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Abstract. We define a Nambu-Jacobi structure as a bracket of several functions which satisfies the Fundamen-
tal Identity. Then we express the Nambu-Jacobi structure in terms of two tensor fields and show the necessary and
sufficient conditions that they should satisfy. We investigate the foliations associated with a Nambu-Jacobi structure.
This allows us to give many examples of Nambu-Jacobi manifolds.

1. Introduction and definitions

It is well-known that a Poisson manifold has its associated foliation. It is a generalized
foliation in the sense of Stefan and Sussmann whose leaves are immersed symplectic mani-
folds. In the case of a Jacobi manifold (in the sense of Lichnerowicz [5] or called a manifold
with local Lie algebra structure by Kirillov [4]), we have also a generalized foliation whose
leaves are either symplectic or a contact manifolds. In this paper, we consider the cases of
Nambu-Poisson and Nambu-Jacobi manifolds. First, we recall briefly a Nambu-Poisson man-
ifold to generalize it to a Nambu-Jacobi manifold.

1.1. Nambu-Poisson structures. Let C∞(M) be the set of smooth functions on a
manifold M .

DEFINITION 1. {· · · } is called a Nambu-Poisson bracket of degree q if it is a skew-
symmetric q-linear map over R

{· · · } : C∞(M) × · · · × C∞(M)︸ ︷︷ ︸
q

−→ C∞(M)

which satisfies the following:
(1) (Fundamental Identity or Generalized Jacobi Identity)

{f1, · · · , fq−1, {g1, · · · , gq }} =
q∑

i=1

{g1, · · · , {f1, · · · , fq−1, gi}, · · · , gq }
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where f1, · · · , fq−1, g1, · · · , gq ∈ C∞(M).
(2) (Leibniz rule) For each argument of the bracket, the usual derivation rule holds, that

is, for f1, · · · , fq+1 ∈ C∞(M)

{f1, · · · , fq−1, fqfq+1} = {f1, · · · , fq−1, fq}fq+1 + fq {f1, · · · , fq−1, fq+1}
holds.

As in the case of usual Poisson bracket, this is also equivalent to the existence of a q-
vector field η on M satisfying

η(df1, · · · , dfq) = {f1, · · · , fq } for f1, · · · , fq ∈ C∞(M)

Lη(df q−1,·)η = 0 for f1, · · · , fq−1 ∈ C∞(M)

where df q−1 is the abbreviation of df1 ∧ · · · ∧ dfq−1, η(df q−1, ·) stands for the vector
field η(df1, · · · , dfq−1, ·) on M , which is the Hamiltonian vector field determined by several
functions (cf. [1]), and Lη(df q−1)η is a Lie derivative.

DEFINITION 2. η is called a Nambu-Poisson tensor of degree q .

A Nambu-Poisson tensor has the following striking property.

THEOREM 1.1 (P. Gautheron [3], K. Mikami [6], N. Nakanishi [8]). If q is greater
than 2, Nambu-Poisson tensor of degree q is locally decomposable. This means that if η

is non-zero at a point, then on a neighborhood of the point there exist vector fields Y1, · · · , Yq

so that η can be written as

η = Y1 ∧ · · · ∧ Yq .

1.2. Nambu-Jacobi structures. Now we define a Nambu-Jacobi manifold and see
that the bracket of a Nambu-Jacobi manifold is described by a pair of two multi-vector fields.
Let us begin with a general definition.

Let M be a C∞ manifold and C∞(M) the algebra of smooth functions on M. For an
integer q ≥ 1, we consider an alternating q-linear map

A : C∞(M) × · · · × C∞(M)︸ ︷︷ ︸
q

−→ C∞(M)

and we always assume A satisfies the following conditions:
(a) The map A is continuous with respect to C∞ topology and
(b) suppA(f1, · · · , fq) ⊂ suppf1 ∩ · · · ∩ suppfq .
We call the map A a support-non-increasing bracket of degree q and often write

{f1, · · · , fq } for A(f1, · · · , fq).
When q = 1, we understand A is just a linear map. By a theorem of Peetre [9], these

conditions assure that the support-non-increasing bracket is a differential operator and the
resulting function is written in terms of the derivatives of the argument functions of A.
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DEFINITION 3. If A is a support-non-increasing bracket of degree q on M which sat-
isfies the Fundamental Identity in Definition 1, we call A a Nambu-Jacobi bracket. A smooth
manifold with a Nambu-Jacobi bracket is called a Nambu-Jacobi manifold.

REMARK 1.1. We remark that when q = 2, a Nambu-Jacobi manifold reduces to a
usual Jacobi manifold (cf. [4], [5]). The Leibniz rule in the definition of a Nambu-Poisson
bracket clearly implies our condition (a) and (b) on bracket. Thus a Nambu-Poisson manifold
is a special case of a Nambu-Jacobi manifold.

Along the line of the proof of Kirillov ([4]) for the usual Jacobi bracket, we have the following:

THEOREM 1.2 (cf. [2]). A Nambu-Jacobi bracket is a differential operator of order at
most 1.

This theorem allows us to describe a Nambu-Jacobi bracket in terms of a pair of two
multi-vector fields on M . Let P be a p-vector field on M . P naturally defines a bracket of

degree p by (f1, · · · , fp) �→ P(df1, · · · , dfp). We denote this bracket by {f1, · · · , fp}P or
sometimes by P(f1, · · · , fp) when there is no danger of confusion. This notation is analogous
to the notation X(f ) to denote the derivative of a function f by a vector field X. We define a
new bracket 1 ∧ P of degree (p + 1) by the formula

(1 ∧ P)(f1, · · · , fp+1) =
p+1∑

i=1

(−1)i−1fiP (df1, · · · , ˆdfi, · · · , dfp+1) . (1)

Then we have the following observation on a Nambu-Jacobi bracket.

LEMMA 1.1 (cf. [2]). Let A be a Nambu-Jacobi bracket of degree q (q ≥ 2). Then
there uniquely exist a q-vector field Q and a (q − 1)-vector field P which are Nambu-Poisson
tensors such that A = Q + 1 ∧ P holds.

PROOF. Let p = q − 1 and put B(f1, · · · , fp) = A(1, f1, · · · , fp). Then it is easily
seen that B is a bracket of degree p and satisfies the Fundamental Identity. From the skewness
of A, B(f1, · · · , fp) = 0 if one of the arguments is a constant function. Thus, the order of B
as a differential operator is exactly equal to 1. This means B is defined by a p-vector field P .
Now put C = A − 1 ∧ P . Then by the same reason C is also a bracket defined by a q-vector
field. Denoting it by Q, we obtain Lemma 1.1. Uniqueness is verified easily. �

DEFINITION 4. We call the pair (Q,P ) a Nambu-Jacobi pair if Q + 1 ∧ P defines a
Nambu-Jacobi bracket.

