Spectral Geometry of Kähler Hypersurfaces in a Complex Grassmann Manifold

Yoichiro MIYATA

Tokyo Metropolitan University
(Communicated by Y. Ohnita)

1. Introduction

Let M be a compact C^{∞} -Riemannian manifold, $C^{\infty}(M)$ the space of all smooth functions on M, and Δ the Laplacian on M. Then Δ is a self-adjoint elliptic differential operator acting on $C^{\infty}(M)$, which has an infinite discrete sequence of eigenvalues:

$$Spec(M) = \{0 = \lambda_0 < \lambda_1 < \lambda_2 < \dots < \lambda_k < \dots \uparrow \infty\}.$$

Let $V_k = V_k(M)$ be the eigenspace of Δ corresponding to the k-th eigenvalue λ_k . Then V_k is finite-dimensional. We define an inner product $(\ ,\)_{L^2}$ on $C^\infty(M)$ by

$$(f, g)_{L^2} = \int_M f g \, dv_M \,,$$

where dv_M denotes the volume element on M. Then $\sum_{t=0}^{\infty} V_t$ is dense in $C^{\infty}(M)$ and the decomposition is orthogonal with respect to the inner product $(\ ,\)_{L^2}$. Thus we have

$$C^{\infty}(M) = \sum_{t=0}^{\infty} V_t(M)$$
 (in L^2 -sense).

Since M is compact, V_0 is the space of all constant functions which is 1-dimensional.

In this point of view, it is one of the simplest and the most interesting problems to estimate the first eigenvalue. In [13], A. Ros gave the following sharp upper bound for the first eigenvalue of Kähler submanifold of a complex projective space.

THEOREM 1.1. Suppose that M is a complex m-dimensional compact Kähler submanifold of the complex projective space $\mathbb{C}P^n$ of constant holomorphic sectional curvature c. Then the first eigenvalue λ_1 satisfies

$$\lambda_1 \leq c(m+1)$$
.

The equality holds if and only if M is congruent to a totally geodesic Kähler submanifold $\mathbb{C}P^m$ of $\mathbb{C}P^n$.

If *M* is not totally geodesic, J-P. Bourguignon, P. Li and S. T. Yau in [3] gave the following sharper estimate. (See also [11].)

THEOREM 1.2. Suppose that M is a complex m-dimensional compact Kähler submanifold of $\mathbb{C}P^n$, which is fully immersed and not totally geodesic. Then the first eigenvalue λ_1 satisfies

$$\lambda_1 \leq c m \frac{n+1}{n}$$
.

It is not known when the equality holds in this inequality.

The purpose of this paper is to give the upper bound for the first eigenvalue of Kähler hypersurfaces of a complex Grassmann manifold.

Denote by $G_r(\mathbb{C}^n)$ the complex Grassmann manifold of r-planes in \mathbb{C}^n , equipped with the Kähler metric of maximal holomorphic sectional curvature c. In the case that M is a complex hypersurface of $G_r(\mathbb{C}^n)$, we obtain the following result, which is a generalization of Theorem 1.1.

THEOREM A. Suppose that M is a compact connected Kähler hypersurface of $G_r(\mathbb{C}^n)$. Then the first eigenvalue λ_1 satisfies

$$\lambda_1 \leq c \left(n - \frac{n-2}{r(n-r)-1} \right).$$

The equality holds if and only if r = 1 or n - 1, and M is congruent to the totally geodesic complex hypersurface $\mathbb{C}P^{n-2}$ of the complex projective space $\mathbb{C}P^{n-1}$.

The 2-plane Grassmann manifold $G_2(\mathbb{C}^n)$ admits the quaternionic Kähler structure \mathfrak{J} . For the normal bundle $T^{\perp}M$ of a Kähler hypersurface M of $G_2(\mathbb{C}^n)$, $\mathfrak{J}T^{\perp}M$ is a vector bundle of real rank 6 over M which is a subbundle of the tangent bundle of $G_2(\mathbb{C}^n)$. We consider a Kähler hypersurface M of $G_2(\mathbb{C}^n)$ satisfying the property that $\mathfrak{J}T^{\perp}M$ is a subbundle of the tangent bundle TM of M. In Section 5, we will provide examples satisfying this property.

For a Kähler hypersurface of $G_2(\mathbb{C}^n)$ satisfying this property, we obtain the following upper bound of the first eigenvalue.

THEOREM B. Suppose that M is a compact connected Kähler hypersurface of $G_2(\mathbb{C}^n)$, $n \geq 4$. If M satisfies the condition \mathfrak{J} $T^{\perp}M \subset TM$, then the first eigenvalue λ_1 satisfies

$$\lambda_1 \le c \left(n - \frac{n-1}{2n-5} \right).$$

The equality holds if and only if n=4 and M is congruent to the totally geodesic complex hypersurface Q^3 of the complex quadric $Q^4=G_2(\mathbb{C}^4)$.

The author wishes to thank Professors K. Ogiue and Y. Ohnita for many valuable comments and suggestions.

NOTATIONS. $M_{r,s}(\mathbb{C})$ denotes the set of all $r \times s$ matrices with entries in \mathbb{C} , and $M_r(\mathbb{C})$ stands for $M_{r,r}(\mathbb{C})$. I_r and O_r denote the identity r-matrix and the zero r-matrix.

2. Preliminaries

In this section, we discuss geometries of the complex r-plane Grassmann manifold and its first standard imbedding.

Let $M_r(\mathbb{C}^n)$ be the complex Stiefel manifold which is the set of all unitary r-systems of \mathbb{C}^n , i.e.,

$$M_r(\mathbb{C}^n) = \{ Z \in M_{n,r}(\mathbb{C}) \mid Z^*Z = I_r \}.$$

The complex r-plane Grassmann manifold $G_r(\mathbb{C}^n)$ is defined by

$$G_r(\mathbf{C}^n) = M_r(\mathbf{C}^n)/U(r)$$
.

The origin o of $G_r(\mathbb{C}^n)$ is defined by $\pi(Z_0)$, where $Z_0 = \begin{pmatrix} I_r \\ 0 \end{pmatrix}$ is an element of $M_r(\mathbb{C}^n)$, and $\pi: M_r(\mathbb{C}^n) \to G_r(\mathbb{C}^n)$ is the natural projection.

The left action of the unitary group $\tilde{G} = SU(n)$ on $G_r(\mathbb{C}^n)$ is transitive, and the isotropy subgroup at the origin o is

$$\begin{split} \tilde{K} &= S(U(r) \cdot U(n-r)) \\ &= \left\{ \begin{pmatrix} U_1 & 0 \\ 0 & U_2 \end{pmatrix} \middle| U_1 \in U(r), \ U_2 \in U(n-r), \ \det U_1 \det U_2 = 1 \right\}, \end{split}$$

so that $G_r(\mathbb{C}^n)$ is identified with a homogeneous space \tilde{G}/\tilde{K} .

Set $\tilde{\mathfrak{g}} = \mathfrak{su}(n)$ and

$$\tilde{\mathfrak{k}} = \mathbf{R} \oplus \mathfrak{su}(r) \oplus \mathfrak{su}(n-r)$$

$$=\left\{\begin{pmatrix}u_1 & 0 \\ 0 & u_2\end{pmatrix}+a\begin{pmatrix}-\frac{1}{r}\sqrt{-1}I_r & 0 \\ 0 & \frac{1}{n-r}\sqrt{-1}I_{n-r}\end{pmatrix} \ \middle| \ a\in \mathbf{R}, \ u_1\in\mathfrak{su}(r) \\ u_2\in\mathfrak{su}(n-r)\right\},$$

then $\tilde{\mathfrak{g}}$ and $\tilde{\mathfrak{k}}$ are the Lie algebras of \tilde{G} and \tilde{K} , respectively. Define a linear subspace $\tilde{\mathfrak{m}}$ of $\tilde{\mathfrak{g}}$ by

$$\tilde{\mathfrak{m}} = \left\{ \begin{pmatrix} 0 & -\xi^* \\ \xi & 0 \end{pmatrix} \middle| \xi \in M_{n-r,r}(\mathbf{C}) \right\}.$$

Then $\tilde{\mathfrak{m}}$ is identified with the tangent space $T_o(G_r(\mathbb{C}^n))$. The \tilde{G} -invariant complex structure J of $G_r(\mathbb{C}^n)$ and the \tilde{G} -invariant Kähler metric \tilde{g}_c of $G_r(\mathbb{C}^n)$ of the maximal holomorphic

sectional curvature c are given by

$$J\begin{pmatrix} 0 & -\xi^* \\ \xi & 0 \end{pmatrix} = \begin{pmatrix} 0 & \sqrt{-1}\xi^* \\ \sqrt{-1}\xi & 0 \end{pmatrix},$$

(2.1)
$$\tilde{g}_{c_o}(X, Y) = -\frac{2}{c} tr XY, \quad X, Y \in \tilde{\mathfrak{m}}.$$

Notice that \tilde{g}_c satisfies

(2.2)
$$\tilde{g}_{c_o} = -\frac{2}{c} \frac{1}{2n} B_{\tilde{\mathfrak{g}}} = -\frac{2}{c} \frac{L(\tilde{\mathfrak{g}})}{2} B_{\tilde{\mathfrak{g}}}$$

on $\tilde{\mathfrak{m}}$, where $B_{\tilde{\mathfrak{g}}}$ is the Killing form of $\tilde{\mathfrak{g}}$, and $L(\tilde{\mathfrak{g}})$ is the squared length of the longest root of $\tilde{\mathfrak{g}}$ relative to the Killing form.

