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Abstract. Let (M, ®) be a symplectic manifold and L C M be a Lagrangian submanifold. In [Oh2], the cyclic
condition of L was defined. Y.-G. Oh proved that, in [Oh2], if (M, ) is Kdhler-Einstein with non-zero scalar curva-
ture and L is minimal, then L is cyclic. In this article, first, we prove that L is cyclic if and only if the “mean cuvature
cohomology class” of L is rational, when (M, w) is Kéhler-Einstein with non-zero scalar curvature. Secondly, we
see that there are non-cyclic minimal Lagrangian submanifolds when (M, w) is a prequantizable Ricci-flat Kéhler
manifold. Thirdly, if (M, w) is Kdhler-Einstein with non-zero scalar curvature, there are not minimal Lagrangian
fibration structures on M by a result of [Oh2]. Nevertheless we construct Hamiltonian minimal Lagrangian fibration.

1. Introduction
Let (M, w) be a symplectic manifold. We define the period group I, of (M, w) as
Iy = {{[w], A)|A € Ha(M; Z)} .

Following A. Weinstein [W], we call (M, w) prequantizable if I}, is trivial or discrete. More-
over, when H{(M; Z) = 0, we call a Lagrangian submanifold L in M cyclic if

I, = {(lw], B)|B € Hy(M, L; Z)}

is a discrete subgroup of R. Note that I, is a subgroup of I, 1 for any L.
One of the main theorems in [Oh2] is the following.

THEOREM 1.1 ([Oh2]). Let (M, J, w) be a Kdihler-Einstein manifold with non-zero
scalar curvature, H{(M;Z) = 0, and i : L — M be a Lagrangian submanifold with its
mean curvature vector H. Suppose that the one form oy = i*(H aw) on L is exact. Then L
is cyclic. Moreover, the following holds:

1. When L is orientable, then ny |y,,.

2. When L is not orientable, then ny|2y.,,
where np = Vo /Yo,L for I'y, = Vol, I'n,L = Yo,1Z and I, = y¢,Z (c1 is the first Chern
class of (M, J)).
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For example, if (M, J, w) is Kéhler-Einstein with non-zero scalar curvature and
Hi(M; Z) = 0, then minimal Lagrangian submanifolds are cyclic. In Section 2, as the gener-
alization of Theorem 1.1, we prove the following theorem.

THEOREM 1.2. Let (M, J, w) be a Kdiihler-Einstein manifold with non-zero scalar cur-
vature, H{(M;Z) = 0, and i : L ~— M be a Lagrangian submanifold with its mean cur-
vature vector H. Then L is cyclic if and only if there is a positive integer vy 1 Such that
Ya.Llog] € Image(H1 (L;27Z) — HY(L;R)), where we choose Ya,L as the minimal inte-
ger which satisfies such condition. Moreover the following holds:

1. When L is orientable, then ny = lyy. 1., where l is a divisor of y,.

2. When L is not orientable, then 2n;, = lyy, 1., where | is a divisor of 4y,.

In contrast with Theorem 1.1, if (M, J, w) is prequantizable Ricci-flat Kéhler, there are
non-cyclic minimal Lagrangian submanifolds.

THEOREM 1.3. Let (M, J, w) be a prequantizable Ricci-flat K3 surface. Then one of
the following holds.

1. There are not embedded Lagrangian tori L with 0 # [L] € Hy(M; Z).

2. There are non-cyclic minimal Lagrangian tori.

We can obtain such examples by considering special Lagrangian fibrations and their
action-angle coordinates.

On the other hand, if (M, J, w) is Kihler-Einstein with non-zero scalar curvature, then
M cannot admit “(local) minimal Lagrangian fibration”, by Theorem 1.1 and an action-angle
coordinate of a (local) Lagrangian fibration. However we can see that “Hamiltonian minimal
Lagrangian fibration” is admissible. Here, a Lagrangian submanifold L in a Kéhler mani-
fold (M, J, w) is called Hamiltonian minimal if the first variation of volume is zero for all
Hamiltonian deformations of L.

THEOREM 1.4. Let (M, J, w) be a compact Kdhler manifold with its real dimension
2n. Suppose that we have an effective isometric Hamiltonian T"-action on M. Then any
connected regular fiber of the moment map is Hamiltonian minimal.