NOTATION. In the sequel, we frequently use the contraction of tensor fields. For ex-
ample, let Q be a q-vector field and α = α1 ∧ · · · ∧ αp a p-form (p ≤ q). We denote the
contraction Q and α by the following various notations, interchangeably. iαQ = Q(α) =
Q(α, ·) = Q(α1 ∧ · · · ∧ αp, ·).
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1.3. Fundamental Identity. We consider the bracket A defined by (p + 1)-vector
field Q and p-vector field P , by the equality A = Q+ 1 ∧P . We now look for the conditions
on P and Q under which A satisfies the Fundamental Identity, namely the conditions that
make (Q,P ) a Nambu-Jacobi pair. When deg P = 1 and deg Q = 2, the Nambu-Jacobi pair
Q + 1 ∧ P is a usual Jacobi bracket and the conditions on P and Q are well known. Namely,
they satisfy [P,Q] = 0 and [Q,Q] = −2P ∧ Q if and only if the bracket satisfies the Jacobi
identity, where [·, ·] is the Schouten-Nijenhuis bracket (cf. (15)). Therefore our interest is in
the case deg P ≥ 2.

To proceed our calculations, we introduce the following notations.

DEFINITION 5. For a p-vector field P and a q-vector field Q (p ≥ 2, q ≥ 1) which
are both considered as brackets, we define a map

JP Q : C∞(M) × · · · × C∞(M)︸ ︷︷ ︸
p+q−1

−→ C∞(M)

by

(J P Q)(f1, · · · , fp−1; g1, · · · , gq ) = P(f1, · · · , fp−1,Q(g1, · · · , gq)) (2)

− (Q(P(f1, · · · , fp−1, g1), g2, · · · , gq )

− Q(g1, P (f1, · · · , fp−1, g2), g3, · · · , gq )

− · · · − Q(g1, · · · , gq−1, P (f1, · · · , fp−1, gq )) ,

for f1, · · · , fp−1, g1, · · · , gq ∈ C∞(M).

We remark here that JP Q can be considered as a contravariant tensor field but does not
define a bracket since it is not fully alternating with respect to the argument functions. Note
that JP P = 0 means that P satisfies the Fundamental Identity. The same formula as JP Q

can be defined for any brackets (not necessarily given by multi-vector fields). In the present
case, where the initial brackets are defined by multi-vector fields (P and Q), we have the
following equivalent expression.

JP Q(f1, · · · , fp−1; g1, · · · , gq ) = [P(dfp−1, ·),Q](dg1, · · · , dgq ) (3)

where dfp−1 = df1 ∧ · · · ∧ dfp−1 as before, P(dfp−1, ·) = P(df1, · · · , dfp−1, ·) is a

vector field and [P(dfp−1, ·),Q] = LP(dfp−1,·)Q is a Lie derivation. Thus JP Q = 0 is

equivalent to that the Hamiltonian vector fields preserve Q .
We also need the following map.

DEFINITION 6. For a p-vector field P and a q-vector field Q (p ≥ 2, q ≥ 1), we
define a map

P 
 Q : C∞(M) × · · · × C∞(M)︸ ︷︷ ︸
p+q

−→ C∞(M)
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by

(P 
 Q)(f1, · · · , fp−1; g0, · · · , gq) = (P (dfp−1, ·) ∧ Q)(dg0, · · · , dgq ) (4)

where dfp−1 = df1 ∧ · · · ∧ dfp−1.

Also, P 
 Q is not a bracket in general. Note that P 
 P = 0 if and only if P is a
locally decomposable. In order to get the relation between P and Q in A = Q + 1 ∧ P , we

need to calculate JAA since the condition that A is to be a Nambu-Jacobi bracket is

JAA(f1, · · · , fp; g1, · · · , gp+1) = 0 . (5)

By a direct computation we can express the left hand side of this equation (5) so that a certain

sum of multiples of functions consisting of {· · · }P , {· · · }Q, and fi , gj which are outside of

the brackets {· · · }P or {· · · }Q. Although it is straightforward, the computation is lengthy. We
will do it in Appendix separately.

The relations of P and Q which we obtain are in the following:

PROPOSITION 1.3. Let A = Q + 1 ∧ P be a bracket of degree q = p + 1 defined
by p-vector field P and q-vector field Q. Then a necessary and sufficient condition for the
bracket A to be a Nambu-Jacobi bracket is that P and Q satisfy the following four identities.

(1) J P P = 0 ,

(2) J P Q = 0 ,

(3) JQP(dfp; · · · ) + (−1)p+1Q(d(P (dfp)), · · · )

+
p∑

i=1

(−1)i(P 
 P)(df1 · · · ˆdfi · · · dfp; dfi, · · · ) = 0 ,

(4) (JQQ)(dfp; · · · ) +
p∑

i=1

(−1)i(P 
 Q)(df1 · · · ˆdfi · · · dfp; dfi, · · · ) = 0 ,

where dfp stands for differential form df1 ∧ · · · ∧ dfp.

PROOF. As is stated above, this is done in Appendix by a direct but a long calcula-
tion. �

To simplify the above identities we need the following two lemmas.

LEMMA 1.2. Let P and Q be multi-vector fields of degree p and q , respectively. If
P 
 Q is also a multi-vector field (i.e. P 
 Q is a skew symmetric tensor field) and p ≥ 3
and q ≥ 1 then P 
 Q vanishes identically.

PROOF. Considering the equation at each point of the manifold, we may assume that P
and Q are alternating multi-linear maps on finite dimensional vector space. Put B = P 
 Q.
It suffices to show that B|V = 0 for arbitrary (p + q)-dimensional subspace V . From the
definition, if Q|W = 0 for any q-dimensional subspace W ⊂ V , then clearly B|V = 0.
So assume Q|W �= 0 for a q-dimensional subspace W . Then there exist y1, · · · , yq ∈ W
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satisfying

Q(y1, · · · , yq) �= 0 .

We can find an element x ∈ V such that x ∧ y1 ∧ · · · ∧ yq �= 0 and

Q(y1, · · · , x︸︷︷︸
i

, · · · , yq) �= 0 for some i . �

PROOF [(Proof of Claim)]. Consider the following linear functional on V

ϕ : V −→ R : x �→
q∑

j=1

Q(y1, · · · , x︸︷︷︸
j

, · · · , yq) .

We have

ϕ(y1) = · · · = ϕ(yq) = Q(y1, · · · , yq) �= 0

and

y2 − y1, · · · , yq − y1 ∈ Ker ϕ

Since dim Ker ϕ = p + q − 1 and p ≥ 1, we find an element z ∈ Ker ϕ so that

z, y2 − y1, · · · , yq − y1 ∈ Ker ϕ

are linearly independent. Then it can be seen that the set

z + y1, y1, y2, · · · , yq

is linearly independent and x = z + y1 is an element with desired property. Indeed, we have

q∑

j=1

Q(y1, · · · , x︸︷︷︸
j

, · · · , yq) = ϕ(x) = ϕ(z + y1) = ϕ(y1) = Q(y1, · · · , yq) �= 0 .

