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Abstract. Sheaves of spaces of generalized hyperfunctions BG and algebras of megafunctions MG are in-
troduced. The first one is a flabby sheaf. Moreover, there exist injective sheaf homomorphisms G → BG and
BG → MG, where G is the algebra of Colombeau generalized functions.

1. Introduction

Algebras of generalized functions are the framework for the study of linear problems
with singularities and, more important, for non-linear problems where the distribution theory
can not be used. We refer to several monographs and recent papers where Colombeau-type
algebras are used and developed [3]– [5], [8]–[10], [15]. The aim of this note is to give a
(natural) extension of Sato’s hyperfunctions to generalized hyperfunctions, elements of BG,

containing Colombeau generalized function algebra G as a subspace. Since BG is not an alge-
bra, we introduce the algebra of megafunctions MG, containing BG as a subspace as well as
algebra G as a subalgebra. The sheaf R ⊃ ω → BG(ω) is flabby and ω → MG(ω) is supple.
This gives possibilities for new microlocalizations involving all microlocalizations of embed-
ded Schwartz distributions, ultradistributions and hyperfunctions as elements of generalized
function algebras.

Sheaves of algebras of generalized and holomorphic generalized functions GH(Ω),

where Ω is open in C, is introduced by Colombeau [4], [5]. We refer to [7], [6], [1] and
[2] for the properties of generalized holomorphic functions. In order to illustrate the specific
properties related to holomorphic generalized functions, we note that it is known that for an
open Ω an f ∈ GH (Ω) is equal to zero if it is equal to zero in an open set of Ω . Moreover,
it is equal to zero if its value, in the sense of generalized complex numbers, at any point of Ω

is equal to zero. This does not hold for generalized functions of G which are equal zero if and
only if it holds in every generalized point. Also, if all the derivatives of f ∈ GH (Ω) are equal
to zero, at a point x ∈ Ω , it does not follow that f = 0 in f ∈ G(Ω). (Being equal to zero
means belonging to an ideal.)
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Let Ω be open in C and contain an open set ω ∈ R as a closed subset. The space of
generalized hyperfunctions is defined as BG(ω) = GH (Ω \ ω)/GH (Ω) while the algebra
of megafunctions is defined as MG(ω) = G(Ω \ ω)/G(Ω). The analysis of corresponding
sheaves is the subject of the paper.

1.1. Colombeau type algebras. Recall, if E is a vector space on C (or R) with
an increasing sequence of seminorms µn, n ∈ N, then the set of moderate nets of EM(E),

respectively of null nets of N (E), consists of nets (Rε)ε∈(0,1) ∈ E(0,1) with the properties

(∀n ∈ N) (∃a ∈ R) (µn(Rε) = O(εa)) ,

respectively, (∀n ∈ N) (∀b ∈ R) (µn(Rε) = O(εb))

(O is the Landau symbol). If E = C (or E = R) and the seminorms are equal to the absolute
value, then the corresponding spaces are EM and N . Moreover, they are algebras, N is an
ideal in E and, as a quotient, one obtains Colombeau algebra of generalized complex numbers

C̄ = EM/N (or R̄). It is a ring, not a field.
Let ω be an open set in Rn. If E = E(ω) is the Schwartz space with the (usual) sequence

of seminorms sup{|φ(α)(x)|; α ≤ ν, x ∈ Kν}, ν ∈ N0, where (Kν)ν is an increasing se-
quence of compact sets exhausting ω, then the above definition gives algebras EM(ω), N (ω)

(the latter is an ideal) and as a quotient, the simplified Colombeau algebra G(ω). The embed-
ding of Schwartz distribution space E ′(ω) is realized through the sheaf homomorphism

E ′(ω) � f 	→ [f ∗ φε|ω] ∈ G(ω) ,

where a fixed net of mollifiers (φε)ε is defined by φε = ε−nφ(·/ε), ε < 1, φ ∈
S(Rn),

∫
φ(t)dt = 1,

∫
tmφ(t)dt = 0,m ∈ Nn

0, |m| > 0. (tm = t
m1
1 · · · tmn

n and

|m| = m1 + · · · + mn.) The extended sheaf homomorphism gives the embedding of D′(ω)

into G(ω).