Note here that, E. Goldstein proved in [G] that there is a minimal regular fiber of the mo-
ment map, which maximizes volume among the fibers. Therefore, these fibers are examples
of non-minimal Hamiltonian minimal Lagrangian submanifolds.

2. Cyclic condition of Lagrangian submanifolds

In this section, we review the notion of the cyclic condition of Lagrangian submanifolds
(see [Oh2] or [W]). Let (M, w) be a prequantizable symplectic manifold, namely, there exists
a non-negative number y,, such that the period group I, = {{[w], A)|A € Ha(M;Z)} C R
of (M, w) satisfies I',, = y,,Z. It is well-known that if (M, w) is prequantizable, then there is
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a complex line bundle £ — M with a connection V such that its curvature Ry satisfies

2mi
Ry = —o.
Yo
We call (E, V) a prequantization bundle. In general, there are many equivalence classes of

such connections (see e.g [K]). However, if we suppose Hi(M;Z) = 0, then there is an
unique equivalence class of connections which satisfies Ry = %a) and the holonomy of V

w

exp <E/w) , 2.1
Yo JS

where § C M is a surface with 0§ = [ (see e.g. [K]).
Leti : L < M be a Lagrangian submanifold. Then ((*E,i*V) is flat and we

around a loop ! C M is equal to

have its holonomy homomorphism Hol; : (L) — S!'. We call L cyclic if the image
of Holy is cyclic in S'. Since L is Lagrangian, L is cyclic if and only if the subgroup
I'y . = {{[w], B)|B € Hy(M, L; Z)} of R is discrete.

Let (M, J, w) be Kihler-Einstein with its Ricci form p = cw, ¢ # 0. In this case,
(M, w) is prequantizable. Moreover if Hy(M; Z) = 0, then the prequantization bundle (E, V)
satisfies

(K. Vi) = (E®m vem) (when c > 0), 22)
e ((E*)®™ (V*)®m)  (whenc < 0), ’

where K is the canonical bundle of M, V¢ is the connection on K induced from the Levi-
Civita connection and m satisfies {{c{ (M), A)|A € Hy(M; Z)} = mZ.

LEMMA 2.1. Let (M, w) be a Kdhler manifold and « : L — M be a Lagrangian
submanifold.
1. If L is orientable, then the holonomy of (\*K,*Vic) along a loop vy C L is
exp(i fy ap), where H is the mean curvature vector of L and ag = 1*(H _w).

2. If L is not orientable, then the holonomy of (1*K ®2, L*V?C%) along aloopy C L is
exp(2i fV am).

PROOF. If L is orientable, then there is the non-vanishing section §2 of (* K, which is

the complex extension of the volume form of L. By Proposition 2.2 in [Oh2], the connection

form with respect to this trivialization is i« gy. Hence 1. is proved. The proof of non-orientable
case is similar. O

PROOF OF THEOREM 1.2. Since the proof for the case ¢ < 0 is similar, we prove the
theorem only for the case ¢ > 0. Let L be a cyclic Lagrangian submanifold in M. Then we
have, for any loop y C L,

(Hol(y))"t =1, (2.3)
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where Hol is the holonomy of (\*E, 1*V) and nj = y():—‘”L

On the other hand, by (2.2) and Lemma 2.1, we have the following.

If L is orientable, then (Hol(y))"s1 = exp(i fy og) . 2.4)
If L is non-orientable, then (Hol(y))z”‘fl = exp(2i fy og). '
Hence, by (2.3) and (2.4), we have the following.
If L is orientable, then ny [ay] € Image(H'(L; 2nZ) — H'(L; R)). 2.5)
If L is non-orientable, then 2ny [ay] € Image(H ' (L; 2nZ) — H'(L; R)). '

Conversely, suppose that there is the positive integer y, 1 such that y, rlen] €
Image(H YL:27nZ) — HYL;R)) for a Lagrangian submanifold L. Here, we choose yq 1.
as the minimal integer which satisfies the condition above. Then the following holds;

exp (iya’L./ aH> =1 (2.6)
14

for any loop ¥ C L. Hence, by (2.2), (2.6) and Lemma 2.1, we have the following.

