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Geometric Generalization of Gaussian Period Relations with Application
to Noether’s Problem for Meta-Cyclic Groups

Ki-ichiro HASHIMOTO and Akinari HOSHI
Waseda University

Abstract. We study Noether’s problem over Q for meta-cyclic groups. This paper is an extension of the
previous work [2], which was concerned with the cyclic group C;, of order n. We shall give a simple description of
the action of the normalizer of C; in Sy to the function field Q(xy, - - -, x;), in terms of the generators of the fixed
field of C;, given in [2]. Using this, we settle Noether’s problem for the dihedral group of order 2n (n < 6) and the
Frobenius group of order 20 with explicit construction of independent generators of the fixed fields. We shall also
reconstruct some simple one-parameter families of cyclic and dihedral polynomials.

1. Introduction

Let K = Q(xy, -, x,) be the field of rational functions in n variables on which the
symmetric group S, of degree n acts through the permutation of the variables. The problem
with which we are concerned is to determine whether, for a transitive subgroup G of S, the
subfield K¢ consisting of the G-invariant elements of K is again a rational function field
over Q or not. This is called Noether’s problem for G (over Q) and has been one of the
central problems in Galois theory (cf. [14],[25], [3]). In the case K G is known to be rational,
it is important to construct a set of independent generators of K¢ = Q(ty, - - -, t,) over Q
explicitly, because one obtain from this a Q-generic G-polynomial (cf. [3]) with parameters
1, -+, 1y, which can be applied to various problems in number theory when the generators
are chosen to be simple enough. In this context, we emphasize that our assumption on the
constant field to be Q is fundamental.

For abelian groups, Noether’s problem has been studied by various authors and a crite-
rion under which it has an affirmative answer is known (cf. [8], [9]). In particular, for the
cyclic group C, of order n, Noether’s problem over Q is known to have a negative answer for
infinitely many n (e.g. n = 8m (m € N), 47,79, 113, 137, etc.), see [17],[11,[24],[8].[9].[25],
[3]. On the other hand, very few is known for Noether’s problem in the case of non abelian
groups, except for the trivial case G = S,, where the fixed field is generated by the elementary
symmetric polynomials.

Received June 9, 2003; revised September 17, 2004

The first author is partly supported by the Grant-in-Aid for Scientific Research (B), No.15340015, Japan Society for
the Promotion of Science.

The second author is supported by Grant-in-Aid for Scientific Research for JSPS Fellows.



14 KI-ICHIRO HASHIMOTO AND AKINARI HOSHI

We note that, regardless of the answer to Noether’s problem, it is important to find a
reasonable set of generators of K¢ over Q and their (possible) relations, by several reasons.
Obviously, it is often the first step to the solution of Noether’s problem. Moreover, as it occurs
in the present work, it is possible that if we do this for a normal subgroup H of G, then the
description of the induced action of G/H on K becomes much simpler. The third reason is
directly related to the possible description of the set of all G-extensions over an arbitrary field
of characteristic 0, without assuming the existence of generic G-polynomials.

In this paper we study Noether’s problem over Q for meta-cyclic groups. We shall settle,
among others, Noether’s problem for the dihedral group of order 2n (n < 6) and the Frobenius
group of order 20 with explicit construction of independent generators of the fixed fields.

MAIN THEOREM. Let G be the dihedral group of order2n (n < 6) (resp. the Frobenius
group Fyo of order 20), which is regarded as a permutation group of order n (resp. 5). Then
Noether’s problem over Q for G has an affirmative answer. Namely we have

Q(-xls"'axﬂ)G=Q(f1’""f;1)7 fl""’fn S Q(xla"'sxn)
where n = 5 for G = Fa.

The explicit form of the generators f1, - - -, f, will be given in the text.

The above result is obtained as follows. In the previous paper [2], we discussed a new
approach, which is called a geometric generalization of Gaussian period relations, to study
Noether’s problem for the cyclic group C, of order n. We obtained, among others, a system
of generators u; j (0 < i, j <n — 1) for the fixed field KCn.

In the present paper, the group G is chosen to contain C, as a normal subgroup such
that G/C,, is a cyclic group. More generally, we consider the group of one-dimensional affine
transformations over Z/nZ which acts on Q(yo, - - -, y,—1) through the natural action on the
indices of y;’s. Then we shall show in the key lemma of section 3 that the induced action
of the quotient group by C, on K& = Q(u;, ;10 < i, j < n —1) has a remarkably simple
description. Using this, we settle Noether’s problem for each group G in the theorem by a
case study with direct computaion. As application we shall reconstruct some “simple” one-
parameter families of cyclic and dihedral polynomials.

The calculations in this paper were done by using computer manipulations with MAPLE
and Mathematica [26] in Section 6.

2. Review of previous result

Here we describe briefly the idea of our approach by reviewing our previous work.

In [2], we discussed a new approach, which is called a geometric generalization of
Gaussian period relations, to study Noether’s problem in the case which G is the cyclic
group C, of order n. We gave, among others, explicit independent generators of the fixed
field K¢ (n = 3,4, 5), from which we constructed a simple one-parameter family of poly-
nomials with Galois group C,, (3 < n < 7) by specializing the parameters. This approach is
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briefly described as follows (see [2] for details). Let n > 2 be a positive integer, yo, - - -, Yn—1
be independent variables, where the subscript of y is taken modulo n. Let o be the cyclic
permutation of yg, - -+, yy—1,1.€. 0 : Yo > Y1 > -+ — Y1 > Yo. We define the n x n
matrix R by the anti-circulant matrix

Yo Y1 Yn—1
yrooo» Yn
R = ) ;
Yn—1 Yn *°° Yn=2
and denote by D the diagonal matrix Diag(yo, - - -, y»—1). We shall number the rows and

columns of the matrices from 0 to n — 1 to allow the use of residue classes modulo n. We see
that the matrix R is invertible which enables us to make the following:

DEFINITION. We define the n x n matrix U = [u; jlo<i, j<n—1 by the equation
U:=RDR . (D

We call the entries u; j, (0 < i, j <n — 1) of the matrix U the elementary cyclic elements of
order n.