In the case of r=2, the complex 2-plane Grassmann manifold $G_2(\mathbb{C}^n)$ admits another geometric structure named the quaternionic Kähler structure \mathfrak{J} . \mathfrak{J} is a \tilde{G} -invariant subbundle of $End(T(G_2(\mathbb{C}^n)))$ of rank 3, where $End(T(G_2(\mathbb{C}^n)))$ is the \tilde{G} -invariant vector bundle of all linear endmorphisms of the tangent bundle $T(G_2(\mathbb{C}^n))$. Under the identification of $T_o(G_r(\mathbb{C}^n))$ with $\tilde{\mathfrak{m}}$, the fiber \mathfrak{J}_o at the origin o is given by

$$\mathfrak{J}_o = \{ J_{\tilde{\varepsilon}} = ad(\tilde{\varepsilon}) \mid \tilde{\varepsilon} \in \tilde{\mathfrak{t}}_q \},$$

where $\tilde{\mathfrak{t}}_q$ is an ideal of $\tilde{\mathfrak{t}}$ defined by

$$\tilde{\mathfrak{k}}_q = \left\{ \begin{pmatrix} u_1 & 0 \\ 0 & 0 \end{pmatrix} \middle| u_1 \in \mathfrak{su}(2) \right\} \cong \mathfrak{su}(2).$$

Define a basis $\{\varepsilon_1, \ \varepsilon_2, \ \varepsilon_3\}$ of $\mathfrak{su}(2)$ by

$$\varepsilon_1 = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \quad \varepsilon_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \varepsilon_3 = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}.$$

Then ε_1 , ε_2 and ε_3 satisfy

$$[\varepsilon_1, \varepsilon_2] = 2 \varepsilon_3, \quad [\varepsilon_2, \varepsilon_3] = 2 \varepsilon_1, \quad [\varepsilon_3, \varepsilon_1] = 2 \varepsilon_2.$$

Set $\tilde{\varepsilon}_i = \begin{pmatrix} \varepsilon_i & 0 \\ 0 & 0 \end{pmatrix}$ and $J_i = J_{\tilde{\varepsilon}_i}$ for i = 1, 2, 3. Then the basis $\{J_1, J_2, J_3\}$ is a canonical basis of \mathfrak{J}_o , satisfying

$$\begin{split} J_i^2 &= -i d_{\tilde{\mathfrak{m}}} \quad \text{for } i = 1, 2, 3 \,, \\ J_1 J_2 &= -J_2 J_1 = J_3 \,, \quad J_2 J_3 = -J_3 J_2 = J_1 \,, \quad J_3 J_1 = -J_1 J_3 = J_2 \,, \\ \tilde{g}_{c_0}(J_i X, \, J_i Y) &= \tilde{g}_{c_0}(X, \, Y) \,, \quad \text{for } X, Y \in \tilde{\mathfrak{m}} \text{ and } i = 1, 2, 3 \,. \end{split}$$

Since J is given by

$$J = ad(\tilde{\varepsilon}_{\mathbf{C}}), \quad \tilde{\varepsilon}_{\mathbf{C}} = \frac{r(n-r)}{n} \begin{pmatrix} -\frac{1}{r}\sqrt{-1}I_r & 0\\ 0 & \frac{1}{n-r}\sqrt{-1}I_{n-r} \end{pmatrix}$$

on m, and since $\tilde{\epsilon}_{\mathbf{C}}$ is an element of the center of $\tilde{\mathfrak{t}}$, J is commutable with \mathfrak{J} .

Let $HM(n, \mathbb{C})$ be the set of all Hermitian (n, n)-matrices over \mathbb{C} , which can be identified with \mathbb{R}^{n^2} . For $X, Y \in HM(n, \mathbb{C})$, the natural inner product is given by

$$(X,Y) = \frac{2}{c} \operatorname{tr} XY.$$

 $GL(n, \mathbb{C})$ acts on $HM(n, \mathbb{C})$ by $X \mapsto BXB^*$, $B \in GL(n, \mathbb{C})$, $X \in HM(n, \mathbb{C})$. Then the action of SU(n) leaves the inner product (2.3) invariant. Define two linear subspaces of $HM(n, \mathbb{C})$ as follows:

$$HM_0 = \{X \in HM(n, \mathbb{C}) \mid trX = 0\},$$

 $HM_{\mathbb{R}} = \{aI \mid a \in \mathbb{R}\},$

where I is the n-identity matrix. Both of them are invariant under the action of SU(n), and irreducible. We get the orthogonal decomposition of $HM(n, \mathbb{C})$ as follows:

$$HM(n, \mathbb{C}) = HM_0 \oplus HM_{\mathbb{R}}$$
.

It is well-known that HM_0 (resp. $HM_{\mathbb{R}}$) is identified with the first eigenspace $V_1(G_r(\mathbb{C}^n))$ (resp. the set of all constant functions, i.e. $V_0(G_r(\mathbb{C}^n))$).

The first standard imbedding Ψ of $G_r(\mathbb{C}^n)$ is defined by

$$\Psi(\pi(Z)) = ZZ^* \in HM(n, \mathbb{C}), \quad Z \in M_r(\mathbb{C}^n).$$

 Ψ is SU(n)-equivariant and the image N of $G_r(\mathbb{C}^n)$ under Ψ is given by

(2.4)
$$N = \Psi(G_r(\mathbf{C}^n)) = \{ A \in HM(n, \mathbf{C}) \mid A^2 = A, \ trA = r \},$$

so that it is contained fully in a hyperplane

$$HM_r = \{ A \in HM(n, \mathbb{C}) \mid trA = r \} = \left\{ A + \frac{r}{n} I \mid A \in HM_0 \right\}$$

of $HM(n, \mathbb{C})$. The tangent bundle TN and the normal bundle $T^{\perp}N$ are given by

(2.5)
$$T_A N = \{X \in HM(n, \mathbb{C}) \mid XA + AX = X\} \subset HM_0,$$
$$T_A^{\perp} N = \{Z \in HM(n, \mathbb{C}) \mid ZA = AZ\}.$$

In particular, at the origin $A_o = \Psi(o) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, we can obtain

(2.6)
$$T_{A_o}N = \left\{ \begin{pmatrix} 0 & \xi^* \\ \xi & 0 \end{pmatrix} \middle| \xi \in M_{n-r,r}(\mathbf{C}) \right\},$$

$$T_{A_o}^{\perp}N = \left\{ \begin{pmatrix} Z_1 & 0 \\ 0 & Z_2 \end{pmatrix} \middle| Z_1 \in HM(r, \mathbf{C}), Z_2 \in HM(n-r, \mathbf{C}) \right\}.$$

The complex structure J acts on $T_{A_o}N$ as

(2.7)
$$J\begin{pmatrix} 0 & \xi^* \\ \xi & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\sqrt{-1}\xi^* \\ \sqrt{-1}\xi & 0 \end{pmatrix}.$$

If r = 2, then the quaternionic Kähler structure \mathfrak{J} acts on $T_{A_0}N$ as

(2.8)
$$J_{\tilde{\varepsilon}}\begin{pmatrix} 0 & \xi^* \\ \xi & 0 \end{pmatrix} = \begin{pmatrix} 0 & \varepsilon \xi^* \\ -\xi \varepsilon & 0 \end{pmatrix}, \quad \varepsilon \in \mathfrak{su}(2).$$

Let $\tilde{\sigma}$ and \tilde{H} denote the second fundamental form and the mean curvature vector of Ψ , respectively. Then, for $A \in N$ and $X, Y \in T_A N$, we can see

(2.9)
$$\tilde{\sigma}_A(X,Y) = (XY + YX)(I - 2A),$$

(2.10)
$$\tilde{H}_A = \frac{c}{2r(n-r)} (rI - nA)$$

and $\tilde{\sigma}$ satisfies the following:

(2.11)
$$\tilde{\sigma}_A(JX, JY) = \tilde{\sigma}_A(X, Y),$$

$$(\tilde{\sigma}_A(X, Y), A) = -(X, Y).$$

Denote by $S^{n^2-2}(\frac{c}{2}\frac{n}{r(n-r)})$ the hypersphere in HM_r centered at $\frac{r}{n}I$ with radius $\sqrt{\frac{c}{c}\frac{r(n-r)}{n}}$. Then we see that Ψ is a minimal immersion of $G_r(\mathbb{C}^n)$ into $S^{n^2-2}(\frac{c}{2}\frac{n}{r(n-r)})$, and that the center of mass of $\Psi(G_r(\mathbb{C}^n))$ is $\frac{r}{n}I$. In fact, Ψ satisfies the equation $\Delta\Psi=cn(\Psi-\frac{r}{n}I)$. Moreover, all coefficients of $\Psi-\frac{r}{n}I$ span the first eigenspace $V_1(G_r(\mathbb{C}^n))$.

Let's assume that M is a submanifold of $G_r(\mathbb{C}^n)$ with an immersion φ . Then $F = \Psi \circ \varphi$ is an immersion of M into $HM(n, \mathbb{C})$, and the set of all coefficients of $F - \frac{r}{n}I$ spans the pull-back $\varphi^*V_1(G_r(\mathbb{C}^n))$.

3. Examples

One of the simplest typical examples of submanifolds of $G_r(\mathbb{C}^n)$ is a totally geodesic submanifold. B. Y. Chen and T. Nagano in [5, 6] determined maximal totally geodesic submanifolds of $G_2(\mathbb{C}^n)$. I. Satake and S. Ihara in [14, 9] determined all (equivariant) holomorphic, totally geodesic imbeddings of a symmetric domain into another symmetric domain. When an ambient symmetric domain is of type $(I)_{p,q}$, taking a compact dual symmetric space, we obtain the complete list of maximal totally geodesic Kähler submanifolds of $G_r(\mathbb{C}^n)$.