This means there exists some i such that

Q(y1, · · · , x︸︷︷︸
i

, · · · , yq) �= 0 .

(end of the proof of claim). �

For x and Y = (y1, · · · , yq) which we found above and for any (p −2)-tuple T , we have

0 =B(T , x; x, Y ) = (P (T , x, ·) ∧ Q)(x, Y )

=P(T , x, x)Q(Y ) −
q∑

j=1

P(T , x, yj )Q(y1, · · · , x︸︷︷︸
j

, · · · , yq)

= − P(T , x,

q∑

j=1

Q(y1, · · · , x︸︷︷︸
j

, · · · , yq)yj ) .
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If we put u =
∑q

j=1
Q(y1, · · · , x︸︷︷︸

j

, · · · , yq)yj , this shows

P(x, u, T ) = 0 for all (p − 2)-tupleT .

For any (p − 3)-tuple of vectors T ′ and q-tuple of vectors T ′′ in V , we have

B(x, u, T ′; T ′′) = (P (x, u, T ′, ·) ∧ Q)(T ′′) = 0

(p ≥ 3 is necessary here).
Since we are assuming B is a multi-vector and {x, u} are linearly independent, this

clearly shows B|V = 0.

The next lemma shows that in our case, P 
 P , P 
 Q and Q 
 Q are proved to be
multi-vector fields and we can apply Lemma 1.2 to the identities in Proposition 1.3.

LEMMA 1.3. Let A = Q + 1 ∧ P be a Nambu-Jacobi bracket determined by q-vector
field and p-vector field P (q = p + 1). Then P 
 P , P 
 Q and Q 
 Q are fully alternating
and hence they are multi-vector fields.

PROOF. To prove P 
 Q is a multi-vector field, we have only to verify the skewness of
P 
 Q, namely the identity

(P 
 Q)(h1, f2, · · · , fp−1; h2, g1, · · · , gp+1)

+(P 
 Q)(h2, f2, · · · , fp−1; h1, g1, · · · , gp+1) = 0 (6)

for arbitrary functions h1, h2, f2, · · · , fp−1, g1, · · · , gp+1.

For this, we calculate

JP Q(h1h2, f2, · · · , fp−1; g1, · · · , gp+1)

= [P(d(h1h2), df2, · · · , dfp−1, ·),Q](dg1, · · · , dgp+1)

which is identically equal to 0 by Proposition 1.3 (2). Thus we have

0 =[P(d(h1h2), df2, · · · , dfp−1, ·),Q] = [P(h1dh2 + h2dh1, df2, · · · , dfp−1, ·),Q]
=[h1P(dh2, df2, · · · , dfp−1, ·),Q] + [h2P(dh1, df2, · · · , dfp−1, ·),Q]
=h1[P(dh2, df2, · · · , dfp−1, ·),Q] − (P (dh2, df2, · · · , dfp−1, ·) ∧ Q(dh1))

+ h2[P(dh1, df2, · · · , dfp−1, ·),Q] − (P (dh1, df2, · · · , dfp−1, ·) ∧ Q(dh2)

= − (P (dh2, df2, · · · , dfp−1, ·) ∧ Q(dh1)) − (P (dh1, df2, · · · , dfp−1, ·) ∧ Q(dh2) .

From this it is easy to see the identity (6) holds.
The cases of P 
 P and Q 
 Q are proved by similar calculations using (1) and (4) in

Proposition 1.3. �

REMARK 1.2. In a similar way, what we obtain from (3) in Proposition 1.3 is the
following. The function

(Q 
 P)(f1, · · · , fp; g1, · · · , gp+1) + (−1)p+1P(df1, · · · , dfp)Q(dg1, · · · , dgp+1) (7)
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is skew symmetric with respect to the all arguments. In particular, if f1 = g1 the above
function vanishes.

By the above two lemmas, we have most part of the following:

PROPOSITION 1.4. If (Q,P ) is a Nambu-Jacobi pair and deg P = p ≥ 2, then P 

P = 0, P 
 Q = 0 and Q 
 Q = 0.

PROOF. For p > 2, the statement is obvious from Lemma 1.2 and Lemma 1.3. The
case p = 2 is treated separately.

[Proof when p = 2] Assume A is a Nambu-Jacobi bracket. First, we prove P is de-
composable 2-vector at a point where Q �= 0. As before, we consider P and Q are 2-vector
and 3-vector of a vector space V . Since deg Q = 3, by Lemma 1.2 and Lemma 1.3, we have
Q 
 Q = 0 that is Q is decomposable. The condition P 
 Q is fully skew symmetric means
that

P(x, ·) ∧ Q(x, ·, ·) = 0 for x ∈ V ∗ . (8)

Taking the value at (y, z,w) we have

P(x, y)Q(x, z,w) − P(x, z)Q(x, y,w) + P(x,w)Q(x, y, z) = 0 . (9)

Regard Q as a linear map V ∗ → ∧2
V and fix a direct sum decomposition

V ∗ = K ⊕ L (10)

where K = ker Q and L is a complementary subspace which is isomorphic to Im Q. If w ∈ K ,
from the above relation we have

P(x,w)Q(x, y, z) = 0 . (11)

Given 0 �= x ∈ L, we can choose y, z so that Q(x, y, z) �= 0. Thus, we have

P(x,w) = 0 for any x ∈ L,w ∈ K .

If we replace x by x + v, (v ∈ K), in (11), we have

(P (x,w) + P(v,w))Q(x, y, z) = P(v,w)Q(x, y, z) = 0 , w ∈ K . (12)

From this we see that

P(x, y) = 0 if x ∈ K . (13)

Since rank Q = dim L = 3, rank P must be 2 and P is a decomposable 2-vector hence
P 
 P = 0.

Next we prove P 
 Q = 0. Regard Q and P as linear maps
∧2

V ∗ → V , V ∗ → V ,
respectively. Since we have

P(x, y)Q(x, z, ·) − P(x, z)Q(x, y, ·) + P(x, ·)Q(x, y, z) = 0 , (14)

and as we saw above P maps K to 0. This means Im P ⊂ Im Q. From this we have P(x, ·)∧
Q = 0 for any x ∈ V ∗. This shows P 
 Q = 0.
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If at a point a, Q = 0 and a is in the closure of the set where Q �= 0, the semi-continuity
of the rank assures that rank P ≤ 2 and we have P 
 P = 0, P 
 Q = 0 in this case too.

Finally, we consider the point where Q vanishes identically on some neighborhood of
the point. In this case Proposition 1.3 (3) says P is a 2-vector satisfying

P(x, y)P − P(x, ·) ∧ P(y, ·) = 0 for x, y ∈ V ∗ .