The equation (1) is equivalent to the following system of relations, which is satisfied by
Gaussian periods and cyclotomic numbers in cyclotomic fields (see [2]).

n—1
Ym Ym+i :Zui,jymﬂ-, for 0 <m,i <n-—1.

Jj=0
Hence the y;’s and the u; ;’s are regarded as geometric analogues of Gaussian periods and
cyclotomic numbers, respectively. This is the reason that we call our method using the el-
ementary cyclic elements a geometric generalization of Gaussian period relations. We see
that u; ; € Q(yo, -+, Yn—1) and o (u; j) = u; j for 0 < i, j < n — 1. Note that the u; ;’s
are homogeneous o-invariants of degree one, i.e., they can be written as u; ; = f/g with
f, g € Qlyo, - -+, Yn—1] which are homogeneous and deg f — deg g = 1. The crucial fact in
[2] is that the elementary cyclic elements u; ; generate the fixed field Q(yo, - - -, Yn— D" over
Q (see [2, Key lemma]). Namely we have

QUos - YD) = Qi |0 <i,j<n—1).

As a matter of fact, Q(yo, - -, yn—1) is a root field of the characteristic polynomial of the
matrix U = [u; j]o<i, j<n—1. Moreover, the elementary cyclic elements u; ; of order n satisfy
the following properties (see [2, Proposition 3.2]).

uijj=u—ij—i, 0=ij<n-=-1)), )

niluu_ Yor gy i =0 mod n, 3)
pard L 0 if j#£0 modn,
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n—1 n—1
S wikujrik= wjtikik. O=ijl<n—1). “)
k=0 k=0

By using (2)-(4), for n > 3, we have
Qo, - D" =Quij |1 <i<j<n—1). )

This means that we can always choose n(n — 1) /2 generators of Q(yo, - - -, Yn—1 YCn over
Q. However since n(n — 1)/2 > n for n > 3, the equation (5) is not enough to give a solution
of Noether’s problem for C,,.

Therefore, in order to give an affirmative answer of this problem, one should show that
Q(u;,j |1 <i < j <n—1)is generated by exactly n independent rational functions over Q.

In the previous paper [2], we gave a set of n generators of the fixed field
QWyo, -y Yn— D¢ forn = 3,4,5 by using the elementary cyclic elements of order n as
follows:

Q(o, y1, y2) = Q(u1.0, u1.1, 41.2) ,
c
Q(yo, y1, 2, ¥3)"* = Qu1,0, u1,1, 11,2, u1,3) ,
Q(y0. Y1, ¥2. ¥3, 4) S5 = QU1 3 — U1, 1.4 — Uy 0, U — U120, UD3 — W12, UD 4 — UT2) -

Note that the rationality and a set of generators for these fields has been known (c.f. [14],
[12]). However, our method using the elementary cyclic elements u; ; has some advantages.
Firstly we do not need a primitive n-th root of unity (cf. [12]), and a generating polynomial
for the Cp-extension Q(yo, -+, yn—1)/Q00, - - -, y,,_l)c" is obtained directly as the char-
acteristic polynomial of the matrix U. This enables us to reconstruct simple one-parameter
C,-polynomials (e.g. whose constant term is equal to one) which have been discovered as
Gaussian period polynomials by several authors (e.g. [7],[15], [21],[22]), see also [2]. Sec-
ondly, while in the original case of Cj,-extensions of Q generated by Gaussian periods the
C,-fixed field Q admits no nontrivial group action, the field Q(yo, - - -, yn—1) generated by
geometric generalization of Gaussian periods admits the action of meta-abelian groups which
induces a nontrivial group action on the C,-fixed field Q(yo, - - -, Yn—1 )G,

3. Induced action of G/C, on K¢ : Key Lemma

Let Aff(Z/nZ) be the group of one-dimensional affine transformations x — ax 4+ b over
Z/nZ. Namely we have

Aff(Z/nZ) = {( g 11’ )

The subgroup of Aff(Z/nZ) consisting of the elements satisfying a = 1 (resp. b = 0) is
identified with Z/nZ (resp. (Z/nZ)*), so that we have

Af((Z/nZ) = (Z/nZ)x(Z/nZ)* .

a e (Z/nZ)* beZ/nZ } .
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By the above identification, each A € (Z/nZ)* is associated to the permutation T, of variables
Y0, -+, Yu—1 satisfying

iy, O0O<i<n-—-1).

Note that 7, (y9) = yo. Let F be a subgroup of Aff(Z/nZ) which contains Z/nZ. Then we
can write F = (Z/nZ) x S with a subgroup S C (Z/nZ)*. Choosing a system of generators
of § suitably, we can express F as (o) X ({tx,) X --+ x (13,)). For example, the dihedral
group D, of order 2n is represented as D, = (o) x (1_1).

Now the important natural problem which arise here is to study the action of F on
Q(yo, - - -, yn—1) defined through the permutation of the variables yg, - - -, y,—1, and ask the
Noether’s problem in this setting. Since we have already a general description (5) for a system
of generators of the fixed field Q(yo, - - -, yo—1)'“’ by the subgroup C, = (¢), the problem is
reduced to the study of the action of § = F/C, to Q(u; ; | 0 < i, j < n — 1). In particular
we have Q(yo, -+, ya—1)" = QQui j |0 < i, j <n—1)°5.

For the study of this field, the following lemma plays a fundamental role.

KEY LEMMA. Let F = (Z/nZ) x S be as above. Then the action of F on
O, -+, yn—1) defined by the permutation of yo,---, yn—1 induces the action of S on

O0o, -+, y,1_1)<") =Q(u;;10=<i,j<n-—1),andis given by
O=<i,j<n-1) (6)

T tUij > Uy,
foreacht) € S.
PROOF. We take the n x n matrix B), := [8;; jlo<i, j<n—1, Where §; ; is the Kronecker’s
delta. For any n x n matrix A = [a; jlo<;, j<n—1, We have
BAABA_I = lay-1;5-1jlo<i,j<n—1-

By the definition (1), we obtain that U = RDR~! and

G (R) = G[yitiloes jent) = V2649 loi jen_1 = BLRB;

6.(D) = 1.([81 ¥iloi jenr) = [81.0 Milozi jepoy = BLDBL

n(R) = @R =BR B
Hence the assertion follows from

0.(U) = (Rt (D)1 (R™) = BLUB; ' = [uy-1; -1 lo<i j<n—1 - O

By using this result we shall give a set of independent generators of the fixed fields
Qx1, -+, x)P (n = 3,4,5,6) and Q(x1, - - -, x5)F20 explicitly, where D, = (Z/nZ) x
{£1} is the dihedral group of order 2n and F>g = (Z/5Z) x (Z/5Z)* is the Frobenius group
of order 20.