We will consider the one-dimensional case. The n-dimensional version of results is more
complicated as in the classical hyperfunction theory.

2. Colombeau holomorphic generalized functions

Let Ω be an open set of R2 = C. We will use notation (x, y) and x + √−1y for the

points of R2. Following [7], it is said that G ∈ G(Ω) is a holomorphic generalized function if

it satisfies ∂̄G = 0 i.e. there is a representative (Gε)ε of G such that (∂̄Gε)ε ∈ N (Ω):

(∀K ⊂⊂ Ω) (∀a > 0) (sup
z∈K

|∂̄Gε(z)| = o(εa)) .

Note, by [9], it is not needed to assume the above estimates for the derivatives ∂α∂̄Gε, ε < 1
(|α| > 0).
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Holomorphic generalized functions constitute a subalgebra of G(Ω). It is denoted by
GH (Ω). Every holomorphic function H defines a generalized holomorphic function with the
constant net (H)ε as a representative.

EXAMPLE 1. The next example will illustrate the boundary value representation as
well as the comments quoted in the introduction. Let fε(x) = t

cosh(t/ε)
, t ∈ R, ε ∈ (0, 1).

This net determines a generalized function f ∈ G(R) such that for every t ∈ R, f (t) = 0 in

the sense of generalized real numbers R̄ but f 
= 0 in G(R). Moreover, f (α)(t) = 0 in R, for
every t 
= 0.

Now define

fε(z) = 1

2π
√−1

∫ ∞

−∞
t

(t − z) cosh(t/ε)
dt , z ∈ C+ , ε < 1 .

This net defines an element of GH (C+) and it is different from zero in any point of C+. Note
that for every ε ∈ (0, 1),

lim
y→0+ Fε(x + iy) = 1

2
fε(x) − 1

2π
√−1

H(fε)(x) , x ∈ R ,

where H is the Hilbert transform, and

lim
y→0+ Fε(x + √−1y) − Fε(x − √−1y) = fε(x) , x ∈ R .

By fε(z) = z
cosh(z/ε) , ε ∈ (0, 1) is defined a moderate net in C \ {z; �z = 0} and this net

determines the zero generalized function, there. For every fixed ε, fε is real analytic, but
there does not exist a common open set V around R and ε0 such that fε are analytic in V for
ε < ε0.

We collect some results for holomorphic generalized functions. Only part v) is cruicual
for our paper.

THEOREM 1. Let G ∈ GH (Ω).

i) There exists a representative (Gε)ε ∈ EM(Ω) with Gε ∈ O(Ω) (the space of
holomorphic functions on Ω) for every ε < 1.

ii) If G = 0 in an open subset of Ω , then it is equal to zero in Ω ((Gε)ε ∈ N (Ω)).
iii) If for some z0 ∈ Ω , there exists η > 0 such that for every a > 0 there exist C > 0

and ε0 ∈ (0, 1) such that

|G(α)
ε (z0)| ≤ Cηαα!εa , ε < ε0 , α ∈ N0 ,

then G = 0.

iv) If G(x) = 0 for every x ∈ Ω, then F = 0.
v) Fundamental lemma.
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Let Ω1 and Ω2 be open sets in C such that Ω = Ω1 ∩ Ω2 
= ∅ and let F ∈ GH (Ω). Then
there exist F1 ∈ GH (Ω1) and F2 ∈ GH(Ω2) such that

F = F1|Ω − F2|Ω .

PROOF. Parts i), ii) and iii) are proved in [18]. Note that i) is also proved by Ober-
guggenberger (private communication) and ii) is proved by Colombeau and Galé [7] (the
proof in [18] is a simplification). Part iv) is proved recently by Khelif and Scarpalezos [13].

v) The proof goes in the same way as the corresponding proof for holomorphic functions

[12], [14]. First consider the case when F is extendable out of Ω i.e. there exist Ω̃ ⊃⊃ Ω

and F̃ ∈ GH(Ω̃) such that F̃|Ω = F. Also, assume that the boundaries γ1 = Ω2 ∩ ∂Ω

and γ2 = Ω1 ∩ ∂Ω are piecewise smooth, oriented in opposite directions and that they form
disjoint closed curves γ s, s = 1, · · · , r forming the boundaries of simply connected domains
Ωs, s = 1, · · · , r so that