This clearly shows that P is decomposable.
Thus we proved P 
 P = 0 and P 
 Q = 0 hold everywhere. This finishes the proof in

the case where p = 2. �

By the above Proposition 1.4, the identities in Proposition 1.3 are simplified as in the
following form for p ≥ 2.

THEOREM 1.5. Let A = Q + 1 ∧ P be a bracket on a manifold M , which is given by
a (p + 1)-vector field Q and a p-vector field P where p ≥ 2 and assume rank P ≤ 2 when
p = 2. Then A is a Nambu-Jacobi bracket if and only if the following conditions are satisfied.

For any functions f1, f2, · · · , fp ∈ C∞(M),

(1) [P(dfp−1, ·), P ] = 0 ,

(2) [P(dfp−1, ·),Q] = 0 ,

(3) [Q(dfp, ·), P ] = (−1)pQ(d(P (dfp)), ·) ,

(4) [Q(dfp, ·),Q] = 0

hold, where dfp−1 stands for df1 ∧ · · · ∧ dfp−1.

PROOF. By Proposition 1.4, the conditions in Proposition 1.3 reduce to the above for-
mulas. Conversely, assume that P and Q satisfy the above formulas. Then we have the same
conclusion as those of Lemma 1.3. Thus if p > 2, we have P 
 P = 0, P 
 Q = 0,Q 

Q = 0 by Lemma 1.2. If we assume P is decomposable when p = 2, we can get the same
conclusion by the argument of Lemma 1.4. Consequently, P and Q satisfy the conditions in
Proposition 1.3. �

REMARK 1.3. Corollary 5.1 in [2] says if Q+ 1 ∧P is a Namubu-Jacobi bracket, then
conditions (2) and (1) in our theorem hold. Also, Corollary 5.6 in [2] says if Q + 1 ∧ P is a
Namubu-Jacobi bracket, then conditions (4) and (3) in our theorem hold. We emphasize here
that our theorem states that those are necessary and sufficient conditions for Q + 1 ∧ P to be
a Nambu-Jacobi bracket.

Since P 
 Q = 0 means P(dfp−1, ·) ∧ Q = 0, in the case when P is non-zero, Q is
a multiple of P. Thus we have a vector field v satisfying Q = v ∧ P. It is desirable, in this
case, to find the conditions on P and v which imply the Fundamental Identity. This will be
done in the next section.
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2. Associated Foliations

In this section, we investigate some geometric structure of Nambu-Jacobi manifold,
namely the associated foliation which is given by the characteristic distributions of the struc-
ture. As is well-known, the Jacobi identity of a Poisson manifold implies the integrability of
the characteristic distribution of the Poisson structure. This leads us to the foliation by sym-
plectic leaves. This foliation is singular in general in the sense that the dimension of the leaves
varies from point to point. Similarly on a Nambu-Poisson manifold we have a foliation and a
contravariant volume tensor (multi-vector field of highest degree on a manifold) on each leaf.
Theorem 2.1 below may be considered as a geometric characterization of a Nambu-Poisson
manifold. We mean by the characteristic distribution of a p-vector field η the image of the

bundle map Bη : ∧p−1
T ∗M → T M where Bη(α) = η(α, ·).

Recall that the generalized divergence of η is defined as follows. Let ∇ be a torsion free
affine connection on T M. ∇ gives a map ∇ : Γ (

∧p
T M) → Γ (T ∗M) ⊗ Γ (

∧p
T M). Let

c : Γ (T ∗M) ⊗ Γ (
∧p

T M) → Γ (
∧p−1

T M)

be the map given by the contraction of 1-forms and p-vector fields. The generalized diver-
gence Div η associated with ∇ is defined by

Div η = c(∇(η)) .

One of the definition of the Schouten bracket of multi-vector fields is given by the formula

[P,Q] = Div(P ∧ Q) − (Div P) ∧ Q − (−1)pP ∧ Div Q (15)

where p is the degree of P. It is independent of the choice of connections. In what follows, we
choose once and for all a Riemannian connection on T M and the Div will be the one which
is associated with this connection (See also [7]).

THEOREM 2.1. Let η be a decomposable C∞ p-vector field on a C∞-manifold M.

Then the following statements are equivalent.
(1) The bracket {f1, · · · , fp}η = η(df1, · · · , dfp) satisfies the Fundamental Identity.
(2) The characteristic distribution of η is integrable (in the sense of Sussmann and

Stefan).
(3) On the open set U where η is non-zero, there exists a smooth 1-form γ which

satisfies the equality

Div η = iγ η .

PROOF. Equivalence of (1) and (2) is known in Theorem 4.3 of [10].
(2) ⇒ (3). Since η is decomposable p-vector field, on a neighborhood of each point a ∈ U ,
we can choose a set of vector fields X1,X2, · · · ,Xp (Xi ∈ Γ (ImBη)) such that

η = X1 ∧ X2 ∧ · · · ∧ Xp .
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Then we have

Div η =
p∑

i=1

(−1)i−1X1 ∧ · · · ∧ (Div Xi) ∧ · · · ∧ Xp

+
∑

i<j

(−1)i+j−1[Xi,Xj ] ∧ · · · X̂i ∧ · · · ∧ X̂j ∧ · · · ∧ Xp

Since Im Bη is integrable, [Xi,Xj ] is a linear combination of X1,X2, · · · ,Xp at each point
of U . Thus Div η is a (p − 1)-vector field which is generated by X1,X2, · · · ,Xp and hence a

cross-section of the bundle
∧p−1

(Im Bη). Define

Jη : (Im Bη)
∗ →

∧p−1
(Im Bη)

to be the bundle map given by Jη(α) = η(α, ·) = iαη. Clearly it is a bundle isomorphism on
U where η is non-zero. This assures that there exists a 1-form γ on U such that iγ η = Div η.
　　　　 �

(3)⇒(1). First we note the following formula.

LEMMA 2.1. Let β be a (p−1)-form and η a decomposable p-vector field on M. Then
we have the following equality.

[η(β, ·), η] = (−1)pη(dβ)η + η(β, ·) ∧ Div η + (−1)p(Div η)(β)η (16)

PROOF [(Proof of Lemma)]. Taking the contraction on both sides of

∇(η(β, ·)) = (∇η)(β, ·) + η(∇β, ·) ,

we have

Div(η(β, ·)) = (−1)p−1(Div η)(β) + (−1)p−1η(dβ) . (17)

Thus we have

[η(β, ·), η] = Div(η(β, ·) ∧ η) − (Div η(β, ·))η + η(β, ·) ∧ Div η

= (−1)p(Div η)(β)η + (−1)pη(dβ)η + η(β, ·) ∧ Div η .