We need some more lemmas to study Noether’s problem for the dihedral groups D,,.
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LEMMA 1. Let K = Q(x1, -+, Xxn) be the field of rational functions in n variables,
and o be the linear Q-automorphism of K of order two such that

o xi—> —x;, (A=1,---,n).
Then we have K = Q(xlz, X1X2, **, X1Xn)-
PROOF. We have K = Q(xi1, x1x2, -+, x1x,) and a(x1x;) = x1x; fori = 2,---,n.
The assertion follows from this, since K is a quadratic extension of Q(x12, X1X2, ++, X1Xp)
and Q(x?, x1x2, - -+, X1x,) € K. m

LEMMA 2. Let K = Q(ay,---,ay, by, -, by) be the field of rational functions in 2n
independent variables, and B be the linear Q-automorphism of K of order two such that

,3 L ap = bi = a, (l'=1,~',1’l).

Then we have K'¥) = Q(ay + by, -+, ay + by, (a1 — b1)?, (a1 — b1)(az — ba), -+ -, (a1 —
bl)(an - bn))~

PROOF. We make the following transformation of the variables.
al/::al+blv (izlv"'vn)s
b;:=a;—b;, (@(=1,---,n).

Then we clearly have K = Q(a}, - -+, a,, b}, ---,b;,), and B acts on K as

B :al+al, b —b, (=1--,n).

It follows from Lemma 1 that K ) = Q(ay, -+, a, b/lz, bib), -, biby). |

s Yo
REMARK. We apply this for § = t—_ and D,, = (o) x (r_1). From (5) and Key lemma
(6) it follows that for any n, Q(yo, - - -, Yn—1 )Pn s generated by n(n — 1)/2 elements.

We shall make the case study on the fixed field Q(yo, - - -, ya_1)¥, FCAff(Z/nZ) in
detail for each degree < 6.
4. The cubic case, C3 and S3

In this section, we treat the case n = 3. From (2) We see that the matrix U = [u; ;] is of
the following form

A B C
U=| B C D ,
C D B
where by the definition (1) we have
2 2
A=Y ol(—yg+ygyiy)/detR, B =Y o'(=yj ¥ +y0y7)/ det R,

i=0 i=0
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2 2
C'=> o' (v — 5 yD)/detR, B = o'(—y y1 + ¥ y1 y2)/ detR,
i=0 i=0
2 - 2
C=> o' gyy2—yoy)/detR, D =) o (ygyi — 5y y2)/detR,
i=0 i=0

and det R = —(yo + y1 + y2) (33 — yoy1 + ¥7 — Yoy2 — y1 2 + ¥3).
Let 0 = (012) be the cyclic permutation of order three and 7 := 7_; = (12), so that

Ci= (o), D3=38;3=(0,1).

By Key lemma, we see that 7 acts on Q(yo, y1, y2)!% = Q(u;,j 10 <i,j <2)as follows:
t:A»A, B»C~B, B~CH—B, D~—D. @)
It follows from (5) that
Q(y0. y1. ) =Q(B,C.D). ®)

and hence from (7) and (8), we have

Q(v0, y1, )% =Q(B+C,BC,D).

5. The quartic case, C4 and D4

We study the case n = 4 in this section. From (2), we see that the matrix U = [u; ;] is
of the following form

AN B C D

y_| B D Ei E
~| Cc Es C Es
D E; E B

For example, from the definition (1), we have
3
B =) (=D (=ygy1 = Y0yi y2+ ¥ y1% —2Y0 Y7 ¥3 + Yo ¥1 y2y3)/ det R,
1:0
Ev =) (=D 0 (=33 3] + 33 y1 32+ ¥ T y2 = yoy1y3 — 233 y1 y2¥3)/ det R,
i=0
D =tB), Ex=r1(Ey),

and det R = —(yo+ y1 +y24+ y3) (0 — Y1 +y2— y3) (0 +¥1 —2y0 y2+ y3 =2 y1 y3 + ¥3).
Let 0 = (0123) be the cyclic permutation of order four and 7 := 7_; = (13). We see

that
Cy= (o), Dy={o,r1).
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By Key lemma, 7 acts on Q(yo, y1, y2, ¥3)'?) = Q(u; ; | 0 < i, j < 3) as follows:
t:A-A, B»D~B, C~C, B»D—B, C~C, (9
Ei—~ E>— Ey, E3z— Ej.
Using (4) and (5) for n = 4, we first have
Q0. y1,y2, ) =Q(B,D,E1,E2)  (cf. [2]), (10)

and then using (9) and (10), we obtain a set of independent generators of Q(yo, y1, y2, y3)?%.
THEOREM 3. We have
Q(y0, y1,y2, ) = QB + D, Ey + E2, (B—D)*, (B - D)(E1 — Ep)).

PROOF. We see that (D4/Cs) = (t) acts on Q(yo, y1, y2, y3)¢* = Q(B, D, Eq, Ep) as
7:B~ D~ B, E{— Esr Eq. Thus the assertion follows from Lemma 2. O

APPLICATION 1. From the above results on Q(yo, 1, y2, ¥3)*, Q(yo, y1, v2, y3)P4,
one can construct families of cyclic and dihedral polynomials of degree 4. In order to sim-

plify the argument, we use the following non-singular linear transformation of the variables
B, D, E1, Ea (cf. [2]).

s:=B+D+E1+E>, B=(s+t+u+v)/4,
t:=B-D+E1 —E», D=(—-t—u+v)/4,
u:=B-D-E1+Es, Ei=(6+t—u—-v)/4,
v=B+D-E{-E>s, Ec=(s—t+u—v)/4.