Ω =
⋃r

s=1
Ωs , γ1 =

⋃r

s=1
γ s

1 , γ2 =
⋃r

s=1
γ s

2

where γ s
1 = γ s ∩ Ω2, γ s

2 = γ s ∩ Ω1, s = 1, · · · , r. Then, Fε , ε ∈ (0, 1), are holomorphic
on γ s and applying the Cauchy formula

Fj,ε(z) = 1

2π
√−1

r∑
s=1

∫
γ s
j

Fε(ζ )

ζ − z
dζ , z ∈ C \ γ s

j , j = 1, 2 , s = 1, · · · , r , ε < 1 ,

we obtain holomorphic functions:

Fi,ε in Ωi , i = 1, 2, such that Fε = F1,ε|Ω − F2,ε|Ω , ε < 1 .

The given integral representation and the simple estimates over compact sets K of Ω (K ⊂⊂
Ω) imply that (Fi,ε)ε in EM(Ωi), i = 1, 2. In the general case, we take sequences of domains
(Ωj,k)k, Ωj,k ⊂⊂ Ωj,k+1, k ∈ N, which exhaust Ωj , j = 1, 2, such that for every k ∈ N
Ω1,k∩Ω2,k = Ωk has a piecewise smooth boundary and that the pair Ω1∪Ω2 and Ω1,k∪Ω2,k

forms a Runge pair.
Applying the first part of the proof, we have

Fε|Ωk = F1,k,ε|Ωk − F2,k,ε|Ωk , ε < 1 , k ∈ N .

This implies

F1,k+1,ε − F1,k,ε = F2,k+1,ε − F2,k,ε on Ω1,k ∩ Ω2,k , ε < 1 , k ∈ N ,

and we obtain, for every k ∈ N, a net of holomorphic functions (Gk,ε)ε on Ω1,k ∪ Ω2,k

with the property (Gk,ε)ε ∈ EM(Ω1,k ∪ Ω2,k). By Runge’s theorem, there exists (Hk,ε)ε ∈
(O(Ω1 ∪ Ω2))

(0,1)

|G(α)
k,ε(z) − H

(α)
k,ε (z)| <

1

2k
, z ∈ Ω1,k−1 ∪ Ω2,k−1 , ε < 1 . (1)
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This condition implies that for every ε, α and z ∈ Ω1,k−1∪Ω2,k−1 the series
∑∞

j=k |G(α)
j,ε (z)−

H
(α)
j,ε (z)| is convergent. Moreover, (Hk,ε)ε ∈ EM(Ω1 ∪ Ω2). We will show this.

Let us prove (1). Since the closure of Ω1,k−1 ∪ Ω2,k−1 in Ω1,k ∪ Ω2,k is compact,

there exist a finite number of open balls Lν, ν = 1, · · · , s so that L̄ν ⊂ Ω1,k ∪ Ω2,k and
Ω1,k−1 ∪ Ω2,k−1 ⊂ ⋃s

ν=1 Lν. Taking connected components of this finite covering and their
piecewise smooth boundaries Γµ, µ = 1, · · · , p, (parts of circles), one obtains p simply
connected domains which cover Ω1,k−1 ∪ Ω2,k−1. Put

hk,ε(z) =
p∑

µ=1

1

2π
√−1

∫
Γµ

Gk,ε(ζ )dζ

ζ − z
, z ∈ Ω1,k−1 ∪ Ω2,k−1 ,

Sk,ε(z) =
p∑

µ=1

1

2π
√−1

Nµ(ε)∑
i=1

Gk,ε(ζµ,i)∆ζµ,i

ζµ,i − z
, z ∈ Ω1,k−1 ∪ Ω2,k−1

where Sk,ε are the corresponding Riemann sums. Consider (ζµ,i −z)−1, z ∈ Ω1,k−1∪Ω2,k−1.