Note that η(β, ·) ∧ η = 0 holds by the decomposability. �

We continue the proof of Theorem. Since η ∧ η(df1, · · · , dfp−1, ·) = 0 on U , we have

0 = iγ (η ∧ η(df1, · · · , dfp−1, ·))
= iγ (η) ∧ η(df1, · · · , dfp−1, ·) + (−1)pη(df1, · · · , dfp−1, γ )η

= (Div η) ∧ η(df1, · · · , dfp−1, ·) − ((Div η)(df1, · · · , dfp−1))η

= (−1)p−1[η(df1, · · · , dfp−1, ·), η] .

We used Lemma above for β = df1 ∧ · · · ∧ dfp−1.
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If a ∈ M \ U , η|a = 0, the right hand side of the above lemma is equal to 0 and thus
[η(df1, · · · , dfp−1, ·), η]|a = 0.

Consequently, we have

[η(df1, · · · , dfp−1, ·), η] = 0

on the whole M and the bracket {· · · }η satisfies the Fundamental Identity. �

Now we are going to investigate the foliation associated with a Nambu-Jacobi structure.
Let A = Q + 1 ∧ P be a Nambu-Jacobi bracket on a manifold M , which is given by a
(p + 1)-vector field Q and a p-vector field P. Then by Theorem 1.5 (1) of preceding section,
[P(df1, · · · , dfp−1, ·), P ] = 0. Thus P is a Nambu-Poisson tensor and its characteristic dis-
tribution is integrable, giving a generalized foliation (Theorem 2.1). We denote this foliation
by FP . Exactly the same thing holds for the (p + 1)-vector field Q. Thus we have two fo-
liations FP and FQ of M. First we restrict our attention to the case when P is non-zero or
it may be said that we consider the foliations of the open set of M where P is non-zero. By
Proposition 1.4, P 
 Q = 0. This is equivalent to

P(df1, · · · , dfp−1, ·) ∧ Q = 0 ,

for any (p − 1) functions f1, · · · , fp−1. On a neighborhood of a point where P �= 0, we
have functions f1, · · · , fp such that P(df1, · · · , dfp) �= 0. Thus the set of vector fields

{X1, · · · ,Xp} where Xi = P(df1, · · · , d̂f i, · · · , dfp) is linearly independent at each point.
From the above relation, Q is a multiple of Xi ’s and consequently, there is a vector field v

such that Q = v ∧ P . A partition of unity argument assures that we may consider v a global
one.

PROPOSITION 2.2. The vector field v preserves the associated foliation FP . In fact,
there exists a function ϕ such that LvP = ϕP holds.

PROOF. By Theorem 1.5, we have

0 = [P(dfp−1, ·),Q] = [P(dfp−1, ·), v ∧ P ]
= [P(dfp−1, ·), v] ∧ P + v ∧ [P(dfp−1, ·), P ]
= [P(dfp−1, ·), v] ∧ P

because [P(dfp−1), P ] = 0. But [P(dfp−1, ·), v] ∧ P = 0 is expressed as

−((LvP )(dfp−1, ·)) ∧ P − (P (Lvdfp−1, ·)) ∧ P = 0

and (P (Lvdfp−1, ·)) ∧ P = 0 because of the decomposability of P . Thus we have

((LvP )(dfp−1, ·)) ∧ P = 0

for arbitrary (p − 1)-form dfp−1. Again by the decomposability of P , we see LvP is a
multiple of P. Thus we have a function ϕ satisfying LvP = ϕP . The equation

[v, P (dfp−1, ·)] = ϕP(dfp−1, ·) + P(Lvdfp−1)
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shows that v preserves foliation FP . �

We have the converse.

THEOREM 2.3. Let P be a regular Nambu-Poisson tensor of degree p ≥ 2, which we
assume decomposable when p = 2. Suppose that there exists a vector field v which satisfies

LvP = ϕP

for some smooth function ϕ. Define (p + 1)-vector field Q by Q = v ∧ P . Then the pair
(Q,P ) is a Nambu-Jacobi pair, namely the bracket

A = Q + 1 ∧ P

defines a Nambu-Jacobi structure.

PROOF. Since we are assuming the decomposability of P , it is sufficient to verify the
conditions (1)–(4) of Theorem 1.5.
Condition (1) is our assumption. Condition (2) asserts that [P(dg, ·),Q] = 0 holds for any
dg := dg1 ∧ · · · ∧ dgp−1. This is easily verified as follows by using [P(dg, ·), P ] = 0 and
the decomposability of P ;

[P(dg, ·), v ∧ P ] = [P(dg, ·), v] ∧ P + v ∧ [P(dg, ·), P ]
= −(ϕP (dg, ·) + P(Lv(dg), ·)) ∧ P = 0 .

We verify Condition (4).
Since Q = v ∧ P is decomposable, from the view point of Theorem 2.1, it is enough

to see the integrability of the characteristic distribution FQ of Q on open set where Q �= 0.
Locally, we can write P and Q as follows.

P = hX1 ∧ · · · ∧ Xp , Q = hv ∧ X1 ∧ · · · ∧ Xp

where Xi is a local vector field of the form P(df1 ∧ · · · ∧ ˆdfi ∧ · · · ∧ dfp) and h is a func-
tion. The vector fields X1, · · · ,Xp, v generate the distribution FQ and they form a involutive
system since FP is integrable by assumption and since we have the following:

[v, P (dg, ·)] = Lv((P (dg, ·)) = (LvP )(dg, ·) + P(Lvdg, ·) = P(ϕdg + Lvdg, ·) .

Thus FQ is integrable and we have [Q,Q] = 0.
To verify Condition (3), we must prove the equality

[Q(df; ·), P ](· · · ) = (−1)pQ(d(P (df )), · · · ) (18)

for df = df1 ∧ · · · ∧ dfp .
First we calculate the left hand side of this equality. Using

Q(df, ·) = (v ∧ P)(df ) = P(iv(df ), ·) + (−1)pP (df )v

and a general formula

Div(P (α)) = (−1)deg α(Div P)(α) + (−1)deg αP (dα) , (19)
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we calculate as follows:

[Q(df, ·), P ] = [P(iv(df ), ·), P ] + (−1)p[P(df )v, P ]
= Div(P (iv(df, ·)) ∧ P) − Div(P (iv(df )), ·)P

+ P(iv(df ), ·) ∧ Div P

+ (−1)pP (df )[v, P ] + (−1)p+1v ∧ P(d(P (df )), · · · )
= (−1)p((Div P)(iv(df )))P + (−1)pP (d(iv(df )))P

+ P(iv(df ), ·) ∧ Div P

+ (−1)pP (df )[v, P ] + (−1)p+1v ∧ P(d(P (df )), ·) . (20)

Now we use the assumption that there exists a 1-form such that Div P = iγ P (Theorem 2.1).
Then the above (20) is equal to