Then it follows from (10) that Q(yo, y1, ¥2, y3)c4 = Q(s, t, u, v). Indeed one can check this
assertion directly as follows:

252t 4+ s2u + tu? + 3 u? — stv + suv + uv? 2st+su—2u? —tv

A/= B/:
4u(s—v) ’ 4u ’
o 28%t + s%u + tu? — u? — stv — 3suv + uv? D — 2st+su+2u? —tv
- 4u(s — V) ’ - 4u ’
co 252t — s2u + tu? — u? — stv + suv — uv? E. 2st—su—tv (an
- 4u(s — V) ’ 8= 4u ’
where

s (o + y2)(y1 + y3) Ct= (o — y2)(y1 — y3) ’
Yo+t yir+y2+y3 Yo—y1+y2—y3
~ o=yt —y3) (o —y1 +y2 — y3)
B (Yo — y2)2 + (y1 — y3)2
= Qo+ — ¥3)2 + (vo — y2)2(y1 + ¥3)
(o — y2)? + (y1 — y3)? '

u

’
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Hence by using (11), we obtain a Q-generic C4-polynomial ¢©4(s, t, u, v; X) with four pa-
rameters S, t, U, v as the characteristic polynomial of the matrix U (i.e. as the generating
polynomial for the cyclic extension Q(yo, y1, ¥2, ¥3)/Q(S, t, u, v) of degree four).

u? + v2

g% (s, t,u,v; X) = X4 4 x3

B (W +vH(dst+2s?u+tu? —ud —4stv—2suv+tv? — uvz)x2

4u(s —v)?
(U2 + v3)(—su® + 4 82tv + tu?v — 4 stv? — suv? + tv3) X
4u(s —v)?

u? + v 242 2002 L <213 L 42,3 4 2
m(4stu—4s tu + Ss“u +tu —tu™ — 4 st°uv

+ 4 stu’v — 4 82tv? + sPuv? + Puv? — 21UV + 4stvd — v .

Since the action of 7 on Q(s, t, U, v) is given simply by S+~ S, t+—> —t, U> —U, V>V,
we also have Q(yo, y1, y2, y3)24 = Q(s, 12, tu, v) from Lemma 1. Putting T := 2, U:=tu
we obtain a Q-generic D4-polynomial gP*(s, T, U, v; X) as the generating polynomial for
the dihedral extension Q(yo, y1, y2, ¥3)/Q(S, T, U, v) of degree 8.

gD4(S, T, U v:X):=X*+ %X3
- (U? 4+ Tv3)(4s*T? +282TU + TU? — U3 —4sT?>v — 2sTUv + T?v2 — TUV?) 52
4T2U(s — v)?
N (U? + Tv2)(—sU3 + 4 82T2v + TU?v — 4 sT2v2 — sTUVZ + T2v3) X
4T2U(s — v)?

N u? + Tv?
16 T2U(s — v)?
— 4872 + $°TUV? + T2Uv? — 2 TUPV? +4sTA — T2V

(48’T?U — 48°TU? + °U° + TU? — U* —4sT?Uv + 4sTUV

We seek a suitable specialization of the parameters of the above polynomials to obtain
simple families which can be used to study various problems in algebraic number theory, such
as construction of units, unramified extensions, etc. We shall describe three examples for such
specialization.

(i) We specialize the parameters of above gC4 (s,t,u,v; X) (resp.
gP4(s, T,U,v; X)) as s:= (U*+12)/4, t:=u/2, v:=2 (resp. s:= (U +12)/4,
T:=U'/4, U:=U'/2, v:=2) then we have the following simple one-parameter Cg-
polynomial over Q(u) (resp. D4-polynomial over Q(U")).

gC (W +12)/4,u/2,u,2; X) = X* +4X3 — 10+ uD) X2 +4X + 1,
gPH (U +12)/4,U/4,U'/2,2; X) = X* +4X3 — 10+ U)X> +4X + 1.
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Note that the D4-polynomial over Q(u) is obtained by the specialization u> — u from the
C4-polynomial g€+ ((u? + 12)/4,u/2, u, 2; X). This corresponds to the quadratic extension
Q(W)/Q(u).

(ii) We specialize the parameters s, v of ¢€4(s, t, u, v; X) (resp. ¢P4(s, T, U, v; X))
as 8 := 1,V := 0 then we obtain a C4-polynomial #¢* (resp. D4-polynomial #P*) with two
parameters t, u (resp. T, U) as follows:

RC(t u; X) = g% (1, t,u,0; X) = X* + u*Xx?

u@dt+2u+tu? — u3)X2 ut ul(4t? —4tu + u? 4+ 2u? —tud)

X
4 4 + 16 )
U2
hP4(T,U; X) == g™ (1, T, U, 0; X)=X4+?x3
U(4T2+2TU+TU2_ U3)X2 U4 X U2(4T2—4TU+U2+TU2— U3)
4 AT 16T '

By specializing the parameters of h¢4(t, u; X) (resp. hP4(T,U; X)) as u:=2t (resp.
U :=2T) and shifting X slightly, we obtain the following one-parameter C4-polynomial over
Q) (resp. D4-polynomial over Q(T)).

ROt 2ttt X))/t = X +4tx3 + 2 —2) X% —4tx — 12,
1 1 X

WP = = S ) TP =X 44X 420 -2T)X? —4TX - T.
<T 2T T) TAXT+2( )

(ili) By specializing the parameters of A4 (t, u; X) (resp. hP*(T,U; X)) as u :=1/2
(resp. U :=T), we get the following one-parameter C4-polynomial over Q(t) (resp. Dy-
polynomial over Q(T)).

162 hCa(t/2,t/2: t X /) /1t = X* +tx3 —6 X2 —txX — 1.
16hP4(T, T; X/2) = X* +2TX> + —6TX? —2T?>X - T°.

6. The quintic case, Cs, D5 and Fg

We treat the case n = 5 in this section. From (2), we see that the matrix U = [u; ;] is of
the following form.

!/ B/ C/ D/ E/
E Fi Gy Fp
F; D G Gg
Go Gg C Fs
Fi Gy F» B

Q
Il
moO WX
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Let 0 = (01234) be the cyclic permutation of order five, w := 70 = (1243) and 7 := 7| =
®?* = (14)(23). We see that the subgroups of Aff(Z/5Z) containing Z/5Z are

Cs=(o), Ds={o1), Fy=(00).