The Runge theorm (cf. the proof given in [11], p. 37, for example) implies that these functions
can be approximated by polynomials with the prescibed precision. Noting this and that

lim
Nµ(ε)→∞

Nµ(ε)∑
i=1

|∆ζµ,i| = |Γµ| ( the measure of Γµ) ,

we can prove that Hk,ε, of the form

Hk,ε(z) =
p∑

µ=1

Nµ(ε)∑
i=1

Gk,ε(ζµ,i)∆ζµ,i

Nµ,i∑
j=1

ai
j (z − θµ,i)

j ,

z ∈ Ω1 ∪ Ω2 , ai
j ∈ C, µ ≤ p , i ≤ Nµ , j ≤ Nµ,i , ε < 1 , k ∈ N ,

are elements of EM(Ω1 ∪ Ω2) such that (1) holds.
Moreover, we can choose the Riemann sums so that (1) holds for α ≤ k.

Now one can prove that

Fj,ε = Fj,1,ε +
∞∑

k=1

(Gk,ε − Hk,ε)

= Fj,N,ε +
∞∑

n=N

(Gn,ε − Hn,ε) −
N−1∑
n=1

Hn,ε , j = 1, 2, ε ∈ (0, 1) ,

are nets of holomorphic functions in Ωj, j = 1, 2, determining generalized holomorphic
functions F1 and F2 such that the assertion of the theorem holds.



6 STEVAN PILIPOVIĆ

3. Space BG(ω)

We follow the definition of classical Sato’s hyperfunctions. We refer to [12] and [14] for
an elementary introduction which is enough for our presentation and to [19] for the extension
of the theory and the analysis of pseudo-differential operators.

Let ω be an open set in R and Ω ⊂ C be an open set containing ω as a closed subset.
The space of generalized hyperfunctions on ω is defined by

BG(ω) =
⋃

Ω⊃ω

GH (Ω \ ω)

GH (Ω)
.

Fundamental lemma implies that for any fixed Ω (containing ω as a closed set),

BG(ω) = GH (Ω \ ω)

GH (Ω)
.

Let f = [(Fε)ε] ∈ GB(ω), where the representative (Fε)ε constitutes of holomorphic func-
tions in Ω \ ω. We will use the notation

f = [(Fε+)ε] − [(Fε−)ε] , f = F+(x + √−1 0) − F−(x − √−1 0) = F+ − F− ,

where F+ = [(Fε+)ε] and F− = [(Fε−)ε] are holomorphic generalized functions in Ω+ and
Ω−, respectively.

The next theorem is also a consequence of Fundamental lemma.

THEOREM 2. R ⊃ ω → BG(ω), is a flabby sheaf.

PROOF. The flabbiness is a direct consequence of Fundamental lemma.
The sheaf property concerning the support is clear. We have to prove that for an open

covering ωλ and given fλ ∈ BG(ωλ), λ ∈ Λ, with the property fλ = fµ on ωλ ∩ ωµ,

there exists an f ∈ BG(ω) so that f = fλ on ωλ, λ ∈ Λ. In fact, with the corresponding
representatives in O(Ωλ \ ωλ), λ ∈ Λ, if Fε,µ − Fε,λ = Fε,λ,µ + rε,λ,µ, ε < 1, where

(Fε,λ,µ) ∈ (O(Ωλ ∩ Ωµ))(0,1) ∩ EM(Ωλ ∩ Ωµ), (rε,λ,µ)ε ∈ N (Ωλ ∩ Ωµ), λ,µ ∈ Λ, then

there exists an (Fε)ε ∈ (O(Ω \ ω))(0,1) ∩ EM(Ω \ ω) such that Fε − Fε,λ ∈ O(Ωλ), ε < 1,

for every λ ∈ Λ. We can assume that ω = ⋃∞
λ=1 ωλ,Ω = ⋃∞

λ=1 Ωλ and that the coverings
are locally finite.

In the case of a finite covering, the assertion is a consequence of Fundamental lemma.
(In fact, for n > 2 it is not simple but we skip this.) In the general case, let Ω =⋃∞

n=1 Θn, Θn ⊂⊂ Θn+1 so that (Ω,Θn) makes a Runge pair for every n. Since for ev-
ery fixed n we can apply the result for a finite covering, we construct the corresponding

Fε,n, ε < 1, (Fε,n)ε ∈ (O(Ωn \ ω))(0,1) ∩ EM(Ωn \ ω), so that Fε,λ,n = Fε,n − Fε,λ ∈
O(Ωλ ∩ Θn), ε < 1, n ∈ N (Fε,λ,n = 0 if Θn ∩ Ωλ = ∅). Consider the family

Fε,λ,n+1 − Fε,λ,n = Fε,n+1 − Fε,n on Θn ∩ Ωλ , ε < 1 , λ ∈ N .