Let M be a maximal totally geodesic Kähler submanifold of $G_r(\mathbb{C}^n)$ given by a Kähler immersion $\varphi: M \to G_r(\mathbb{C}^n)$. Since M is a symmetric space, denote by (G, K) the compact symmetric pair of M, and denote by $(\mathfrak{g}, \mathfrak{k})$ its Lie algebra. Then there exists a certain unitary representation $\rho: G \to \tilde{G} = SU(n)$, such that $\varphi(M)$ is given by the orbit of $\varphi(G)$ through the origin $\varphi = \{K\}$ in $G_r(\mathbb{C}^n)$.

Let $L(\mathfrak{g})$ be the squared length of the longest root of \mathfrak{g} relative to the Killing form $B_{\mathfrak{g}}$. Tables of the $L(\mathfrak{g})$ constants appear in [8]. The Kähler metric induced by φ is a G-invariant metric corresponding to an Ad(G)-invariant inner product

(3.1)
$$\rho^* \left(-\frac{2}{c} \frac{L(\tilde{\mathfrak{g}})}{2} B_{\tilde{\mathfrak{g}}} \right) = -\frac{2}{c} \frac{L(\mathfrak{g})}{2} l_\rho B_{\mathfrak{g}}$$

on g, where l_{ρ} is the index of a linear representation ρ defined by Dynkin. Tables of indices of basic representations of simple Lie algebras appear in [7].

Using Freudenthal's formula with respect to the inner product (3.1), we can calculate the first eigenvalue of the Laplacian of M. (cf. [17])

Summing up these results, we obtain the following.

THEOREM 3.1. Let M = G/K be a proper maximal totally geodesic Kähler submanifold of $G_r(\mathbb{C}^n)$, ρ a corresponding unitary representation of G to SU(n), and λ_1 the first eigenvalue of the Laplacian with respect to the induced Kähler metric. Then, M, ρ and λ_1 are one of the following (up to isomorphism).

- (1) $M_1 = G_r(\mathbb{C}^{n-1}) \hookrightarrow G_r(\mathbb{C}^n), \quad 1 \leq r \leq n-2,$ $\rho_1 = natural\ inclusion \quad and \quad \lambda_1 = c(n-1)$
- (2) $M_2 = G_{r-1}(\mathbb{C}^{n-1}) \hookrightarrow G_r(\mathbb{C}^n), \quad 2 \leq r \leq n-1,$ $\rho_2 = natural \ inclusion \quad and \quad \lambda_1 = c(n-1)$
- (3) $M_3 = G_{r_1}(\mathbb{C}^{n_1}) \times G_{r_2}(\mathbb{C}^{n_2}) \hookrightarrow G_{r_1+r_2}(\mathbb{C}^{n_1+n_2}), \quad 1 \leq r_i \leq n_i 1, \quad i = 1, 2,$ $\rho_3 = natural \ inclusion \quad and \quad \lambda_1 = c \min\{n_1, n_2\}$
- (4) $M_4 = M_{4,p} = Sp(p)/U(p) \hookrightarrow G_p(\mathbb{C}^{2p}), \quad p \ge 2,$ $\rho_4 = natural\ inclusion \quad and \quad \lambda_1 = c(p+1)$
- (5) $M_5 = M_{5,p} = SO(2p)/U(p) \hookrightarrow G_p(\mathbb{C}^{2p}), \quad p \ge 4,$ $\rho_5 = natural\ inclusion \quad and \quad \lambda_1 = c(p-1)$
- (6) $M_{6,m} = \mathbb{C}P^p \hookrightarrow G_r(\mathbb{C}^n)$: the complex projective space,

$$r = {p \choose m-1}, \quad n = {p+1 \choose m}, \quad 2 \le m \le p-1,$$

 $\rho_{6,m} = \text{the exterior representation of degree } m,$

and
$$\lambda_1 = c(p+1) \begin{pmatrix} p-1 \\ m-1 \end{pmatrix}^{-1}$$

- (7) $M_7 = Q^3 \hookrightarrow Q^4 = G_2(\mathbb{C}^4)$: the complex quadric, $g_7 = \text{spin representation}$ and $\lambda_1 = 3c$
- $\rho_7 = spin \ representation \quad and \quad \lambda_1 = 3c$ $(8) \quad M_8 = M_{8,2l} = Q^{2l} \hookrightarrow G_r(\mathbb{C}^{2r}) : the \ complex \ quadric, \quad r = 2^{l-1}, \quad l \geq 3,$ $\rho_8^{\pm} = (two) \ spin \ representations \quad and \quad \lambda_1 = c \frac{2l}{2^{l-2}}$

In the above list, notice that $M_{4,2} = M_7$ and $M_{5,4} = M_{8,6}$.

Another one of the simplest typical examples of submanifolds of $G_r(\mathbb{C}^n)$ is a homogeneous Kähler hypersurface. K. Konno in [10] determined all Kähler C-spaces embedded as a hypersurface into a Kähler C-space with the second Betti number $b_2 = 1$.

THEOREM 3.2. Let M be a compact, simply connected homogeneous Kähler hypersurface of $G_r(\mathbb{C}^n)$, and λ_1 the first eigenvalue of the Laplacian with respect to the induced Kähler metric. Then, M and λ_1 are one of the following (up to isomorphism).

- (1) $M_9 = \mathbb{C}P^{n-2} \hookrightarrow \mathbb{C}P^{n-1} = G_1(\mathbb{C}^n)$ and $\lambda_1 = c(n-1)$
- (2) $M_{10} = Q^{n-2} \hookrightarrow \mathbb{C}P^{n-1} = G_1(\mathbb{C}^n)$ and $\lambda_1 = c(n-2)$
- (3) $M_7 = Q^3 \hookrightarrow Q^4 = G_2(\mathbb{C}^4)$ and $\lambda_1 = 3c$
- (4) $M_{11} = Sp(l)/U(2) \cdot Sp(l-2) \hookrightarrow G_2(\mathbb{C}^{2l})$: Kähler C-space of type (C_l, α_2) , $l \ge 2$ and $\lambda_1 = c(2l-1)$

 M_9 and M_7 are totally geodesic. M_9 , M_{10} and M_7 are symmetric spaces. If l=2, then M_{11} is congruent to M_7 .

For each l with l > 2, M_{11} is not a symmetric space. Then, it is not easy to calculate the first eigenvalue λ_1 of M_{11} . We will calculate λ_1 of M_{11} in the next section.

From these two theorems, we obtain the following proposition:

PROPOSITION 3.3. Let M be either a proper maximal totally geodesic Kähler submanifold of $G_r(\mathbb{C}^n)$ or a compact, simply connected homogeneous Kähler hypersurface of $G_r(\mathbb{C}^n)$. Then, the first eigenvalue λ_1 of M with respect to the induced Kähler metric satisfies

$$\lambda_1 \leq c (n-1)$$
.

Moreover, the equality holds if and only if M is congruent to one of the following:

$$M_1$$
, M_2 , $M_{4,2} = M_7$, M_9 , M_{11} .

4. The Kähler C-spaces with $b_2 = 1$

In this section, we will consider the first eigenvalue of the Kähler C-space whose second Betti number is equal to 1. First, we review the general theory of Kähler C-spaces. For details, see [2] and [16].

Let \mathfrak{g} be a compact semisimple Lie algebra and \mathfrak{t} be a maximal abelian subalgebra of \mathfrak{g} . Denote by \mathfrak{g}^C and \mathfrak{t}^C the complexifications of \mathfrak{g} and \mathfrak{t} , respectively. \mathfrak{t}^C is a Cartan subalgebra of \mathfrak{g}^C . Let (,) be an Ad(G)-invariant inner product on \mathfrak{g} defined by $-B_{\mathfrak{g}}$, where $B_{\mathfrak{g}}$ is the Killing form of \mathfrak{g} . Let $\Sigma \subset (\mathfrak{t}^C)^*$ denote the root system of \mathfrak{g} relative to \mathfrak{t} . We have a root space decomposition of \mathfrak{g} :

(4.1)
$$\mathfrak{g}^{\mathbf{C}} = \mathfrak{t}^{\mathbf{C}} + \sum_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}^{\mathbf{C}},$$

where $\mathfrak{g}_{\alpha}^{\mathbb{C}} = \{X \in \mathfrak{g}^{\mathbb{C}} \mid (adH)X = \alpha(H)X \text{ for any } H \in \mathfrak{t}\}$. Since \mathfrak{g} is compact type, for any $\alpha \in \Sigma$ and $H \in \mathfrak{t}$, $\alpha(H)$ is pure imaginary, so that there exists a unique element $\check{\alpha} \in \mathfrak{t}$ such that, for any $H \in \mathfrak{t}$, the equality $\alpha(H) = \sqrt{-1}(\check{\alpha}, H)$ holds. We identify α with $\check{\alpha}$, so that the root system Σ is identified with a subset $\{\check{\alpha} \mid \alpha \in \Sigma\}$ of \mathfrak{t} . Choose a lexicographic order > on Σ and put $\Sigma^+ = \{\alpha \in \Sigma \mid \alpha > 0\}$. Let Π be the fundamental root system of Σ consisting of

simple roots with respect to the linear order >. Π is identified with its Dynkin diagram. Let $\{\Lambda_{\alpha}\}_{\alpha\in\Pi}\subset\mathfrak{t}$ be the fundamental weight system of $\mathfrak{g}^{\mathbb{C}}$ corresponding to Π :

$$\frac{2(\Lambda_{\alpha}, \beta)}{(\beta, \beta)} = \begin{cases} 1 & \text{if } \alpha = \beta, \\ 0 & \text{if } \alpha \neq \beta. \end{cases}$$

Let Π_0 be a subdiagram of Π . We may suppose that the pair (Π, Π_0) is effective, that is, Π_0 contains no irreducible component of Π . Put $\Sigma_0 = \Sigma \cap \{\Pi_0\}_{\mathbb{Z}}$, where $\{\Pi_0\}_{\mathbb{Z}}$ denote the subgroup of \mathfrak{t} generated by Π_0 over \mathbb{Z} . Define a subalgebra \mathfrak{u} of $\mathfrak{g}^{\mathbb{C}}$ by