By Key lemma, 7 and w act on Q(yp, - - -, y4)("> =Q(u; ;|0 <1i,j <4 asfollows:

T

:A—~A, B»nE—B, C—D—~C, BE—~B, C—D~C,

F1l—>F2l—>F1, F3l—>F3, G1l—>G1, G2|—>G3I—>G2, (12)
o :  A»A, B»C—F—~D—~B, BC+—E~Dm~B,
Fi—Gg—For> Gor—~Fy, F3— Gy F3. (13)
Indeed we see from (1) that F4, Fo, F3, Gy, Go, G3 are given explicitly as follows:
4
Fr=>) o' (=3 +25yi 2+ 28y 2= %3 153 + Y031 %3 — Y0 133
i=0 3 22 3 3.2
=Y Y1y2y3—3yo¥{ Y2 ¥3+2y0y1 ¥ ¥3+ Yo yi V3
+ 295 y1 255 = 3¥0 YT y2 95 — Yoy1 3 Y3 + 23 y1y2 3 y4)/ det R,
4
Gi=) o (3 y] =¥y y2— ¥ YT ¥2 = Yo¥i Y3 — Yoy Y3+ ¥§ 2 33
i=0 2 v v3 232 1 v2 va — v 2 v2 ’ 3
F2y0y1 Y23 +2y 133 — Yoy Yo Y3+ 2Y0y1 Y5 )3
— 33 VI Y+ Yo V12 Y3 + 250 YT ¥2 95 — 3Y3 Y1 Y2 y3 ya)/ det R,
Fo=w’(F1), Fz3=w(G1), G2=0*F1), Gz=ow(F1),
where

4

detR = o' (y) —5y0¥] y2+ 555 153 + 595 YT ¥3 — 530 Y23 — Y0 ¥1 Y2 Y3 ya)

i=0
4
=Go+-+yD) Y o G — Yy + Y53 =¥yl =¥ y2+ 23 1y —3¥0yi
i=0

+ Ve Y42y Y3 —yoys +2¥eyiya+ 2y 3 — 3 Y3 y2 33 — Yoy y2 v3) -

By using (4) and (5), we obtain that

Q(yo, -+, y4) = Q(Fy, F2, F3,G1, G, Ga) (14)

where F1, Fo, F3, G1, Go, G3 satisfy the following quartic relation (see also [2]).

F3F3 — 2F1FoF3 + F4 + F1FoF3Gy — F3Gy — 2F1F2G? + F3G? — F3G3 + G
—FZGQ + F%FgGg + F%G1G2 + FgFgG% + F2G1G§ —F4 G% — F?Gs + F§F3G3
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—F1F2G2G3 + F3G1G3 — 2F3G2G3 + F3G1G2G3 — 2 G{G2G3 + F1F3G3
+F1G1G3 + G3G3 — F2G3 = 0. (15)

This equation (15) is cubic in each variable. However we observe that, if we pick up
one of the variables Fq, Fo, F3, G1, G2, G3 and translate the others by this, then (15) is
transformed to a linear equation with respect to the chosen variable. For example, we translate
the variables by Gy, that is,

s1:=F4 —G1, So 2=F2—G1, S3:=F3—G1, S4 :=G2—G1, S5 2=G3—G1,

and see that equation (15) is transformed to

Gi(—s3 +2823s0 4+ 25183 — 55 + 5383 — 3518283 + 5383 — 25155 — 25283 + 355
+25784 — $15284 — 35354 + 2515354 + 2505354 — 25384 — 35155 + 25255 + S35
—s) — 3785 — 515285 + 25385 + 2518355 + 2 525355 — 2 S385 — S154S5 — 525485
—3535485 + 25385 + 25152 — 35282 + 5382 4 28452 — S3)
+8383 — 2518283 +55 — 5354 + 578354 + 52838 — 515 — S185 + 555355
—$15254S5 — 2 5354S5+51835% + 5582 — S5 = 0.

Hence we have Gi € Q(Sq, So2, S3, S4,S5) which implies that Q(yo, ~~,y4)c5 =
Q(sq, S2, S3, S4, S5). Namely we obtain the following.
PROPOSITION 4. We have
Q(v0. .y =Q(Fy — G1,F2 — G1,F3 — Gy, G2 — Gy, Gz — G1)..
From Proposition 4 and the description (12) of the action of 7, a set of independent

generators of the fixed field Q(yo, - - -, y4)D5 is obtained as follows, which gives an affirmative
answer to Noether’s problem for Ds:

THEOREM 5. We have
Q(y()v Y y4)D5
=Q(F3—Gy,F1 +F2 —2Gq,Go 4+ G3 — 2G1, (Fy — F2)?, (F1 — F2)(G2 — Ga)).

PROOF. We note by (12) that (D5/Cs) = (t) actson Q(yo, - - -, y4)c5 =Q(sq,---,8S5)

by

T:8S{+H>S2+> S84, S3+>8S3, S4t>Ss5t+t> S1.
Hence we obtain that Q(sq,---,s5)" = Q(S3, S1+S», Sa+Ss,(S1—S2)?,
(81 — S2)(S84 — S5)) from Lemma 2. Thus the assertion follows. O

We next consider the case G = Fp9. We first make the following bi-rational trans-
formation of the generators of Q(yo, -, y4)¢S = Q(Sq, ---,S5), where 81 = Fy — Gy,
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Ssp =Fp—Gy,83 =F3—Gq,84 =Gz — Gy,s5 = Gz — Gy.

a; =81 —So, $1=(2ar1+2az3+as+as)/4,
Qo ;=S4 — S5, So =(—2a1+2az+as+as)/4,
ag =83, S3 = as,

aq :=S1+Sp —S4 — S5, Sq=QRap+2az—ag+as)/4,
a5 :=S1+S>—2S3+S4+Ss5, S5 = (—2ax+2az—ag +as)/4.

Then we have

Q(yo. .y = Q(ay, az, a3, a4, as) ,
where
a;=Fy—F2, a=G2—-Gs, az=F3—-Gj,
a4 =F1+F2-G2—-G3, as=Fi+F2-2F;3-2G1+G2+Gs.
Using this, we obtain a set of independent generators of the fixed field Q(yo, - - -, y4)f2,

which gives an affirmative answer to Noether’s problem for F:
THEOREM 6. We have
Fa _ 2 2 (52 2
00y, -+, y4) ™ =Q(aj + a3, (a7 — a3)as, ajaras, azas, as) .