(−1)p(iγ P )(iv(df ))P + (−1)pP (d(iv(df )))P + P(iv(df )) ∧ (iγ P )

+ (−1)pP (df )[v, P ] + (−1)p+1v ∧ P(d(P (df )), ·)
= − iγ (P (iv(df )))P + (−1)pP (d(iv(df )))P + P(ivdf ) ∧ (iγ P )

+ (−1)pP (df )[v, P ] + (−1)p+1v ∧ P(d(P (df )), ·)
= − iγ (P (ivdf ) ∧ P) + (−1)pP (div(df ))P

+ (−1)pP (df )ϕP + (−1)p+1v ∧ P(d(P (df )), ·)
= (−1)pP (Lv(df ))P + (−1)pP (df )ϕP + (−1)p+1v ∧ P(d(P (df )), ·)
= (−1)pLv(P (df )P + (−1)p+1(LvP )(df )P

+ (−1)pP (df )(ϕP ) + (−1)p+1v ∧ P(d(P (df )), ·)
= (−1)p+1v ∧ P(d(P (df )), ·) + (−1)pLv(P (df ))P .

This can be seen to be equal to the right hand side of (18), since we have

(−1)pQ(d(P (df )), ·) = (−1)p(v ∧ P)(d(P (df )), · · · )
= (−1)pv(d(P (df )))P + (−1)p+1v ∧ P(d(P (df )), ·) .

Thus, the pair (Q = v∧P,P ) satisfy the conditions (1)–(4) and the bracket is a Nambu-Jacobi
pair. �

Next we consider a Nambu-Jacobi structure Q + 1 ∧ P where Q is regular, that is Q is
nowhere zero. In this case we obtain the following:

THEOREM 2.4. Let Q be a Nambu Poisson tensor of degree q(≥ 2). We assume when
q = 2, Q is decomposable. Let α be a 1-form which is closed on the leaves of FQ. That
is Q(dα, ·) = 0. Put P = Q(α, ·). Then (Q,P ) makes a Nambu-Jacobi pair. Conversely,
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if (Q,P ) is a Nambu-Jacobi pair and Q is regular, there exists a 1-form α which is closed
along the leaves of Q such that P = Q(α, ·).

PROOF. We first verify the condition JP Q = 0. Namely, we prove

[P(dfp−1, ·),Q] = [Q(α ∧ dfp−1, ·),Q] = 0 .

Using the decomposability of Q and the formula (19) for Div(Q(α)), we calculate as follows:

[Q(α ∧ dfp−1, ·),Q] = Div(Q(α ∧ dfp−1, ·) ∧ Q) − Div(Q(α ∧ dfp−1, ·)) ∧ Q

+ Q(α ∧ dfp−1, ·) ∧ Div Q

= (−1)p+1(Div Q)(α ∧ dfp−1, ·) ∧ Q + (−1)p+1Q(dα ∧ dfp−1, ·) ∧ Q

+ Q(α ∧ dfp−1, ·) ∧ Div Q.

Clearly, this is equal to 0 where Q = 0. On the other hand, on the open set where Q �= 0, we
have a 1-form γ such that Div Q = Q(γ, ·) and the above is equal to

(−1)p+1Q(γ ∧ α ∧ dfp−1, ·) ∧ Q + Q(α ∧ dfp−1) ∧ Q(γ )

= −iγ (Q(α ∧ dfp−1) ∧ Q) = 0 .

Thus we proved JP Q = 0.
Secondly, we prove

[P(dfp−1, ·), P ] = 0

for any functions f1, · · · , fp−1. We use the abbreviated notations that p = q−1 and dfp−1 =
df1 ∧ · · · ∧ dfp−1 as before. Then we calculate as follows;

[P(dfp−1, ·), P ] = [P(dfp−1, ·),Q(α, ·)]
= [P(dfp−1, ·),Q](α) + Q(LP(dfp−1,·)α) . (21)

As we showed above, [P(dfp−1, ·),Q](α) = 0 and Q(LP(dfp−1,·)α) = 0 is verified as

follows.

Q(LP(dfp−1,·)α, ·) = Q(diP(dfp−1,·)α + iP (dfp−1,·)dα, ·)
= Q(iP(dfp−1,·)dα) = Q(dα(P (dfp−1, ·), ·) .

The rightmost term vanishes since if write Q = X1 ∧ · · · ∧ Xq , this is equal to

q∑

i=1

(−1)i−1dα(P (dfp−1, ·),Xi)X1 ∧ · · · ,∧X̂i ∧ · · · ∧ Xq

and since α is closed on Im Q.
Next, we prove

[Q(dg, ·), P ] = (−1)pQ(d(P (dg), ·) for dg = dg1 ∧ · · · ∧ dgp .
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This is shown as follows.

[Q(dg, ·),Q(α)] = [Q(dg, ·),Q](α) + Q(LQ(dg,·)α, ·) = Q(diQ(dg,·)α + iQ(dg,·)dα)

= Q(diQ(dg,·)α) = Q(d(Q(dg, α))) = (−1)pQ(d(P (dg))) .

Q(iQ(dg,·)dα) = 0 follows from dα = 0 on FQ.
Now we prove the converse. Namely, assuming (Q,P ) is a Nambu-Jacobi pair on M

and Q is non-singular, we prove that there exists a 1-form α such that P = Q(α, ·) and
Q(dα) = 0. By assumption, (Q,P ) satisfies (1)–(4) in Theorem 1.5. If we consider Q as
a bundle map

∧p
T ∗M → T M , Im Q is a (p + 1)-dimensional sub-bundle of T M . Q is

also considered as a non-zero cross section of
∧p+1 Im Q and gives a natural isomorphism

(Im Q)∗ → ∧p Im Q. Let BQ : ∧p Im Q → (Im Q)∗ denote the inverse isomorphism.
Since we have P(df1 ∧ · · · ∧ dfp−1, ·) ∧ Q = 0, Im P ⊂ Im Q (see Proposition 1.4). Thus

P is a cross section of the bundle
∧p Im Q. Put α′ = BQ(P) and choose a 1-form α so that

α projects to α′ under the natural surjection T ∗M → (Im Q)∗. Then we can see that

Q(α, ·) = Q(α′, ·) = P .

Now by a characterization of Nambu-Poisson tensor field, there exists a 1-form on M , satis-
fying Div Q = Q(γ, ·). Since Q(α, ·) = P is also a Nambu-Poisson tensor field, there exists
a 1-form λ on the open set where Q(α, ·) �= 0, satisfying Div(Q(α, ·)) = Q(α, λ, ·). By the
condition [Q(α, dfp−1, ·),Q] = 0, and the decomposability of Q, we have

0 = −(Div(Q(α, dfp−1, ·))Q + Q(α, dfp−1, ·) ∧ Div Q.