2.7)

If L is orientable, then (Hol(y))"*LtY1 =1.
If L is non-orientable, then (Hol(y))>/«L%1 = 1.

Thus L is cyclic.

Moreover, when L is orientable, there are non-zero integers [ and I such that [y, | = nyp,
and Yo,1.Ye, = I'nr, by (2.5) and (2.7). Hence y., = Il’ and Iy, = nr. The proof for the
case L is non-orientable is similar. O

If (M, J, w) is Ricci-flat, there is not the relationship between the prequantization bundle
of (M, w) and the canonical bundle of (M, J). Hence it is an interesting question that whether
minimal Lagrangian submanifolds in Ricci-flat (M, J, w) are cyclic. In the next section, we
see that there are non-cyclic minimal Lagrangian submanifolds in K3-surfaces.

3. Lagrangian fibrations

To construct examples of non-cyclic minimal Lagrangian submanifolds in a Ricci-flat
Kihler manifold, we use Lagrangian fibrations and their action-angle coordinates. Since we
only use a local fibration structure, if we say “wr : M — B is a Lagrangian fibration”, then it
may admit singular fibers.

Let (M?", ) be a symplectic manifold which has a Lagrangian fibration 7 : M — B".
It is well-known that a compact connected regular fiber 77 ~!(bg) is a Lagrangian torus and
that there is an action-angle coordinate of an open neighborhood of 7~ 1(bp) as follows (see
e.g. [A], [D]);
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there is an open neigborhood U of 7w ~!(bg) in M and a diffeomorphism
(a,a) : U >V xT"

with V open in R", such that a = x o 7 for some diffeomorphism yx : 7(U) — V and

n
a):Zdotj Adaj on U.
j=1

We can constructthe map x = (x1, -+, xn) : 1(U) — V asfollows. Lety;(b),i =1,---,n,
be loops in 77 ~! (b), depending smoothly on b € 7 (U), such that their homology classes form
a basis in H (n’] (b); Z)). Then we define the maps

m@=/ 0,
vi (b)

where 6 is an 1-form on U such that w = d6 on U.

PROPOSITION 3.1. Let (M,w) be a prequantizable symplectic manifold with
H{(M;Z) = 0. Suppose that (M, w) has a Lagrangian torus fibration t : M — B. If
7 Y by) is a cyclic regular fiber, then 7~ Yb) is not cyclic for almost all b € B near by.

PROOF. Let 7~ !(bp) be a cyclic regular fiber and (a, &) : U — V x T" be an action-
angle coordinate around 7~ (bp). There are tubes X;(b) C U connecting the loops y; (bo)
with y; (b) such that the action coordinate is

a(b):a(bo)—i—(/ a),u~,/ w)
Z1(b) Zn ()

By the definition of the cyclic condition, we see that 7~ Lb), if it is regular orbit, is cyclic if
and only if a(b) — a(bg) € (Y,Q)". O

By Proposition 3.1, there are not cyclic Lagrangian fibrations, even locally. Hence, by
Theorem 1.1, we have the following corollary.

COROLLARY 3.2. Let (M, J, w) be Kdihler-Einstein with non-zero scalar curvature
and Hi(M; Z) = 0. Then there are not minimal Lagrangian torus fibration structures of M,
even locally.

On the other hand, it is well-known that there are Ricci-flat Kidhler manifolds which have
“special Lagrangian fibrations”. Here we recall special Lagrangian submanifolds (see [HL]).

Let (X, J) be an n-dimensional Calabi-Yau manifold with a Ricci-flat Kéhler metric g,
Kihler form w, and holomorphic n-form £2. An n-dimensional real submanifold¢ : L — X
is special Lagrangian if (*o = 0 and (*(Im£2) = 0. Any special Lagrangian submanifold is
homologically volume minimizing in X, i.e., Vol(L) < Vol(L’) for any submanifold L’ C X
such that [L] = [L'] € H,(X; Z). Hence special Lagrangian submanifolds are minimal.



68 HAJIME ONO

Next, we see examples of prequantizable Ricci-flat Kédhler manifolds with special La-
grangian fibrations. By Proposition 3.1, generic fibers of such fibrations are non-cyclic mini-
mal Lagrangian submanifolds.