PROOF. From (13), (F20/Cs) = () acts on Q(yo, - -, y4)©* = Q(ay, az, ag, a4, as)
as

w:a{r~>axt+—> —ay+—~> —az+—~aqy, azr> —az, agt> —a4, ast> as.

We put bz := ajapag, bs := aga, then we have Q(yo, - - -, y4)5 = Q(ay, az, b, bs, as)
and see that the action of w on these generators is given as

ai> as > —aq{— —asr>ay, bzr>bz, bgr> by, as— as.

It is well known and easy to show that
2 2
a;y —a
Q(ay, @) = Q<a% +a3, %) ,

1d2

(see, for example, [4], [3]). The assertion is now an easy consequence of these results. O
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7. The sextic case, Cg and Dg

In this section, we study the case n = 6. From (2), the matrix U = [u; ;] has the
following form.

/ B/ C/ D/ E/ F/
F Gy Hy b Go
Gs E lb, J Ho
H3 I3 D Hz I3
b J Hy C Gg
G1 H4 l4 G1 B

MmMmMOO® >

Let 0 = (012345) be the cyclic permutation of order six and 7 := 7_1 = (15)(24). We see
that the subgroups of Aff(Z/6Z) containing Z/6Z are

Co = (o), D¢ = (o, 7).

By Key lemma, 7 acts on Q(yo, - - -, y5)'”) = Q(u; j | 0 < i, j < 5) as follows:
t:A—»A, B»F~—B, C—FE~C, DD,

B~F~B, C—~E~C, DD, GGGy, Gz Gs,

Hi—»li—~Hy, Ho—lor—Hy, Hzr—Iz—Hz, J—J. (16)
We first prove the following lemma which is analogous to the equation (14) in the quintic
case.

LEMMA 7. We have

Q(y0. -+ 5)“ = Q(Gy. Gz, Ga. Hy, Hz. Ha. 11, I2. I3) .

PROOF. From (5), we have that Q(yo, -+, y5)% = Qu;; | 1 < i < j < 5),

where u; j is the elementary cyclic elements of order 6. Hence we should show that

B,C,D,E,F,J € Q(Gy, Go, G3,Hy,Hso, H3, I1, |2, I3). By using (2)-(4), we obtain the
following four quadratic relations.

DHy + Hi + DHz — FHz + HyHz — BH3 — GoHs

— GgHz — HoHz — Gily — Galo + Hylz + Gals + Gl = 0,
GoH1 + GyHz — GiH3z — GgHz — DIy — Hal4

— 13 +Blz — Dla — 4z + Fl3 + Gylz + Gglz + l2l3 = 0,
GzHz — GoHz — DIy + Ely — Dl — Hylp

—l4lp — I3+ Clg + Galg + l1l3 + H1J = HaJ + 13 = 0,
CHj — DHy — DHp — HyHz — H3 + EH3

+ GiHg + HiHz — Haly + Galo — Gylg + HaJ + 11J — 13 = 0.
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Observe that this is a system of linear equations in B, C, E, F. Hence we easily solve this as

B = (—~GaH1Hz — G1H3 + G1HaH3 + GaHaH3 + DHaly + H3ly + Hal? + DHalp
+Halqlz — DH1l3 — H3l3 — DHal3 — GiHalz — GaHalg — HyHal3 + GaHsls
+Gg3Hsls + HaHsls 4 Gilyla 4 Galalz — Hylals — Halola—Gol3 — Gal3)/

(Hzl2 — Halz),

C = (GaHaH3 — GaH3 + DH1l4 4 DHaly + HyHaly + H3ly — DH3ly — GiHaly
—HyHaly 4+ Hal} — DH3la — HyH3lp — Glylp — Halylz — Hal3 4+ GaHsls
+Giltlg + Halilz + HyHad — H3J — Halid — 13 + Halad+l113d)/

(Hyly —Halz),

E = (=GgH{Hz + GoHyH3 + DH1ly + DHylp + Hilo + Hylylo + Hyl3 — DHyl3
~GgH1l3 — DHalg — HyHalz — H3l3 + G1Hals + HiHals — Hil4l3 — Halql3
+Gslalg — G113 — H3J + HiHad — H1lad + Halagd + 1113 — 13J)/(H1l1 — Hala)

F = (GoHyHz 4+ GiHzaH3 — G1H3 — GaH3 — DH3ly — HaH3ly — Hal? 4+ DHyla + H3lo
+DHala + HyHalp — DH3la — GoHgla — GgHgla — HoHalo — Gylylz — Hslylo
—Gol3 + H1l3 + GiHsls + GaHals + Galals + Galals + Halals) /(Hal2 — Hals) .

It follows that B, C, E, F € Q(D, Gy, Ga, G3, H1, Ho, Hs, I1, I2, I3, J). From above equa-
tions and (4) again, by using computer manipulations (e.g. Mathematica [26]), we can find
the following relations of D, G+, Ga, Gg, H1, Ho, Hs, 11, I2, I3, J.

GiHz — GgHz — Haly — Gl + Hilz2 + Gslg + J(=G1 + G2 —Hy + Hg + 11 — 13)=0,
¢1(D, G1, G2, Gg, H1, H2, Ha, 14, I2,13) = 0,

where
¢1(D, Gy, G, Gz, Hy, Ha, H3, 14, I2, I3) ==

D(H1 + Hz — Iy — I2)(H1l2 — Haly — Hlz + Hsls) + G2HiHs + GiH{HzHs3
+GgH1HaH3 + GyH3H3 — GiH{H3 — GaHyH3 — GyHaH3 — GaHoH3 — GoHyHaly
—G1HzHgly — HiHaH3ly — H3Hgly + GyH3li + GgH3ly — HiHgl3 + Hsl + H3lo
—GiHzlz — G2GgHazlz + GiHiHzlp + GgHyHalp + HiHzlz — 2GoH1Hgla
—GgH1Hala — G1HaH3lo — HiHaHglo — H3Hglo + GyH3lo + GaH3lo — GiHql4l2
—H3ltl2 — HyHal1lz + GaHalilz + GaHaltlo — HiHaltlz + G131 + 2H303 12
—GaH113 + GoHal3 + GaHal3 4+ G1l113 + Galt13 — Hyly13 4 Haly13 4 Gal3
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—H113 + GiHgls + G2GgHsls + HiHsls + G1HaHsls + GaHaHals + HiHaHsls
~GaH3ls — GaH3ls — 2G1Hglils — GaHalils + H3l1l3 + GaHilals + GaHylals
+HiHalalz + H3lolz — GiH3slalz — GaHslalz — GaHslals + HiHalols + HaHslals
+H3lal3 — Gaolilalg — Gallalg — Halilalg — Gal3ls — Gal3ls — Hal3ls + GoHal3
+GgHglz — HiH3l3 — HzHgl3 . 17