(4.2)
$$\mathfrak{u} = \mathfrak{t}^{\mathbf{C}} + \sum_{\alpha \in \Sigma_0 \cup \Sigma^+} \mathfrak{g}_{\alpha}^{\mathbf{C}}.$$

Let $G^{\mathbb{C}}$ be the connected complex semisimple Lie group without center, whose Lie algebra is $\mathfrak{g}^{\mathbb{C}}$, and U the connected closed complex subgroup of $G^{\mathbb{C}}$ generated by \mathfrak{u} . Let G be a compact connected semisimple subgroup of $G^{\mathbb{C}}$ generated by \mathfrak{g} and put $K = G \cap U$. The canonical imbedding $G \to G^{\mathbb{C}}$ gives the diffeomorphism of a compact coset space M = G/K to a simply connected complex coset space $G^{\mathbb{C}}/U$. Therefore, the homogeneous space M = G/K is a complex, compact, simply connected manifold called a *generalized flag manifold* or a *Kähler C-space*. Lie algebra \mathfrak{k} of K is given by

(4.3)
$$\mathfrak{t}^{\mathbf{C}} = \mathfrak{t}^{\mathbf{C}} + \sum_{\alpha \in \Sigma_0} \mathfrak{g}_{\alpha}^{\mathbf{C}}.$$

Define a subspace \mathfrak{c} of \mathfrak{t} and a cone \mathfrak{c}^+ in \mathfrak{c} by

$$\mathfrak{c} = \sum_{\alpha \in \Pi - \Pi_0} \mathbf{R} \Lambda_{\alpha} \,,$$

$$\mathfrak{c}^{+} = \{ \theta \in \mathfrak{c} - \{0\} \mid (\theta, \alpha) > 0 \text{ for each } \alpha \in \Pi - \Pi_0 \},$$

respectively. Then we have $\mathfrak{c}^+ = \sum_{\alpha \in \Pi - \Pi_0} \mathbf{R}^+ \Lambda_\alpha$, where \mathbf{R}^+ denotes the set of positive real numbers.

Let \mathfrak{m} be the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to (,), so that we have a direct sum decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ as vector space. The subspace \mathfrak{m} is K-invariant under the adjoint action and identified with the tangent space T_oM of M at the origin $o = \{K\}$. Put $\Sigma_{\mathfrak{m}}^+ = \Sigma^+ - \Sigma_0$, $\Sigma_{\mathfrak{m}}^- = -\Sigma_{\mathfrak{m}}^+$ and define K-invariant subspaces \mathfrak{m}^\pm of \mathfrak{g}^C by

(4.5)
$$\mathfrak{m}^{\pm} = \sum_{\alpha \in \Sigma_{\mathfrak{m}}^{\pm}} \mathfrak{g}_{-\alpha}^{\mathbf{C}}.$$

Then the complexification $\mathfrak{m}^{\mathbb{C}}$ of \mathfrak{m} is the direct sum $\mathfrak{m}^{\mathbb{C}} = \mathfrak{m}^+ + \mathfrak{m}^-$, and \mathfrak{m}^{\pm} is the $\pm \sqrt{-1}$ -eigenspace of the complex structure J of M at the origin o.

Denote by $X \to \bar{X}$ the complex conjugation of $\mathfrak{g}^{\mathbb{C}}$ with respect to the real form \mathfrak{g} . We can choose root vectors $E_{\alpha} \in \mathfrak{g}_{\alpha}^{\mathbb{C}}$ for $\alpha \in \Sigma$ with the following properties and fix them once

for all:

$$(4.6) [E_{\alpha}, E_{-\alpha}] = \sqrt{-1}\alpha, (E_{\alpha}, E_{-\alpha}) = 1, \bar{E}_{\alpha} = E_{-\alpha} \text{for } \alpha \in \Sigma.$$

Let $\{\omega^{\alpha}\}_{{\alpha}\in \Sigma}$ be the linear forms of ${\mathfrak g}^{\mathbb C}$ dual to $\{E_{\alpha}\}_{{\alpha}\in \Sigma}$, more precisely, the linear forms defined by

$$\omega^{\alpha}(\mathfrak{t}^{\mathbb{C}}) = \{0\},\$$

$$\omega^{\alpha}(E_{\beta}) = \begin{cases} 1 & \text{if } \alpha = \beta,\\ 0 & \text{if } \alpha \neq \beta. \end{cases}$$

Every G-invariant Kähler metric on M is given by

$$(4.7) g(\theta) = 2 \sum_{\alpha \in \Sigma_{\mathfrak{m}}^{+}} (\theta, \alpha) \, \omega^{-\alpha} \cdot \bar{\omega}^{-\alpha} \,, \omega^{-\alpha} \cdot \bar{\omega}^{-\alpha} = \frac{1}{2} (\omega^{-\alpha} \otimes \bar{\omega}^{-\alpha} + \bar{\omega}^{-\alpha} \otimes \omega^{-\alpha})$$

for $\theta \in \mathfrak{c}^+$. Note that the inner product (,) satisfies

$$(\,,\,)_{\mathfrak{m}^+ \times \overline{\mathfrak{m}^+}} = 2 \sum_{\alpha \in \Sigma_{\mathfrak{m}}^+} \omega^{-\alpha} \cdot \bar{\omega}^{-\alpha} \,.$$

We define an element $\delta_{\mathfrak{m}} \in \mathfrak{t}$ by

$$\delta_{\mathfrak{m}} = \frac{1}{2} \sum_{\alpha \in \Sigma_{\mathfrak{m}}^+} \alpha \in \mathfrak{c}^+.$$

Then, for the Kähler metric $g(\theta)$, the Ricci tensor Ric and the scalar curvature τ are given respectively by

$$Ric = 4 \sum_{\alpha \in \varSigma_{\mathfrak{m}}^{+}} (\delta_{\mathfrak{m}}, \alpha) \, \omega^{-\alpha} \cdot \bar{\omega}^{-\alpha} \, ,$$

(4.8)
$$\tau = 4 \sum_{\alpha \in \Sigma_m^+} \frac{(\delta_m, \alpha)}{(\theta, \alpha)}.$$

If $\Pi - \Pi_0$ consists of only one root, say α_r , then the Kähler C-space M is said to be of type (\mathfrak{g}, α_r) . The second Betti number b_2 of M is equal to 1. In this case, we obtain

$$\mathfrak{c}^+ = \mathbf{R}^+ \Lambda_{\alpha_n}$$

so that there exists a positive real number b with $2\delta_{\mathfrak{m}} = b \Lambda_{\alpha_r}$. Therefore, (\mathfrak{g}, α_r) is a Kähler-Einstein manifold, and the Ricci tensor and the scalar curvature with respect to a Kähler metric $g(a\Lambda_{\alpha_r})$ are given by

$$Ric = \frac{b}{a}g(a\Lambda_{\alpha_r}), \quad \tau = 2\frac{b}{a}\dim_{\mathbb{C}}M,$$

respectively.

Y. Matsushima and M. Obata showed the following:

THEOREM 4.1 ([12]). Let M be an n-dimensional compact Einstein Kähler manifold of positive scalar curvature τ . Then the first eigenvalue $\lambda_1(M)$ of the Laplacian satisfies that

$$\lambda_1(M) \geq \frac{\tau}{n}$$
.

The equality holds if and only if M admits a one-parameter group of isometries (i.e., a non-trivial Killing vector field).

This theorem implies the following proposition immediately.

PROPOSITION 4.2. For the Kähler C-space $M = (\mathfrak{g}, \alpha_r)$ equipped with the Kähler metric $g(a \Lambda_{\alpha_r})$, the first eigenvalue $\lambda_1(M)$ of the Laplacian is given by $\lambda_1(M) = \frac{2b}{a}$.

From now on, we assume that \mathfrak{g} is a compact semisimple simple Lie algebra of type $C_l, l \geq 2$, and we consider a Kähler C-space of type (\mathfrak{g}, α_r) . Then, Π is identified with the Dynkin diagram of type C_l

and Σ^+ is given by

$$\Sigma^{+} = \left\{ \begin{aligned} \alpha_{i} + \cdots + \alpha_{j-1} & (1 \leq i < j \leq l+1), \\ (\alpha_{i} + \cdots + \alpha_{l-1}) + (\alpha_{j} + \cdots + \alpha_{l-1}) + \alpha_{l} & (1 \leq i \leq j \leq l-1) \end{aligned} \right\}.$$

Therefore, we have

$$\begin{split} & \mathcal{L}_{\mathfrak{m}}^{+} = \mathcal{L}' \cup \mathcal{L}'' \text{: disjoint }, \\ & \mathcal{L}' = \{\alpha_{i} + \dots + \alpha_{r} + \dots + \alpha_{j} \quad (1 \leq i \leq r \leq j \leq l)\} \,, \\ & \mathcal{L}'' = \{(\alpha_{i} + \dots + \alpha_{l-1}) + (\alpha_{j} + \dots + \alpha_{l-1}) + \alpha_{l} \quad (1 \leq i \leq r, \ i \leq j \leq l-1)\} \,. \end{split}$$