Example(K3surface) Let(M, J)beaK3-surface with a Ricci-flat Kidhler metric g,
Kihler form w, and holomorphic n-form £2. In [Gr], it was proved that (M, J, w) has special
Lagrangian fibration if and only if there is a nonzero cohomology class E € H>(M; Z) such
that £ - E = 0 and [w] - E = 0 by using hyperKihler trick. Therefore, by using Proposition
3.1, Theorem 1.3 holds.

PROOF OF THEOREM 1.3. Suppose that there is an embedded Lagrangian torus L with
0 # [L] € Hx(M; Z). Note that, since L is a Lagrangian embedded torus, the normal bundle
NL is trivial. Hence [L] - [L] = 0. Then the Poincaré dual E = P.D.([L]) € HX(M; Z)
of [L] satisfies the conditions £ - E = 0 and [w] - E = 0. Hence (M, J, ®) has a special
Lagrangian fibration. m]

4. Hamiltonian minimal Lagrangian fibrations

In the previous section, we saw that, if (M, J, w) is a prequantizable Kihler-Einstein
manifold with non-zero scalar curvature, then (M, J, @) admits no minimal Lagrangian fi-
bration, even locally. Nevertheless, in this section, we will see that there are Hamiltonian
minimal Lagrangian fibrations.

First, we recall the Hamiltonian minimality of Lagrangian submanifolds in a Kéhler man-
ifold (M, J, w) (see [Ohl]). Let (M, J, w) be a Kihler manifold, L C M be a Lagrangian
submanifold and V be a normal variation vector along L. Since L is Lagrangian, we can
regard (V Jw)|, as an 1-form on L. If (V |w), is exact, V is called a Hamiltonian variation
vector. A smooth family {¢,} of embeddings of L into M is called a Hamiltonian deformation,
if its derivative is Hamiltonian. Note that Hamiltonian deformations leave Lagrangian sub-
manifolds Lagrangian. We say that a Lagrangian submanifold is Hamiltonian minimal, if the
first variation of volume is zero for all Hamiltonian deformations of L. In [Ohl], Oh proved
the following proposition.

PROPOSITION 4.1. Let (M, J, w) be a Kdhler manifold. A Lagrangian submanifold
i : L C M is Hamiltonian minimal if and only if its mean curvature vector H satisfies

S(iI*(How)) =0
on L where § is the adjoint of d on L with respect to the induced metric from M.

PROOF OF THEOREM 1.4. Let (M, w) be a real 2n-dimensional compact Kdhler man-
ifold, which has an effective isometric Hamiltonian 7"-action and i : L < M be a regular
connected fiber of the moment map. Note that L is an orbit of the torus action. This theorem
is proved by the following lemmas. O

LEMMA 4.2. The l-form ag = i*(H iw) on L is T" -invariant.
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PROOF. Let h € T". We write the action of 2 on M and L asmyj, : M — M and
mp : L — L respectively. Note that these maps are isometries, here the metric on L is
induced metric, and mpy , oi =i omyp , forany h € T". Hence we have the invariance of
the mean curvature vector H;

n

mpn)sH =Yy 1)« (Viyesivej — ix(Vese))
j=1

n
= Vimpnruive; bt 1)xixej — (Mg ) wis (V)
j=1

n

=Y Vistmp e ixMmLn)ej = ix(Ving ).e; (ML1)xE)
j=1
=H,

where {ey, - - -, e, } is an orthonormal basis of T, L, V and V are the Levi-Civita connections
on M and L respectively. By the definition of o gy, we have

(m ) (X)

w(H, ix(mp p)«X)
w(H, (mp p)«isX)
@((my 1) H, ixX)
=w(H, iy X)
=ay(X),

where X is a vector field on L. O

Since L ~ T" and the induced metric on L is 7"-invariant, the following lemma is
well-known (see e.g [H]).

LEMMA 4.3. Let g be the induced metric on L. A p-form  on L is harmonic with
respect to g if and only if B is T"-invariant.

Therefore, by Proposition 4.1, Lemma 4.2 and Lemma 4.3, the proof of Theorem 1.4 has
finished.
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