It follows that D, J € Q(G1, Go, G3, H1, Ha, Hs, |4, I2, I3), which completes the proof. O

By the same way as in the proof of Lemma 7 above, we obtain the following three

relations of D, Gy, Go, Gs, Hy, Ho, Hg, I1, I, I3.

r1(D, G1, Gz, Gz, H1, Ha, Ha, I1, 12, 13) = 0,
r5(D, Gy, Gz, Gg, Hy, Ha, Hz, 11, 12, 13) = 0,
r3(G1, G2, G, Hy, Hz, Hs, 11, 12, 13) = 0,

where
ri(D, G1, G2, Gs, H1, Ha, Hz, Iy, I2, I3) := 7(¢1(D, G1, G2, Ga, Hy, H2, Hg, 11, I2, 13)) ,

ry(D, G1, G2, Gs, H1, Ha, Hz, I1, I2, I3) :=

D(—HyHaly — HiHzly + H3l2 — GiHzla + GoHalo — HiHala + Halylp 4 Halqla
—H413 + Hal3 + H3lz + HiHal3 4+ G1H3lz — GoHals — Hylol — Halalg) 4+ GoHiH,
+G1H{H3 + GoH3H3 — GagHiHaHz — GiH{H3 — GaHyH3 — HiH311 — HyHaH3l4
—H1Hz13 — HiHgl} + H3lo — GiHalo — G1GgHalz + HiHalo — GiH31o + GoH3la
—H1H3l2 — 2GoH1H3lp — GgHiH3lo — G1HaHsl2 + GoHaHslo + GaHaHglo
—H1HzHglz + G1H3l2 + GgH3l2 — GiH1l1l2 + GaHzlylz + GaHal1lz — HiHalyl
+H31112 — HyH3lylo 4+ HaHalila + Hal3lo — GaH1l3 — GiH2l3 + GoHal3 — HiH213
+GaH3l3 + GaHal3 + HaH3l3 + G115 + Halq13 + Hal1 13 + Gol3 — Hyl3 + H3 13
+G1HyHalz + GaH1Halz 4+ H3Hal3 + GiH3l3 + G1G3Hsls 4+ GiHyHals
—2GgH1Hsls — GaHaHals + GiH3l3 — GoH3ls — GiHql1l3 — GaHslyls — GaHalyls
+H3l313 + GaHilals — GiHalals — GaHalols + HiHslals + HoHalols + Gylilals
—Gsl3ls — Hyl3l3 — Hal3l3 — Hal3ls + GoHy13 + GaH1l3 — Galal3 — Galal3,

r3(Gq, Go, Gz, H1, Ho, H3, I1, I2, I3) := G1G2 — G% — GoHq + H% + GgH2

—H% + GiHs — GoHz — G4l1 — Hql1 + |$ + Gala + Halp — |§ — Gylz+Gals.
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We eliminate D from the relation { = 0 (resp. 5 = 0) by using ¢; = 0in (17), and
obtain a relation r; = 0 (resp. rp = 0) of G1, G2, G3, Hy, Ha, Hs, I1, l2, I3. Thus we have
three relations r{ = 0, r, = 0, r3 = 0 of Gy, Go, Gg, Hy, Ho, H3, |1, I2, I3. Next, as in the
quintic case, we transform the variables as follows:

V1 :=G1—G3, V2:=G2—G3, V3:=H1—G3, V4:=H2—G3,

V5::H3—G3, Vg := |1—G3, V7 = |2—G3, Vg (= |3—G3. (18)

Then it follows from Lemma 7 that Q(yo, - - -, y5)C6 = Q(vq,---, Vg, G3) and we see that
the quartic relation r1 (G, G2, Gs, Hy, Ha, Hs, 11, I2, I3) is transformed to a linear relation
in G3.