Immediately, we get

$$\dim_{\mathbb{C}} M = \#\Sigma_{\mathfrak{m}}^+ = \frac{r}{2}(4l - 3r + 1).$$

Put

$$\begin{split} & \Sigma' = \Sigma_1' \cup \Sigma_2' \cup \Sigma_3' \cup \{\alpha_r\}, \\ & \Sigma_1' = \{\alpha_i + \dots + \alpha_{r-1} + \alpha_r + \alpha_{r+1} + \dots + \alpha_j \quad (1 \leq i \leq r-1, \, r+1 \leq j \leq l)\}, \\ & \Sigma_2' = \{\alpha_i + \dots + + \alpha_{r-1} + \alpha_r \quad (1 \leq i \leq r-1)\}, \\ & \Sigma_3' = \left\{\alpha_r + \alpha_{r+1} + \dots + \alpha_j \quad (r+1 \leq j \leq l)\right\}. \end{split}$$

Then a direct computation gives

$$\begin{split} \sum_{\alpha \in \Sigma_{1}'} \alpha &= \sum_{i=1}^{r-1} \sum_{j=r+1}^{l} \alpha_{i} + \dots + \alpha_{r-1} + \alpha_{r} + \alpha_{r+1} + \dots + \alpha_{j} \\ &= (l-r) \sum_{i=1}^{r-1} \alpha_{i} + \dots + \alpha_{r-1} \\ &+ (r-1)(l-r)\alpha_{r} + (r-1) \sum_{j=r+1}^{l} \alpha_{r+1} + \dots + \alpha_{j} \\ &= (l-r) \sum_{i=1}^{r-1} i\alpha_{i} + (r-1)(l-r)\alpha_{r} + (r-1) \sum_{j=r+1}^{l} (l-j+1)\alpha_{j} \,, \\ \sum_{\alpha \in \Sigma_{2}'} \alpha &= \sum_{i=1}^{r-1} i\alpha_{i} + (r-1)\alpha_{r} \,, \quad \sum_{\alpha \in \Sigma_{3}'} \alpha = (l-r)\alpha_{r} + \sum_{j=r+1}^{l} (l-j+1)\alpha_{j} \,, \end{split}$$

so that we have

(4.9)
$$\sum_{\alpha \in \Sigma'} \alpha = (l - r + 1) \sum_{i=1}^{r-1} i\alpha_i + r(l - r + 1)\alpha_r + r \sum_{j=r+1}^{l} (l - j + 1)\alpha_j.$$

On the other hand, we get

$$(4.10) \qquad \sum_{\alpha \in \Sigma''} \alpha = \sum_{i \leq r} \sum_{j=i}^{l-1} \{ (\alpha_i + \dots + \alpha_{l-1}) + (\alpha_j + \dots + \alpha_{l-1}) + \alpha_l \}$$

$$= \sum_{i \leq r} (l-i)(\alpha_i + \dots + \alpha_l) + \sum_{i \leq r} \sum_{j=i}^{l-1} (j-i+1)\alpha_j.$$

We have

(4.11)
$$\sum_{i \leq r} (l-i)(\alpha_i + \dots + \alpha_l)$$

$$= \sum_{i \leq r} (l-i)(\alpha_i + \dots + \alpha_{r-1}) + \sum_{i \leq r} (l-i)(\alpha_r + \dots + \alpha_l)$$

$$= \sum_{m=1}^{r-1} \left(\sum_{k=1}^m (l-k)\right) \alpha_m + \sum_{m=r}^l \left(\sum_{k=1}^r (l-k)\right) \alpha_m$$

and

(4.12)
$$\sum_{i \leq r} \sum_{j=i}^{l-1} (j-i+1)\alpha_j = \sum_{i \leq r} \sum_{j=i}^r (j-i+1)\alpha_j + \sum_{i \leq r} \sum_{j=r+1}^{l-1} (j-i+1)\alpha_j$$
$$= \sum_{m=1}^{r-1} \left(\sum_{k=1}^m k\right) \alpha_m + \sum_{m=r}^{l-1} \left(\sum_{k=1}^r (m-k+1)\right) \alpha_m.$$

Then, from (4.10), (4.11) and (4.12), we have

$$\sum_{\alpha \in \Sigma''} \alpha = l \sum_{m=1}^{r-1} m \alpha_m + r \sum_{m=r}^{l-1} (l+m-r) \alpha_m + \frac{1}{2} r (2l-r-1) \alpha_l ,$$

which, combined with (4.9), implies

$$2\delta_{\mathfrak{m}} = \sum_{\alpha \in \Sigma_{\mathfrak{m}}^{+}} \alpha = (2l - r + 1) \left(\sum_{m=1}^{r-1} m\alpha_{m} + r \sum_{m=r}^{l-1} \alpha_{m} + \frac{1}{2} r\alpha_{l} \right).$$

The Cartan matrix C of $\mathfrak{g} = C_l$ and its inverse matrix are given by

$$C = \left(c_{ij}\right)_{1 \leq i, j \leq l}, \quad c_{ij} = \frac{2(\alpha_i, \alpha_j)}{(\alpha_j, \alpha_j)},$$

$$C^{-1} = \left(d_{ij}\right)_{1 \leq i, j \leq l},$$

$$d_{ij} = \begin{cases} j & \text{if } 1 \leq j \leq l-1 \text{ and } j \leq i \leq l, \\ i & \text{if } 1 \leq j \leq l-1 \text{ and } 1 \leq i \leq j, \\ \frac{i}{2} & \text{if } j = l, \end{cases}$$

so that the following holds

$$\Lambda_{\alpha_r} = \sum_{m=1}^l d_{rm} \alpha_m = \sum_{m=1}^{r-1} m \alpha_m + r \sum_{m=r}^{l-1} \alpha_m + \frac{1}{2} r \alpha_l.$$

Therefore, we obtain

$$2\delta_{\mathfrak{m}} = (2l - r + 1)\Lambda_{\alpha_r}.$$

Summing up the above consideration, we obtain following.

THEOREM 4.3. For the Kähler C-space M of type (C_l, α_r) equipped with the Kähler metric $g(a \Lambda_{\alpha_r})$, the complex dimension, the scalar curvature τ and the first eigenvalue $\lambda_1(M)$ of the Laplacian are given respectively by

$$\dim_{\mathbb{C}} M = \frac{r(4l - 3r + 1)}{2}, \quad \tau = \frac{2(2l - r + 1)}{a} \dim_{\mathbb{C}} M, \quad \lambda_1(M) = \frac{2(2l - r + 1)}{a}.$$

When \mathfrak{g} is a compact simple Lie algebra of the other classical type, suppose that the simple roots α_i are naturally numbered as follows:

By an argument similar to Theorem 4.3, we can obtain the following theorem:

THEOREM 4.4. Let \mathfrak{g} be a compact simple Lie algebra of classical type. Then, for the Kähler C-space M of type (\mathfrak{g}, α_r) equipped with the Kähler metric $g(a\Lambda_{\alpha_r})$, the complex dimension and the first eigenvalue $\lambda_1(M)$ of the Laplacian are given as follows:

g	$\dim_{\mathbf{C}} M$	$\lambda_1(M)$	
A_l	r(l-r+1)	$\frac{2(l+1)}{a}$	
B_l	$\frac{r(4l-3r+1)}{2}$	$\frac{2(2l-r)}{a}$	$1 \le r \le l - 1$
	$\frac{l(l+1)}{2}$	$\frac{4l}{a}$	r = l
C_l	$\frac{r(4l-3r+1)}{2}$	$\frac{2(2l-r+1)}{a}$	
D_l	$\frac{r(4l-3r-1)}{2}$	$\frac{2(2l-r-1)}{a}$	$1 \le r \le l-2$
	$\frac{l(l-1)}{2}$	$\frac{4(l-1)}{a}$	r = l - 1, l

5. The homogeneous Kähler hypersurface (C_l, α_2)

In this section, we will consider a Kähler C-space of type (C_l, α_r) as a Kähler submanifold of $G_r(\mathbb{C}^{2l})$.

Let's set

$$\mathfrak{g} = \mathfrak{sp}(l) = \left\{ \begin{pmatrix} A & -\overline{C} \\ C & \overline{A} \end{pmatrix} \middle| \begin{array}{l} A, C \in M_l(\mathbb{C}), \\ A^* = -A, {}^tC = C \end{array} \right\},$$

then \mathfrak{g} is a compact semisimple Lie algebra of type C_l whose complexification is given by

$$\mathfrak{g}^{\mathbb{C}} = \mathfrak{sp}(l, \mathbb{C}) = \left\{ \begin{pmatrix} A & B \\ C & -{}^{t}\!A \end{pmatrix} \middle| \begin{array}{l} A, B, C \in M_{l}(\mathbb{C}), \\ {}^{t}\!B = B, {}^{t}\!C = C \end{array} \right\}.$$

Note that the Killing form $B_{\mathfrak{g}}$ is given by

$$B_{\mathfrak{g}}(X, Y) = 2(l+1)trXY$$
, $X, Y \in \mathfrak{g}$.