Net of holomorphic functions Gε,n, ε < 1 on Θn, defined by Gε,n = Fε,λ,n+1−Fε,λ,n, λ ∈ Λ

on Θn ∩ Ωλ, ε < 1 is in EM(Θn). By the same explanation as in the proof of Fundamental
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lemma, there exists (Hε,n)ε ∈ (O(Ω))(0,1) ∩ EM(Ω) so that for every n ≥ 2 and α ≤ n,

|G(α)
ε,n(z) − H(α)

ε,n (z)| ≤ 1

2n
, ε < 1 , z ∈ Θn−1 .

Define on Ωλ \ ωλ :

Rε,λ = Fε,λ,1 +
∞∑

n=1

(Fε,λ,n+1 − Fε,λ,n − Hε,n) , ε < 1 .

Since Rε,λ = Fε,λ,N + ∑∞
n=N(Gε,n − Hε,n) − ∑N−1

n=1 Hε,n, ε < 1, it follows that (Rε,λ)ε ∈
(O(Ωλ \ ωλ))

(0,1) ∩ EM(Ωλ \ ωλ) and that, on Ωλ ∩ Ωµ,

Rε,λ − Rε,µ = Fε,λ,µ , ε < 1 .

Now, this property and Fε,λ − Fε,µ = Fε,λ,µ, ε < 1 on Ωλ ∩ Ωµ, imply

Fε,λ − Rε,λ = Fε,µ − Rε,µ , ε < 1 , on Ωλ ∩ Ωµ ,

for every λ,µ ∈ N and in this way we construct (Fε)ε ∈ EM(Ω \ω) so that Fε = Fε,λ − Rε,λ

on (Ωλ \ ωλ). This completes the proof.

3.1. Multiplication in BG. As in the classical theory of hyperfunctions [12], we

define the micro-analyticity at x − √−1dx∞, x ∈ ω.

Let f ∈ BG(ω) have a representative determined by holomorphic functions Fε, ε ∈
(0, 1) in Ω \ω, such that the restrictions on Ω+ and Ω−, denoted by F+,ε and F−,ε, ε ∈ (0, 1)

respectively, have the property that F+,ε and F−,ε can be extended as analytic functions, to

Ω+, for every ε ∈ (0, 1). Then we say that f is micro-analytic at x − √−1dx∞, x ∈ ω. We

define the micro-analyticity of f at x + √−1dx∞, x ∈ ω in the similar way.

Then it is said that x−√−1dx∞ (resp. x+√−1dx∞) belongs to the singular spectrum

of f , SSf, if f is not micro-analytic at x − √−1dx∞ (resp. x + √−1dx∞).
As in the hyperfunction theory, we define the product of generalized hyperfunctions f

and g only in the cases when their singular spectrums are in a “good position” (BG(ω) is not
an algebra). So

if f = F+ − 0 , g = G+ − 0 , then f g = F+(x + √−10)G+(x + √−10) − 0 ,

if f = 0 − F− , g = 0 − G− , then f g = 0 − F−(x − √−10)G−(x − √−10) .

A real analytic function φ is embedded into the space of hyperfunctions B(ω) as φ =
Φ(x + √−10) − 0 = Φ+, where Φ is its analytic extension in a neighborhood of ω. Clearly,
φ(x) = Φ+(x) = Φ−(x), x ∈ ω. With this notation (and embedded φ in BG as a constant
net), for an arbitrary f = F+ − F− ∈ BG, we have

f φ = F+Φ+ − F−Φ+ .
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Note, if Ψ is analytic in a neighborhood of ω, then, in the space of hyperfunctions B,

φ = (Φ(x + √−10) + Ψ (x + √−10)) − Ψ (x − √−10) .

For an arbitrary f = F+ − F− ∈ BG and an analytic φ the product in BG is:

f φ = (F+ − F−)(Φ+ + Ψ+ − Ψ−)

= F+(Φ+ + Ψ+ − Ψ−) − F−(Φ+ + Ψ+ − Ψ−) = F+Φ+ − F−Φ+ ,

where the cancellations F+Ψ+ − F+Ψ− = 0, F−Ψ+ − F−Ψ− = 0, are done.