r1(v1 + Gs, Vo + Gg3, Ga, v3 + G3, V4 + Gg3, V5 + G3, V6 + G3, v7 + G3, Vg + G3) =
G3(V3 — V5 — Vg + Vg) (V] — V3 + 2VaV3 + 2V3 4 2V4Va + VoVa + 2Vavg — VqVs
—VoV5 — 2V3Vs — 2V4V5 — 2V1Vg + V4Vg + 4 V5Vg — 2v(25 —V1V7 — 2VaV7 — V3V7
+4V5V7 — 2VgV7 -+ V1Vg + VaVg — 4 VaVg — 4 V4Vg + 2 VgVg + 2 V7Vg) + VaV3
2 2 2 2 2 2 2
+V1V3V4 + VoV3V4 + V{V3Vy — V1V3Vs — VaV3Vs — 2V1V3Vy4V5 — VoV3V4Vs — V1V4V5
2 2 2 3 2 2 2
+V1V3V5 + V{V4V5 — VaV3Vg + V3V — V{VaVe — V3V, Ve + V5V5Ve + V{V3V5Ve
—V2V3V5Vg — V1V3Vg — 2 V3Va — VaVaVg + VaVsV3 — VEVG -+ V1V + VaVg — VaVav7
2 2 ) 2 v2 2 2 2 2,2
+V5V5V7 — V3VeV7 + 2V3Vs5VeV7 — 2V5VeV7 + V4 VgV7 + VoVgV7 + V3VsV7 — VgV7
2 2 2 2 2 2 2
+VaVgV7 — V3VgV7 + V1V3Vg + V{V4Vg — V{V5Vg — V5V5Vg + VoV3Vs5Vg — V3VsVg
+V3V5Vg — V1VaVg -+ VoVEVg — V1V3VgVg -+ VaVaVeVs + V3VeVg + 2 VaVaVeVg
+V‘21V6V8 + V1V5VgVg + 2 V3V5VgVg + V4V5VEVg — V4 V%Vg — VgV%Vg — V5V%V8
2 2 2.,2 2 2.,2
+V3V5V7Vg — V1VgV7Vg — 2 VaVgV7Vg — VaV7Vg + V5V7Vg — VgVg — 2V3VaVg — VyVg
2 2 2 2 _
+V{VsVg — VaV5Vg + VaVgVg + Vov7vg = 0.
Hence we have Gz € Q(Vvq, - - -, Vg). This shows that
C
Q(y07 ) yS) 6= Q(V1 , V2, V3, V4, V5, Ve, V7, VS) -
By eliminating the variable G3 from the relation
r2(vV1 + Gg, v2 + G3, G3, v3 + Gg3, V4 + Gg3, V5 + Gz, Vg + G3,v7 + G3,vg + G3) =0,
we obtain the following relation of vy, - - - , Vg.
V1 VQV% — V2V:33 + Vé — V?V4 + V%V2V4 + V%V3V4 — V{VoV3Vg — V%V3V4 + V2V%V4 + V%V‘Z‘_
2 2 2.,2 2 3 2 2
—V{VaVy + VoV3Vy — V3Vy 4 V{V5V5 — VoVs — ViV3Vs — V1V2V3Vs + V5V3Vs

+V1V3V5 — V3V — VIVaVs + 2 V1VaVaVs — V1V3VaVs — V1VaV5 + VaViVs + ViVva
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—V4q VgV% =+ V4 V4V% — V2V4V% —Vy V%Ve — V%VG + V{VoVyqVg — V1V3V4Ve + V%V4V6
—V{V3Ve + V3V3Ve — V1VaVsVe + 2 V1VaVsVe + V1V4VsVe — VaVaVsVe — VaVaVsVe

—2V{V2Vg + 2 VaV2aVe — V1VaV3 + VaVaV3 — 2VaVaV3 + VaVsVa -+ VavsVa + vivy

+V3V% + V4V(35 — V5V% — Vé —Vy V%V7 + V%V7 — V{VoV3V7 — V%V7 + V4{VoV5V7
2 2 2 2 2 2
+V3V5V7 — V4V5V7 + VaV5V7 + V{VgV7 + V{V2VeV7 — V5VEV7 + VaV3VeV7 + 2 V3VeV7
2 2 2 24,2 2 2

—V2VsVeV7 — V3V5VeV7 — V1VgV7 — V3VgV7 4+ V{VaV7 — VoV7 4 VoV3V7 — VaVsVy

2 2 2 2.,2 3 2 2 3
—V4{VgV7 — V3VgV7 + V5VeV7 + VgV7 4+ V3Vg — V{VaVg + V{V2V3Vg — V{V3Vg + V3V
—V{VoVy4Vg + V1V3V4Vg + V4 Vng — V3V‘21V8 — V%V5V8 + V%V5V8 + 2V{V3V5Vg
—2VoV3V5Vg — v%v6v8 + V4VoVgVg + v§v6v8 — 2VoV3VgVg + V3VaVgVg + 2 V{V5VgVs
—2 VaV5VgVg — VoVaVe — V4VaVg + VgVg — 2 V1VaV7Vg -+ V3V7Vg + V1V3aV7vg
—VoV3V7Vg — V%V7V8 + VoVgV7Vg + V3VgV7Vg + V2V%V8 — VGV%VE; + V4 VgV%
—vgvf3 — 2V1V3V§ +2 v2v;3v§ — V1V4V§ + V2V4V§ + V1V7V§ — V2V7V§ =0. (19)

On the other hand, the relation 3 = 0 is transformed by (18) to the following

ViV — VoV3 + V% - Vi + V{V5 — VaV5 — V{Vg — V3V + Vé + V4V7

—V2 —Vvyvg +Vovg = 0. (20)
Therefore we have that Q(yo, - - -, y5)¢6 = Q(vq, - - -, Vg), where V1, - - -, Vg satisfy the equa-

tions (19) and (20). Using this, we obtain the following set of generators of the fixed field
Qlyo, -, y5)C6, which gives an affirmative answer to Noether’s problem for Ce.

PROPOSITION 8. We have
Q(o, -, ¥5)% = Q(Gy — G3, G2 — G3,Hy — G3,Hz — G3, Iy — G3,12 — G3) .

PROOF. We should show that vs,vg € Q(V1, Vo, V3, V4, Vg, V7). We have from (20)
that

V{Va — VaV3 + V3 — V5 — V{Vg — VaVg + Vg + V4V7 — V3 — V1Vg + VoVg
Vo — V4 '

Vg =

By using this, we can eliminate Vs from the equation (19). A direct computation shows that the
result is a linear equation in vg. Hence we have Q(yo, - - -, ¥5)¢6 = Q(V1, V2, V3, V4, Vg, V7),
which completes the proof. O

From Proposition 8 and (16), we obtain the following set of independent generators of the
fixed field Q(yo, - - -, ys)D(’. It shows, in particular, that Noether’s problem for Dg also has an
affirmative answer.
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THEOREM 9. We have
Q(o, -+, y5)% =Q(Gy 4+ Ga —2G3,Hy + 11 —2G3, Ho + 12 — 2Gg,

(G1 —G2)%, (G1 — G2)(H1 — I1), (Gy — G2)(H2 — 1))

PROOF. We see that (Dg/Cs) = (t) acts on Q(yo,---,y5)¢¢ = Q(vq,Va, Vs,
Vg4, Vg, V7) as

T:ViH Vo> Vi, V3> Vgh>Va, V4> V7 Vg4,
It follows from Lemma 2 that
Q(yo, -+, y5)P¢ =Q(V1 + Vo, V3 + Vg, V4 + V7, (V1 — V2)2, (V1 — V2) (V3 — Vg) ,
(V4 —V2)(V4 —V7)).

The assertion follows from this. O
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