For integers i and j with $1 \le i$, $j \le l$, let E_{ij} be the matrix in $M_l(\mathbb{C})$ whose (i, j)-coefficient is 1 and others are zero. and let's set

$$e_{ij} = \begin{pmatrix} E_{ij} & 0 \\ 0 & -E_{ji} \end{pmatrix}, \quad f_{ij} = \begin{pmatrix} 0 & E_{ij} + E_{ji} \\ 0 & 0 \end{pmatrix}, \quad g_{ij} = \begin{pmatrix} 0 & 0 \\ E_{ij} + E_{ji} & 0 \end{pmatrix},$$
$$\theta_i = \frac{\sqrt{-1}}{4(l+1)} e_{ii}$$

for $1 \le i, j \le l$. Relative to an abelian subalgebra $\mathfrak{t} = \mathbf{R}\{\theta_i, 1 \le i \le l\}$, the set Σ^+ of all positive roots is given as

$$\Sigma^{+} = \{\theta_i - \theta_j (i < j), \quad \theta_i + \theta_j (i \leq j)\}.$$

The simple roots α_i numbered as the last section is given by

$$\alpha_i = \theta_i - \theta_{i+1} \ (1 \le i \le l-1), \quad \alpha_l = 2\theta_l$$

so that we have linear combinations

$$\theta_{i} - \theta_{j} = \alpha_{i} + \dots + \alpha_{j-1} \quad (1 \leq i < j \leq l),$$

$$\theta_{i} + \theta_{j} = (\alpha_{i} + \dots + \alpha_{l-1}) + (\alpha_{j} + \dots + \alpha_{l-1}) + \alpha_{l} \quad (1 \leq i \leq j \leq l-1),$$

$$\theta_{i} + \theta_{l} = \alpha_{i} + \dots + \alpha_{l} \quad (1 \leq i \leq l-1), \quad 2\theta_{l} = \alpha_{l}.$$

The root vectors

$$E_{\theta_{i}-\theta_{j}} = \frac{1}{2\sqrt{l+1}} e_{ij} , \quad E_{-\theta_{i}+\theta_{j}} = -\frac{1}{2\sqrt{l+1}} e_{ji} ,$$

$$E_{\theta_{i}+\theta_{j}} = \frac{1}{2\sqrt{l+1}} f_{ij} , \quad E_{-\theta_{i}-\theta_{j}} = -\frac{1}{2\sqrt{l+1}} g_{ij} , \quad \text{for } 1 \leq i < j \leq l$$

$$E_{2\theta_{i}} = \frac{1}{2\sqrt{2(l+1)}} f_{ii} , \quad E_{-2\theta_{i}} = -\frac{1}{2\sqrt{2(l+1)}} g_{ii} , \quad \text{for } 1 \leq i \leq l$$

satisfy (4.6).

 Σ_0 and $\Sigma_{\mathfrak{m}}^+$ are given by, for $1 \leq r \leq l-1$,

$$\begin{split} & \Sigma_0 \ = \left\{ \begin{aligned} & \pm (\theta_i - \theta_j) & (1 \leq i < j \leq r \text{ or } r + 1 \leq i < j \leq l) \,, \\ & \pm (\theta_i + \theta_j) & (r + 1 \leq i \leq j \leq l) \end{aligned} \right\} \,, \\ & \Sigma_{\mathfrak{m}}^+ = \left\{ \begin{aligned} & \theta_i - \theta_j & (1 \leq i \leq r \text{ and } r + 1 \leq j \leq l) \,, \\ & \theta_i + \theta_i & (1 \leq i \leq r \text{ and } i \leq j \leq l) \end{aligned} \right\} \,, \end{split}$$

and, for r = l,

$$\Sigma_0 = \{ \pm (\theta_i - \theta_j) \quad (1 \le i < j \le l) \},$$

$$\Sigma_{\mathfrak{m}}^+ = \{ \theta_i + \theta_j \quad (1 \le i \le j \le l) \}.$$

By a direct computation, (4.2) and (4.3) imply

$$\mathfrak{u} = \left\{ \begin{pmatrix} A & A'' & B & B'' \\ 0 & A' & {}^tB'' & B' \\ 0 & 0 & -{}^t\!A & 0 \\ 0 & C' & -{}^t\!A'' & -{}^t\!A' \end{pmatrix} \middle| \begin{array}{l} A, B \in M_r(\mathbf{C}), \\ A', B', C' \in M_{l-r}(\mathbf{C}), \\ A'', B'' \in M_{r,l-r}(\mathbf{C}), \\ {}^tB = B, {}^tB' = B', {}^tC' = C' \end{array} \right\},$$

$$\mathfrak{k} = \mathfrak{q} \cap \mathfrak{u}$$

$$= \left\{ \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & A' & 0 & -\overline{C'} \\ 0 & 0 & \overline{A} & 0 \\ 0 & C' & 0 & \overline{A'} \end{pmatrix} \middle| \begin{array}{l} A \in M_r(\mathbf{C}), \\ A', C' \in M_{l-r}(\mathbf{C}), \\ A^* = -A, A'^* = -A', {}^tC' = C' \end{array} \right\}$$

$$= \mathfrak{u}(r) + \mathfrak{sp}(l-r).$$

Therefore, the Kähler C-space M of type (C_l, α_r) is identified with the homogeneous space $G/K = Sp(l)/U(r) \cdot Sp(l-r)$.

For $x, y \in M_{l-r,r}(\mathbb{C})$ and $z \in M_r(\mathbb{C})$ with t = z, define

$$\eta(x, y, z) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ z & {}^{t}y & 0 & -{}^{t}x \\ y & 0 & 0 & 0 \end{pmatrix}.$$

Note that, if r = l, then we ignore x and y, and $\eta(x, y, z)$ and $\eta(0, 0, z)$ denote a matrix $\begin{pmatrix} 0_l & 0_l \\ z & 0_l \end{pmatrix}$, $z \in M_l(\mathbb{C})$, ${}^tz = z$. (4.5) implies

$$\mathfrak{m} = \{ \eta(x, y, z) - \eta(x, y, z)^* \},$$

$$\mathfrak{m}^+ = \{ \eta(x, y, z) \}.$$

If $1 \le r \le l-1$, then $(\alpha_r, \alpha_r) = \frac{1}{2(l+1)}$. Thus, define subsets of $\Sigma_{\mathfrak{m}}^+$ by

$$\Sigma_{\mathfrak{m}_{1}}^{+} = \left\{ \alpha \in \Sigma_{\mathfrak{m}}^{+} \middle| (\alpha, \Lambda_{\alpha_{r}}) = \frac{1}{4(l+1)} \right\} = \left\{ \alpha \in \Sigma_{\mathfrak{m}}^{+} \middle| \frac{2(\alpha, \Lambda_{\alpha_{r}})}{(\alpha_{r}, \alpha_{r})} = 1 \right\}$$

$$= \left\{ \alpha \in \Sigma_{\mathfrak{m}}^{+} \middle| \alpha = \alpha_{r} + (\text{sum of other } \alpha_{i}) \right\}$$

$$= \left\{ \begin{array}{l} \theta_{i} - \theta_{j} & (1 \leq i \leq r \text{ and } r+1 \leq j \leq l), \\ \theta_{i} + \theta_{j} & (1 \leq i \leq r \text{ and } r+1 \leq j \leq l) \end{array} \right\},$$

$$\begin{split} \varSigma_{\mathfrak{m}_{2}}^{+} &= \left\{ \alpha \in \varSigma_{\mathfrak{m}}^{+} \,\middle|\, (\alpha, \, \varLambda_{\alpha_{r}}) = \frac{1}{2(l+1)} \right\} = \left\{ \alpha \in \varSigma_{\mathfrak{m}}^{+} \,\middle|\, \frac{2(\alpha, \, \varLambda_{\alpha_{r}})}{(\alpha_{r}, \, \alpha_{r})} = 2 \right\} \\ &= \left\{ \alpha \in \varSigma_{\mathfrak{m}}^{+} \,\middle|\, \alpha = 2\alpha_{r} + (\text{sum of other } \alpha_{i}) \right\} \\ &= \left\{ \theta_{i} + \theta_{i} \quad (1 \leq i \leq r \text{ and } i \leq j \leq r) \right\}, \end{split}$$

and we have an orthogonal decomposition $\mathfrak{m}^+ = \mathfrak{m}_1^+ + \mathfrak{m}_2^+$,

$$\mathfrak{m}_{1}^{+} = \sum_{\alpha \in \Sigma_{\mathfrak{m}_{1}}^{+}} \mathfrak{g}_{-\alpha}^{\mathbf{C}} = \{ \eta(x, y, 0) \} ,$$

$$\mathfrak{m}_{2}^{+} = \sum_{\alpha \in \Sigma_{\mathfrak{m}_{2}}^{+}} \mathfrak{g}_{-\alpha}^{\mathbf{C}} = \{ \eta(0, 0, z) \} .$$

From (4.7), the G-invariant Kähler metric corresponding to $a \Lambda_{\alpha_r}$ is given by

$$g(a\Lambda_{\alpha_r}) = \frac{a}{4(l+1)} \left\{ (\,,\,)_{\mathfrak{m}_1^+ \times \overline{\mathfrak{m}}_1^+} \,+\, 2(\,,\,)_{\mathfrak{m}_2^+ \times \overline{\mathfrak{m}}_2^+} \right\},\,$$

so that, for $X = \eta(x, y, z) - \eta(x, y, z)^* \in \mathfrak{m}$, we get

$$g(a\Lambda_{\alpha_r})(X,X) = 2g(a\Lambda_{\alpha_r})(X^+, \overline{X^+})$$

$$= \frac{a}{2(l+1)} \{ (X_1^+, \overline{X_1^+}) + 2(X_2^+, \overline{X_2^+}) \} = 2a \operatorname{tr}(x^*x + y^*y + \overline{z}z) ,$$

where $X^+ = \eta(x, y, z) \in \mathfrak{m}^+$, $X_1^+ = \eta(x, y, 0) \in \mathfrak{m}_1^+$ and $X_2^+ = \eta(0, 0, z) \in \mathfrak{m}_2^+$. If r = l, then $(\alpha_l, \alpha_l) = \frac{1}{l+1}$. So, $\Sigma_{\mathfrak{m}}^+$ satisfies the following:

$$\Sigma_{\mathfrak{m}}^{+} = \left\{ \alpha \in \Sigma_{\mathfrak{m}}^{+} \middle| (\alpha, \Lambda_{\alpha_{l}}) = \frac{1}{2(l+1)} \right\} = \left\{ \alpha \in \Sigma_{\mathfrak{m}}^{+} \middle| \frac{2(\alpha, \Lambda_{\alpha_{l}})}{(\alpha_{l}, \alpha_{l})} = 1 \right\}$$
$$= \left\{ \alpha \in \Sigma_{\mathfrak{m}}^{+} \middle| \alpha = \alpha_{l} + (\text{sum of other } \alpha_{i}) \right\}.$$

From (4.7), the G-invariant Kähler metric corresponding to $a\Lambda_{\alpha_r}$ is given by

$$g(a\Lambda_{\alpha_l}) = \frac{a}{2(l+1)}(\,,\,)_{\mathfrak{m}^+ \times \overline{\mathfrak{m}^+}},$$

so that, for $X = \eta(0, 0, z) - \eta(0, 0, z)^* \in m$, we get

$$g(a\Lambda_{\alpha_l})(X,X) = 2g(a\Lambda_{\alpha_l})(X^+,\overline{X^+}) = \frac{a}{l+1}(X^+,\overline{X^+}) = 2a\,tr(\bar{z}z)\,,$$

where $X^{+} = \eta(0, 0, z) \in \mathfrak{m}^{+}$.