3.2. Embedding I. We will give a canonical embedding of the sheaf of Colombeau
generalized functions into the sheaf of generalized hyperfunctions.

First, define: f = [(Fε)ε] ∈ BG(ω) (Fε are holomorphic functions in Ω \ ω) is an
element of G(ω) if for every ω0 ⊂⊂ ω there exists a net of smooth functions (gε)ε ∈ EM(ω0)

such that for every ε ∈ (0, 1) and every α ∈ N0,

lim
y→0+(F (α)

ε (x + √−1y) − F (α)
ε (x − √−1y)) = g(α)

ε (x) uniformly for x ∈ ω0 .

Now, if g = [(gε)ε] ∈ G(ω) is compactly supported, supp g ⊂⊂ ω, then the corresponding
generalized hyperfunction is defined by a net of holomorphic functions in Ω \ ω:

Fε(x + √−1y) = 1

2π
√−1

∫
ω

gε(t)

t − (x + √−1y)
dt , x + √−1y ∈ Ω \ ω, ε ∈ (0, 1) .

By Plemelj type theorems, we have that

lim
y→0+ Fε(x + √−1y) − Fε(x − √−1y) = gε(x) , for every ε < 1 .

In this way we define the sheaf homomorphism which can be extended in a usual way to the
sheaf homomorphism G(ω) → BG(ω), ω ∈ R.

The embedding of distributions and its subspaces is done in a similar way. For example,
if g ∈ E ′(ω), let gε = g ∗ φε|ε , ε ∈ (0, 1), where φε, ε ∈ (0, 1) is a net of mollifiers. This
is a net in EM(ω) and as above we determine the corresponding representative in BG(ω).

Similarly, but using appropriate classes of mollifiers, we can embed some classes of algebras
of generalized ultradistributions [17] and periodic hyperfunctions [20].

4. Algebra MG(ω)

As earlier, let ω be an open set in R and Ω ⊂ C be an open set containing ω as a closed
subset. The space of generalized megafunctions on ω is defined by

MG(ω) =
⋃

Ω⊃ω

G(Ω \ ω)

G(Ω)
.
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Let f ∈ MG(ω). We continue to use the notation

f = F+(x + √−1 0) − F−(x − √−1 0) , f = F+ − F− ,

F+ ∈ G(Ω+) , F− ∈ G(Ω−) .

By the partition of unity, as in the case of Colombeau generalized functions, we have:

THEOREM 3. R ⊃ ω → MG(ω), is a sheaf. Moreover, this sheaf is supple.

PROOF. We will only prove the second part of the theorem (cf. [16] for the suppleness
in G).

Let Z̃1 and Z̃2 be closed sets in ω and Z̃1 ∪ Z̃2 = Z̃. Let Z1 and Z2 be closed sets in Ω

such that Z1 ∩ ω = Z̃1, Z2 ∩ ω = Z̃2, and Z1 ∪ Z2 = Z = Z̃ ∩ ω.

Let f ∈ M(ω), supp f = Z̃. We have to show that there exist fi ∈ M(ω), i = 1, 2,

such that f = f1 + f2 and supp fi ⊂ Z̃i, i = 1, 2.

Let f be represented by F = [(Fε)ε] ∈ G(Ω \ω). Let ηε ∈ C∞(Ω), ε ∈ (0, 1) such that

ηε(x, y) =
{

1 (x, y) ∈ Z1

0 (x, y) ∈ Ω \ (Z1)ε , ε ∈ (0, 1)

and |η(α)
ε (x, y)| ≤ Cαε−pα , (x, y) ∈ Ω , ε ∈ (0, 1) ,

where positive constants Cα and pα may depend on α.
((Z1)ε = {(x, y) ∈ Ω; dist.((x, y), Z1) ≤ ε}.)

Let F1 be represented by (Fεηε)ε and F2 be represented by (Fε(1 − ηε))ε .

One can easily prove that f = f1 + f2, supp fi ⊂ Z̃i, i = 1, 2, where, Fi represents
fi, i = 1, 2.