But we have the following

Div(Q(α, dfp−1, ·)) = (−1)p−1 Div(Q(α, ·))(dfp−1) + (−1)p−1Q(α, ddfp−1)

= (−1)p−1Q(α, λ, dfp−1) .

Thus we have

(−1)p−1Q(α, λ, dfp−1)Q = Q(α, dfp−1, ·) ∧ Div Q = Q(α, dfp−1, ·) ∧ Q(γ, ·)
= −iγ (Q(α, dfp−1, ·) ∧ Q) + Q(α, dfp−1, γ )Q .

Since Q(α, dfp−1, ·) ∧ Q = 0 by the decomposability, this means Q(α, λ − γ, ·) = 0. If we
use the formula

Div(Q(α, ·)) = −(Div Q)(α, ·) − Q(dα, ·) ,

we have Q(dα, ·) = −Q(α, γ − λ, ·) = 0. This is what we wanted to show. �

REMARK 2.1. This theorem has also been proved in [2] when α is an exact 1-form df

for some function f on M .
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3. Examples

By Theorem 2.3 and Theorem 2.4, we obtain concrete examples of Nambu-Jacobi man-
ifolds. Here, we have a few of them.

1. We consider the Reeb foliation of S3 as the underlying foliation. There exists a 2-
vector field P which is non-singular on each leaf and tangent to it. We can assume every

thing is invariant under the natural S1-action on S3. Let v be the vector field on S3 which is
obtained from this action. Then LvP = 0 and (Q = v ∧ P,P ) is a Nambu-Jacobi pair by
Theorem 2.3. Q vanishes exactly along the toral leaf.

2. Let F be the Anosov foliation on the circle bundle over a closed surface of genus

g ≥ 2. The leaves are diffeomorphic to either R2 or cylinder S1 × R. Since both types
of leaves are dense, there is no non-trivial vector field transverse to F which preserves the
foliation. Therefore the only possible Jacobi pair is trivial one, namely it is (0, P ).

3. Let A : T n → T n be a hyperbolic toral automorphism. The mapping torus MA

of A has a foliation foliated by the weak unstable manifolds. Let Q denote a natural tensor
field which gives a volume tensor field along each leaf. Let α be the 1-form on MA =
T n × [0, 1]/ ∼→ S1, which is the pull-back of dθ by the projection MA → S1. Then α is
closed and (Q,P = Q(α, ·)) is a Nambu-Jacobi pair. P defines a foliation foliated by strong
unstable manifolds.

4. For any Nambu-Poisson structure Q on M , (Q, Div Q) is a Nambu-Jacobi pair.
Here Div is a divergence associated with a connection which preserves a volume form of

M . If Div Q = Q(γ, ·), we have Q(dγ, ·) = − Div2 Q and Div2 = 0 since we assumed the
connection preserves a volume form. Thus by Theorem 2.4, we have the result.
On a Nambu-Jacobi manifold for which the tensor fields P and Q are both non-singular, we
have a regular foliation FQ and its subfoliation FP . By our theorem, on each leaf of FQ there
exits a non-singular vector field and the subfoliation FP is defined by a closed 1-form on
the leaf. These impose a rather strong restriction on the foliated structure of such a Nambu-
Jacobi structure. It seems an interesting topological question to find which manifold has such
a foliated structure.

4. Appendix

In this appendix, we prove Proposition 1.3. We denote the bracket defined by a p-

vector field P by {· · · }P . Namely, {f1, · · · , fp}P = P(df1, · · · , dfp). The bracket {· · · } :=
{· · · }Q+1∧P = Q + 1 ∧ P determined by a q(= p + 1)-vector field Q and a p-vector field
P , is by definition is the following:

{f1, · · · , fq } = {f1, · · · , fq }Q +
q∑

j=1

(−1)j−1fj {f1, · · · , f̂j , · · · , fq }P
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= Q(df1, · · · , dfq) +
q∑

j=1

(−1)j−1fjP (df1, · · · , ˆdfj , · · · , dfq) .

We would like to write down the Fundamental Identity for this bracket in terms of the brackets
of Q and P and find the relations which Q and P satisfy.

For the brackets {· · · }P and {· · · }Q of degree p and q , respectively, we defined JP Q

and P 
 Q as follows.

JP Q(f1, · · · , fp−1; g1, · · · , gq)

= {f1, · · · , fp−1, {g1, · · · , gq}Q}P − {{f1, · · · , fp−1, g1}P , g2, · · · , gq }Q

− {g1, {f1, · · · , fp−1, g2}P , g3, · · · , gq}Q − · · ·
− {g1, · · · , gq−1, {f1, · · · , fp−1, gq}P }Q

= [P(df1 ∧ · · · ∧ dfp−1, ·),Q](dg1, · · · , dgq) ,

(P 
 Q)(f1, · · · , fp−1; g0, · · · , gq)

=
q∑

j=0

(−1)j {f1, · · · , fp−1, gj }P {g0, · · · , ĝj , · · · , gq}Q

= (P (df1, · · · , dfp−1, ·) ∧ Q)(dg0, · · · , dgq) .

The Fundamental Identity for {· · · } = {· · · }Q+1∧P is the following identity for any C∞
functions f1, · · · , fq−1, g1, · · · , gq on M .

{f1, · · · , fq−1, {g1, · · · , gq }} =
q∑

i=1

(−1)i−1{{f1, · · · , fq−1, gi}, g1, · · · , ĝi , · · · , gq } .

In this appendix, however, for our notational convenience, we adopt the following equiv-
alent equation as the Fundamental Identity.

{{f1, · · · , fq }, g2, · · · , gq } =
q∑

j=1

{f1, · · · , fj−1, {fj , g2, · · · , gq}, fj+1, · · · , fq } . (22)

We now start the computation. Since by definition,

{f1, · · · , fq } := {f1, · · · , fq }Q +
q∑

j=1

(−1)j−1fj {f1, · · · , f̂j , · · · , fq }P ,

the left hand side of (22) is calculated as follows.