Consequently, for any r with $1 \le r \le l$, we see

(5.1)
$$g(a\Lambda_{q_x})(X,X) = 2a \operatorname{tr}(x^*x + y^*y + \bar{z}z), \quad X = \eta(x,y,z) - \eta(x,y,z)^* \in \mathfrak{m}.$$

The natural inclusion $Sp(l) \to SU(2l)$ defines an immersion φ of M into $\tilde{M} = G_r(\mathbb{C}^{2l}) = \tilde{G}/\tilde{K} = SU(2l)/S(U(r) \cdot U(2l-r))$ by

$$\varphi(g \cdot K) = g \cdot \tilde{K}, \quad g \in G.$$

Under identification of $T_o\tilde{M}$ with $\tilde{\mathfrak{m}}$, the image of $X = \eta(x, y, z) - \eta(x, y, z)^* \in \mathfrak{m}$ is

$$\varphi_*(X) = \begin{pmatrix} 0 & -x^* & -\bar{z} & -y^* \\ x & 0 & 0 & 0 \\ z & 0 & 0 & 0 \\ y & 0 & 0 & 0 \end{pmatrix},$$

so that we have

(5.2)
$$\tilde{g}_c(\varphi_*(X), \varphi_*(X)) = -\frac{4}{c} tr(x^*x + y^*y + \bar{z}z),$$

where c is the maximal holomorphic sectional curvature of $G_r(\mathbb{C}^{2l})$. Therefore, Theorem 4.3, (5.1) and (5.2) imply the following.

THEOREM 5.1. For the Kähler C-space $M = Sp(l)/U(r) \cdot Sp(l-r)$ of type (C_l, α_r) equipped with the Kähler metric $g(\frac{2}{c}\Lambda_{\alpha_r})$, M is immersed in $G_r(\mathbb{C}^{2l})$ by the Kähler immersion φ . The complex dimension, and the first eigenvalue $\lambda_1(M)$ of the Laplacian are given by

$$\dim_{\mathbb{C}} M = \frac{r(4l - 3r + 1)}{2}, \quad \lambda_1(M) = c(2l - r + 1).$$

In particular, if r = 2, then $M = Sp(l)/U(2) \cdot Sp(l-2)$ is a Kähler hypersurface of $G_2(\mathbb{C}^{2l})$, whose first eigenvalue $\lambda_1(M)$ of the Laplacian is given by

$$\lambda_1(M) = c (2l - 1).$$

REMARK 5.1.

- (1) (C_l, α_l) is a Hermitian symmetric space Sp(l)/U(l).
- (2) (C_l, α_1) is a complex projective space $\mathbb{C}P^{2l-1}$ so it is Hermitian symmetric. But the pair $(Sp(l), U(1) \cdot Sp(l-1))$ is not a compact symmetric pair.
- (3) Other (C_l, α_r) , $2 \le r \le l-1$ are not symmetric spaces.

For $z \in M_r(\mathbb{C})$, define an unit vector ν at the origin o of $G_2(\mathbb{C}^{2l})$ by

$$\nu(z) = \begin{pmatrix} 0 & 0 & -z^* & 0 \\ 0 & 0 & 0 & 0 \\ z & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \tilde{\mathfrak{m}} \,, \quad \frac{4}{c} \operatorname{tr} z^* z = 1 \,.$$

Then v(z) is tangent to M if and only if z is symmetric.

The Kähler hypersurface $M = (C_l, \alpha_2)$ satisfies the following property relative to the quaternionic Kähler structure \mathfrak{J} of $G_2(\mathbb{C}^{2l})$.

PROPOSITION 5.2. The Kähler hypersurface $M = Sp(l)/U(2) \cdot Sp(l-2)$ of $G_2(\mathbb{C}^{2l})$ satisfies

(5.3)
$$\mathfrak{J} T^{\perp} M \subset TM \quad (\Leftrightarrow J\xi \perp \mathfrak{J}\xi \text{ for any } \xi \in T^{\perp} M),$$

where TM and $T^{\perp}M$ are the tangent bundle and the normal bundle of M, respectively.

PROOF. Let v_o be an unit normal vector of M at o defined by

$$v_o = v(z_o), \quad z_o = \frac{1}{2} \sqrt{\frac{c}{2}} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

so that the normal space $T_o^{\perp}M$ is given by

$$T_o^{\perp} M = \mathbf{R} \{ \nu_o, \ J \nu_o = \nu(\sqrt{-1} z_o) \}.$$

Then we see

$$\mathfrak{J}_o T_o^{\perp} M = \mathbf{R} \{ J_i \nu_o, J_i J \nu_o, \quad i = 1, 2, 3 \}$$
$$= \mathbf{R} \{ \nu(z_o \varepsilon_i), \ \nu(\sqrt{-1} z_o \varepsilon_i), \quad i = 1, 2, 3 \},$$

where J_1 , J_2 and J_3 are a canonical basis of \mathfrak{J}_o defined in the section 2. It is easy to check that $z_o\varepsilon_i$ and $\sqrt{-1}z_o\varepsilon_i$ are symmetric, so that we obtain

$$\mathfrak{J}_o T_o^{\perp} M \subset T_o M$$
.

Since the quaternionic Kähler structure \mathfrak{J} is \tilde{G} -invariant, and since the immersion φ is G-equivariant, (5.3) holds at any point of M.

If the ambient space is $G_2(\mathbb{C}^4)$, then the condition (5.3) determines a Kähler hypersurface as follows:

PROPOSITION 5.3. Suppose that a Kähler hypersurface M of $Q^4 = G_2(\mathbb{C}^4)$ satisfies the condition

$$\Im T^{\perp}M \subset TM$$
.

Then M is totally geodesic. Moreover, if M is compact, then M is congruent to a complex quadric $Q^3 = Sp(2)/U(2)$.

PROOF. Denote by $\tilde{\nabla}$ the Riemannian connection of Q^4 , and denote by ∇ , σ , A and ∇^{\perp} , the Riemannian connection, the second fundamental form, the shape operator, and the normal connection of M, respectively. It is well-known that Gauss' formula and Weingarten's formula hold:

(5.4)
$$\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y),$$

$$\tilde{\nabla}_X \xi = -A_{\xi} X + \nabla_{\mathbf{v}}^{\perp} \xi,$$

for $X, Y \in TM$ and $\xi \in T^{\perp}M$. The metric condition implies

(5.5)
$$\tilde{g}_c(\sigma(X,Y),\xi) = \tilde{g}_c(A_{\xi}X,Y).$$

Relative to the complex structure J, σ and A satisfy

(5.6)
$$\sigma(X, JY) = J\sigma(X, Y), \quad A_{\xi} \circ J = -J \circ A_{\xi} = -A_{J\xi}.$$

For a local unit normal vector field ξ , we define local vector fields as follow: $e_i = J_i \xi$, i = 1, 2, 3, where J_1 , J_2 and J_3 are a local canonical basis of \mathfrak{J} . Then, under the assumption of this proposition, $\{e_1, e_2, e_3, Je_1, Je_2, Je_3, \xi, J\xi\}$ is a local orthonormal frame field of Q^4 such that $\{e_1, e_2, e_3, Je_1, Je_2, Je_3\}$ is a tangent frame of M. For $X \in TM$, (5.4) implies

(5.7)
$$\nabla_X e_i + \sigma(X, e_i) = \tilde{\nabla}_X e_i = (\tilde{\nabla}_X J_i) \xi + J_i (\tilde{\nabla}_X \xi)$$
$$= (\tilde{\nabla}_X J_i) \xi - J_i A_{\xi} X + J_i (\nabla_X^{\perp} \xi).$$

Since \mathfrak{J} is parallel with respect to the connection $\tilde{\nabla}$, we have $\tilde{\nabla}_X J_i \in \mathfrak{J}$, so that the normal component of (5.7) is

$$\sigma(X, e_i) = -\tilde{g}_c(J_i A_{\xi} X, \xi) \xi - \tilde{g}_c(J_i A_{\xi} X, J \xi) J \xi$$

= $g_c(A_{\xi} X, e_i) \xi + g_c(A_{\xi} X, J e_i) J \xi$,

where g_c is the induced Kähler metric of M. On the other hand, (5.5) and (5.6) imply

$$\sigma(X, e_i) = \tilde{g}_c(\sigma(X, e_i), \xi)\xi + \tilde{g}_c(\sigma(X, e_i), J\xi)J\xi$$

= $g_c(A_{\xi}X, e_i)\xi - g_c(A_{\xi}X, Je_i)J\xi$.

From these two equations, we get

$$(5.8) g_c(A_{\varepsilon}X, Je_i) = 0.$$

Instead of X, applying to JX, we have

$$g_c(A_{\xi}X, e_i) = g_c(-A_{\xi}JX, Je_i) = 0.$$

Therefore, we have $A_{\xi}=0$, or $\sigma=0$, so that M is totally geodesic. By B. Y. Chen and T. Nagano [5]'s results, if M is compact, M is congruent to a complex quadric $Q^3=Sp(2)/U(2)$.

