dual E = P.D.([L]) ∈ H 2(M; Z)

of [L] satisfies the conditions E · E = 0 and [ω] · E = 0. Hence (M, J, ω) has a special
Lagrangian fibration. �

4. Hamiltonian minimal Lagrangian fibrations

In the previous section, we saw that, if (M, J, ω) is a prequantizable Kähler-Einstein
manifold with non-zero scalar curvature, then (M, J, ω) admits no minimal Lagrangian fi-
bration, even locally. Nevertheless, in this section, we will see that there are Hamiltonian
minimal Lagrangian fibrations.

First, we recall the Hamiltonian minimality of Lagrangian submanifolds in a Kähler man-
ifold (M, J, ω) (see [Oh1]). Let (M, J, ω) be a Kähler manifold, L ⊂ M be a Lagrangian
submanifold and V be a normal variation vector along L. Since L is Lagrangian, we can
regard (V �ω)|L as an 1-form on L. If (V �ω)|L is exact, V is called a Hamiltonian variation
vector. A smooth family {ιt } of embeddings of L into M is called a Hamiltonian deformation,
if its derivative is Hamiltonian. Note that Hamiltonian deformations leave Lagrangian sub-
manifolds Lagrangian. We say that a Lagrangian submanifold is Hamiltonian minimal, if the
first variation of volume is zero for all Hamiltonian deformations of L. In [Oh1], Oh proved
the following proposition.

PROPOSITION 4.1. Let (M, J, ω) be a Kähler manifold. A Lagrangian submanifold
i : L ⊂ M is Hamiltonian minimal if and only if its mean curvature vector H satisfies

δ(i∗(H�ω)) = 0

on L where δ is the adjoint of d on L with respect to the induced metric from M .

PROOF OF THEOREM 1.4. Let (M,ω) be a real 2n-dimensional compact Kähler man-
ifold, which has an effective isometric Hamiltonian T n-action and i : L ↪→ M be a regular
connected fiber of the moment map. Note that L is an orbit of the torus action. This theorem
is proved by the following lemmas. �

LEMMA 4.2. The 1-form αH = i∗(H�ω) on L is T n-invariant.
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PROOF. Let h ∈ T n. We write the action of h on M and L as mM,h : M → M and
mL,h : L → L respectively. Note that these maps are isometries, here the metric on L is
induced metric, and mM,h ◦ i = i ◦ mL,h for any h ∈ T n. Hence we have the invariance of
the mean curvature vector H ;

(mM,h)∗H =
n∑

j=1

(mM,h)∗(∇̄i∗ej i∗ej − i∗(∇ej ej ))

=
n∑

j=1

(∇̄(mM,h)∗i∗ej
(mM,h)∗i∗ej − (mM,h)∗i∗(∇ej ej ))

=
n∑

j=1

(∇̄i∗(mL,h)∗ej
i∗(mL,h)∗ej − i∗(∇(mL,h)∗ej

(mL,h)∗ej ))

= H ,

where {e1, · · · , en} is an orthonormal basis of TxL, ∇̄ and ∇ are the Levi-Civita connections
on M and L respectively. By the definition of αH , we have

(m∗
L,hαH )(X) = ω(H, i∗(mL,h)∗X)

= ω(H, (mM,h)∗i∗X)

= ω((mM,h−1)∗H, i∗X)

= ω(H, i∗X)

= αH (X) ,

where X is a vector field on L. �

Since L � T n and the induced metric on L is T n-invariant, the following lemma is
well-known (see e.g [H]).

LEMMA 4.3. Let g be the induced metric on L. A p-form β on L is harmonic with
respect to g if and only if β is T n-invariant.

Therefore, by Proposition 4.1, Lemma 4.2 and Lemma 4.3, the proof of Theorem 1.4 has
finished.
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