{{f1, · · · , fq }, g2, · · · , gq }

= {{F}Q,G}Q + {F}Q{G}P +
q∑

i=1

(−1)i−1{Fi}P {fi,G}Q
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+
q∑

i=1

(−1)i−1fi({{Fi}P ,G}Q + {Fi}P {G}P +
q∑

k=2

(−1)k−1gk{{Fi}P ,Gk}P )

+
q∑

k=2

(−1)k−1gk({{F}Q,Gk}P +
q∑

i=1

(−1)i−1{Fi}P {fi,Gk}P )

where F ,G denote the sequences of f1, · · · , fq and g2, · · · , gq respectively. Fi denotes the
sequence which obtained from F by deleting the i-th component, and Gj denotes the sequence
which obtained from G by deleting the (j − 1)-th component. This is the left hand side of

(22) expressed in terms of fi ’s, gi ’s and their brackets with respect to {· · · }P and {· · · }Q.
In a similar way, we calculate the right hand side of the Fundamental Identity (22), by

applying the Leibniz rule several times.

q∑

j=1

{f1, , , fj−1, {fj , g2, , , gq }, fj+1, , , fq }

=
q∑

j=1

(−1)j−1{{fj ,G}Q + fj {G}P +
q∑

k=2

(−1)k−1gk{fj ,Gk}P ,Fj }

=
q∑

j=1

(−1)j−1{{fj ,G}Q,Fj }Q +
q∑

j=1

(−1)j−1{fj ,G}Q{Fj }P

+
q∑

j=1

∑

	 �=j

(−1)j−1+	f	{{fj ,G}Q,F	j }P +
q∑

j=1

(−1)j−1fj {{G}P ,Fj }Q

+ q{G}P ({F}Q +
q∑

j=1

(−1)j−1fi{Fi}P ) +
q∑

j=1

∑

	 �=j

(−1)j−1+	fjf	{{G}P ,F	j }P

+
q∑

j=1

q−1∑

	=1

(−1)j+	g	({{fj ,G	}P ,Fj }P + {g	,Fj }Q{fj ,G	}P + {fj ,G	}P {Fj }P )

+
q∑

j=1

q−1∑

	=1

∑

m�=j

(−1)j+	+mfm(g	{{fj ,G	}P ,Fmj }P + {fj ,G	}P {g	,Fmj }P ) ,

where we used the notation Fij which denotes if i < j then the sequence (· · · , f̂i , , , f̂j , , )

and if i > j then it denotes the sequence which is obtained by dropping two entries and then

changing the sign of the first entry, namely Fij := (−f1, f2, , , f̂j , , , f̂i , , ). We will not
simplify these any further since from the computation we can obtain necessary conditions on
P and Q for the bracket {· · · } to satisfy the Fundamental Identity.

First we note that the sums containing the product fifj cancel out because of the skew-
ness of the bracket.
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To get the conditions, we put fq = gq ≡ 1(q = p + 1) and compare the left hand side and

the right hand side of (22) which we computed above. Since {· · · , 1}P and {· · · , 1}Q are both
constantly equal to 0, we obtain the following relations:

{{f1, · · · , fp}P , g2, · · · , gp}P =
p∑

j=1

{f1, · · · , fj−1, {fj , g2, · · · , gp}P , fj+1, · · · , fp}P .

This is nothing but (1) of Proposition 1.3 and the Fundamental Identity for {· · · }P . Namely
we get the condition

JP P = 0 . (23)

Putting this condition in our computation, we see that the terms containing figk all cancel out.
Next, we put gq ≡ 1, and by the same reason as before, we get the relation

{{f1, · · · , fq }Q, g2, · · · , gp}P =
q∑

j=1

{f1, · · · , fj−1, {fj , g2, · · · , gp}P , fj+1 , · · · , fq }Q .

This shows

(−1)pJ P Q(g2, · · · , gp; f1, · · · , fq) = 0 ,

and we get

JP Q = 0 . (24)

By this relation, we see that the terms which are the multiple of the function gk all cancel out.
Similarly, knowing the relations (23) and (24) and by putting fq ≡ 1, we obtain the following
relation

{{f1, , , fp}P , g2, , , gq }Q

=
p∑

j=1

{f1, , , fj−1, {fj , g2, , , gq }Q, fj+1, , fp}P

+ (−1)p{f1, , , fp, {g2, , , gq }P }Q + p{f1, , , fp}P {g2, , , gq }P

+
p∑

j=1

p+1∑

k=2

(−1)p+k+j+1{g2, , , ĝk, , , gq , fj }P {gk, f1, , , fj−1, fj+1, , , fp}P .

A little computation shows that this is equivalent to the following:

JQP(g2, · · · , gq ; f1, · · · , fp) = (−1)p{{g2, · · · , gq}P f1, · · · , fp}Q

+
q∑

k=2

(−1)k(P 
 P)(g2, · · · , ĝk, · · · , gq; gk, f1, · · · , fp) .

(25)
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This is the relation equivalent to (3) of Proposition 1.3. Note that

(P 
 P)(g2, · · · , ĝk, · · · , gq ; gk, f1, · · · , fp)

=
p∑

j=1

(−1)j {g2, · · · , ĝk, · · · , gq , fj }P {gk, f1 · · · , f̂j , · · · , fp}P

+ (−1)q−k{g2, · · · , gq}P {f1, · · · , fp}P .

If P and Q satisfy the above condition (25), the terms of the form fj {· · · } cancel out.
Finally, in the same way, we obtain the following condition on Q.

{{f1, , , fq }Q, g2, , , gq }Q

=
q∑

j=1

{f1, , , fj−1, {fj , g2, , , gq }Q, fj+1, , , fq }Q

+
q∑

j=1

q∑

k=2

(−1)k−1{fj , g2, , , ĝk, , , gq }P {f1, , , fj−1, gk, fj+1, , , fq }Q.

+ p{f1, , , fq }Q{g2, , , gq }P .

This is expressed as

JQQ(g2, · · · , gq; f1, · · · , fq) =
q∑

k=2

(−1)k(P 
 Q)(g2, · · · , ĝk, · · · , gq ; gk, f1, · · · , fq) .

(26)

This is nothing but (4) of Proposition 1.3.

We have shown that (1)–(4) of Proposition 1.3 are necessary conditions for {· · · }Q+1∧P

satisfying the Fundamental Identity. Conversely, from our computation, we can easily see
that if the relations (23),(24),(25) and (26) on the brackets {· · · }P and {· · · }Q hold, the Fun-
damental Identity of the bracket {· · · } = {· · · }Q+1∧P is true. Thus the relations (23),(24),(25)

and (26) together are equivalent to the Fundamental Identity for {· · · }Q+1∧P . In this way, we
obtained

PROPOSITION 4.1. Let A = Q + 1 ∧ P be a Nambu-Jacobi bracket degree Q = q =
p + 1 ≥ 3. Then we have the following identities

(1) J P P = 0 ,

(2) J P Q = 0 ,

(3) JQP(dfp; · · · ) + (−1)p+1Q(dP(dfp), · · · )
+ ∑p

i=1(−1)i(P 
 P)(df1 · · · ˆdfi · · · dfp; dfi, · · · ) = 0 ,

(4) JQQ(dfp; · · · ) + ∑p

i=1(−1)i(P 
 Q)(df1 · · · ˆdfi · · · dfp; dfi, · · · ) = 0 .

These together are also sufficient for the bracket A = Q + 1 ∧ P to satisfy the Funda-
mental Identity.
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REMARK 4.1. When p = 1, if we interpret the formulas properly, the relation obtained
from the above is expressed as

[P,Q] = 0 , [Q,Q] = −2P ∧ Q, (27)

which is the usual definition of Jacobi structure.
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