4.1. Multiplication in MG. We will multiply elements of MG as germs: if f ∈
G(Ω1 \ ω)/G(Ω1) and g ∈ G(Ω2 \ ω)/G(Ω2), where open sets Ω1 and Ω2 contain ω as a
closed set, then we will consider their product in G(Ω \ ω)/G(Ω), where Ω = Ω1 ∩ Ω2.

Let

k : C → C , x + √−1y 	→ k(x + √−1y) = x − √−1y .

Assume k(Ω) = Ω, k(Ωj) = Ωj, j = 1, 2.

Let F+ ∈ G(C+). Then

k∗(F+)(x − √−1y) = F+(k(x − √−1y)) , x − √−1y ∈ C− , (y is positive)

is an element of G(C−) (k∗ makes holomorphic antiholomorphic). With the same notation we
have that

k∗(F−)(x + √−1y) = F−(k(x + √−1y)) , x + √−1y ∈ C+ ,
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is an element of G(C+) if F− ∈ G(C−). The corresponding boundary value notation is

k∗(F+)(x − √−10) = F+(x + √−10) and k∗(F−)(x + √−10) = F−(x − √−10) .

Let f = F+ − F−, g = G+ − G− ∈ MG(ω). Then we define the product f g ∈ MG(ω) by

f g = H+ − H− ,

where

H+(x + √−10)

= F+(x + √−10)G+(x + √−10) + k∗(F−)(x + √−10)k∗(G−)(x + √−10) ,

H−(x − √−10)

= k∗(F+)(x − √−10)G−(x − √−10) + F−(x − √−10)k∗(G+)(x − √−10) .

Let g = 0 in MG(ω) be represented as g = G+ − G−, where G+ and G− have the

same boundary value G ∈ G(ω), G(x) = G(x + √−10) = G(x − √−10). Then f g = 0 for
any f = F+ − F− ∈ MG(ω), because

F+(x + √−10)G+(x + √−10) − k∗(F+)(x − √−10)G−(x − √−10)

= F+(x + √−10)(G+(x + √−10) − G−(x − √−10)) = 0 ,

k∗(F−)(x + √−10)k∗(G−)(x + √−10) − F−(x − √−10)k∗(G+)(x − √−10)

= F−(x − √−10)(G−(x − √−10) − G+(x + √−10)) = 0 .

One can easily prove the next theorem.

THEOREM 4. MG(ω) is a commutative and associative algebra.

Let f ∈ G(ω). Without loosing the generality assume that f is compactly supported. We
determine its boundary value representation as in Section 3.2:

f = lim
y→0+ F+(x + √−1y) − F−(x + √−1y) = F+(x + √−10) − F−(x + √−10) ,

where F+ = F |Ω+ , F− = F |Ω− . Let

F̃+(x + √−1y) = F+(x + √−1y) − k∗(F−)(x + √−1y) , y > 0 .

It is an element of G(Ω+). With the given notation, we have

f = lim
y→0+

F̃+(x + √−1y) = F̃+(x + √−10) − 0 .

This implies that any f ∈ G(ω) can be written in the form f = F+ − 0, where F+ ∈
G(Ω+). The image of f in MG(ω) is defined by

If = F+ − 0 .



GENERALIZED HYPERFUNCTIONS AND MEGAFUNCTIONS 11

Let g ∈ G(ω) and Ig = G+ − 0. We have in MG(ω) :
I(f g) = F+G+ − 0 = (If )(Ig) .

This implies that G(ω) is a subalgebra of MG(ω).

4.2. Embedding II. We already defined the embedding of generalized functions al-
gebra G into MG. Note, if f ∈ G(Ω) satisfies f |Ω+ ∈ GH (Ω+) and f |Ω− ∈ GH (Ω−), then
the corresponding element in BG(ω) is equal to zero. This fact postulates the definition of a
sheaf homomorphism BG(ω) → MG(ω) (of vector spaces) as follows.

Let f ∈ BG(ω), f = F+ − F−. Then F+ and F− are elements of G(Ω+) and G(Ω−),
respectively. They determine an element in MG(ω) equals zero only in the case when they
are the parts of the same Colombeau generalized function but in this case f is equal to zero
in BG(ω).

With this embedding, the multiplication of embedded generalized hyperfunctions coin-
cides with the embedded product, if the product of generalized hyperfunctions exists (it is
explained in [18]).
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