The Kähler submanifold $M = (C_l, \alpha_r)$ satisfies another interesting property as follows:

PROPOSITION 5.4. The isometric immersion $\Psi \circ \varphi : M = Sp(l)/U(r) \cdot Sp(l-r) \longrightarrow HM(2l, \mathbb{C})$ is a sum of $(HM(2l, \mathbb{C})$ -valued) eigenfunctions with eigenvalues 0, c(2l-r+1) and 2cl. More precisely, $\Psi \circ \varphi$ satisfies

$$\Psi \circ \varphi = F_0 + F_1 + F_2,$$

$$\Delta F_0 = 0, \quad \Delta F_1 = c(2l - r + 1)F_1, \quad \Delta F_2 = 2clF_2,$$

where F_0 , F_1 and F_2 are $HM(2l, \mathbb{C})$ -valued functions defined by

$$F_0 = \frac{r}{2l} I_{2l}, \quad F_1 = \frac{1}{2} (A + S\bar{A}S), \quad F_2 = -\frac{r}{2l} I_{2l} + \frac{1}{2} (A - S\bar{A}S),$$

 $A = \Psi \circ \varphi$ is a position vector in $HM(2l, \mathbb{C})$, and

$$S = \begin{pmatrix} 0 & -I_l \\ I_l & 0 \end{pmatrix}.$$

REMARK 5.2. If r=l, then F_2 vanishes. If r=1, then two positive eigenvalues coincide with each other, and $\Psi \circ \varphi$ is the first standard imbedding of $\mathbb{C}P^{2l-1}$.

COROLLARY 5.5. For $l \ge 3$ and $2 \le r \le l-1$, 2cl is an eigenvalue of the Laplacian of $Sp(l)/U(r) \cdot Sp(l-r)$, which is greater than the first eigenvalue.

REMARK 5.3. By B. Y. Chen's definition, if $l \ge 3$ and $2 \le r \le l-1$, then $Sp(l)/U(r) \cdot Sp(l-r)$ is a mass-symmetric 2-type submanifold of order $\{c(2l-r+1), 2cl\}$. On the other hand, for any $l \ge 1$, $(C_l, \alpha_1) = \mathbb{C}P^{2l-1}$ is a mass-symmetric 1-type submanifold of order $\{2cl\}$, and $(C_l, \alpha_l) = Sp(l)/U(l)$ is a mass-symmetric 1-type submanifold of order $\{c(l+1)\}$. (cf. [4])

PROOF OF PROPOSITION 5.4. Notice that G = Sp(l) is a subgroup of $\tilde{G} = SU(2l)$ and satisfies

$$G = Sp(l) = \{g \in SU(2l) \mid {}^{t}gSg = S\}.$$

For $1 \le i < j \le r$, let's set

$$z_{ij} = \frac{1}{2} \sqrt{\frac{c}{2}} (E_{ij} - E_{ji}),$$

so that $v(z_{ij})$, $Jv(z_{ij}) = v(\sqrt{-1}z_{ij})$, $1 \le i < j \le r$ are an orthonormal basis of $T_o^{\perp}M$. By a simple computation, we get

$$\sum_{i < j} \Psi_*(v(z_{ij}))^2 = \sum_{i < j} \Psi_*(Jv(z_{ij}))^2 = \frac{c}{4} \frac{r-1}{2} \begin{pmatrix} I_r & 0 & 0 & 0 \\ 0 & 0_{l-r} & 0 & 0 \\ 0 & 0 & I_r & 0 \\ 0 & 0 & 0 & 0_{l-r} \end{pmatrix}.$$

From (2.9), at the origin $A_o = \Psi(o) = \begin{pmatrix} I_r & 0 \\ 0 & 0_{2l-r} \end{pmatrix}$,

$$\sum_{i < i} (\tilde{\sigma}_{A_o}(v(z_{ij}), v(z_{ij})) + \tilde{\sigma}_{A_o}(Jv(z_{ij}), Jv(z_{ij})))$$

$$=4\bigg(\sum_{i< j}\Psi_*(\nu(z_{ij}))^2\bigg)(I-2A_o)=\frac{c(r-1)}{2}(-A_o-SA_oS).$$

Since M is minimal in $G_r(\mathbb{C}^{2l})$, it follows from (2.10) that, at the origin A_o , the mean curvature vector H_{A_o} of M in $HM(2l, \mathbb{C})$ is given by

$$2 \dim_{\mathbb{C}} M H_{A_o} = 2r(2l-r)\tilde{H}_{A_o} - \sum_{i < j} \left(\tilde{\sigma}_{A_o}(v(z_{ij}), v(z_{ij})) + \tilde{\sigma}_{A_o}(Jv(z_{ij}), Jv(z_{ij})) \right)$$

$$= \frac{c}{2} \left(2rI - (4l-r+1)A_o + (r-1)SA_oS \right).$$

Since the immersions φ and Ψ are equivariant under the actions G and \tilde{G} , at a point $A = gA_0g^*$, $g \in G$, the mean curvature H_A is given by

$$2\dim_{\mathbb{C}} M \ H_A = 2\dim_{\mathbb{C}} M \ g \ H_{A_o} g^* = \frac{c}{2} (2rI - (4l - r + 1)A + (r - 1)S\bar{A}S).$$

Therefore, we obtain

$$\Delta A = -2 \dim_{\mathbb{C}} M \ H_A = -\frac{c}{2} (2rI - (4l - r + 1)A + (r - 1)S\bar{A}S).$$

which implies Proposition 5.4.

REMARK 5.4. A quaternionic projective space $\mathbf{H}P^{l-1}$ admits a totally geodesic embedding $\varphi_{\mathbf{H}P^{l-1}}$ into $G_2(\mathbf{C}^{2l})$. (See [5] and [6].) $\varphi_{\mathbf{H}P^{l-1}}$ is a quaternionic embedding with respect to the quaternionic Kähler structure of $G_2(\mathbf{C}^{2l})$, and is a totally real embedding with respect to the complex structure of $G_2(\mathbf{C}^{2l})$. It is known that the Kähler hypersurface $M = (C_l, \alpha_2)$ is the focal set of $\mathbf{H}P^{l-1}$ in $G_2(\mathbf{C}^{2l})$. (cf. [1])

6. Proof of main theorems

Let M be a compact connected Kähler hypersurface of $G_r(\mathbb{C}^n)$ immersed by a immersion φ . It is well-known that every $HM(n, \mathbb{C})$ -valued function F satisfies

(6.1)
$$(\Delta F, \Delta F)_{L^2} - \lambda_1 (\Delta F, F)_{L^2} \ge 0.$$

The equality holds if and only if F is a sum of eigenfunctions with respect to eigenvalues 0 and λ_1 . It is equivalent to that there exists a constant vector $C \in HM(n, \mathbb{C})$ such that $\Delta(F - C) = \lambda_1(F - C)$.

Denote by H the mean curvature vector of the isometric immersion $\Phi = \Psi \circ \varphi$. Then, since M is minimal in $G_r(\mathbb{C}^n)$, (2.10) implies

(6.2)
$$2(r(n-r)-1)H_A = 2r(n-r)\tilde{H}_A - \tilde{\sigma}_A(\xi,\xi) - \tilde{\sigma}_A(J\xi,J\xi)$$
$$= c(rI-nA) - \tilde{\sigma}_A(\xi,\xi) - \tilde{\sigma}_A(J\xi,J\xi),$$

where A is a position vector of $\Phi(M)$ in $HM(n, \mathbb{C})$, and ξ is a local unit normal vector field of φ . Using (2.12) and (6.2), we get

$$(6.3) (H_A, A) = -1.$$

 $HM(n, \mathbb{C})$ -valued function Φ satisfies $\Delta \Phi = -2(r(n-r)-1)H$, so that (6.1) and (6.3) imply the following. The equality condition dues to T. Takahashi's theorem in [15].

LEMMA 6.1.

(6.4)
$$2(r(n-r)-1) \int_{M} (H_A, H_A) dv_M - \lambda_1 vol(M) \ge 0.$$

The equality holds if and only if Φ is a minimal immersion of M into some round sphere in $HM(n, \mathbb{C})$, more precisely, there exists some positive constant R and some constant vector $C \in HM(n, \mathbb{C})$ such that H_A satisfies

(6.5)
$$H_A = \frac{1}{R^2}(C - A).$$

LEMMA 6.2. If the equality holds in (6.4), then M is contained in a totally geodesic submanifold of $G_r(\mathbb{C}^n)$ which is product of Grassmann manifolds, more precisely, there exist integers k_i , r_i , $i = 1, \dots, m$ such that

$$0 \leq r_i \leq k_i , \quad r_1 \geq r_2 \geq \cdots \geq r_m ,$$

$$\sum_{i=1}^m r_i = r , \quad \sum_{i=1}^m k_i = n ,$$

$$M \subset G_{r_1}(\mathbf{C}^{k_1}) \times G_{r_2}(\mathbf{C}^{k_2}) \times \cdots \times G_{r_m}(\mathbf{C}^{k_m}) \subset G_r(\mathbf{C}^n) .$$
(6.6)

Notice that $G_0(\mathbb{C}^{k_i}) = G_{k_i}(\mathbb{C}^{k_i}) = \{\text{one point}\}.$

PROOF. Assume that the equality holds in (6.4).

Since M is minimal in $G_r(\mathbb{C}^n)$, H is normal to $G_r(\mathbb{C}^n)$. Then, from (2.5) and (6.5), we get

$$(6.7) CA = AC,$$

where C is a constant vector in Lemma 6.1. Since SU(n) acts on $G_r(\mathbb{C}^n)$ transitively, without loss of generality, we can assume that C is a diagonal matrix as follows:

(6.8)
$$C = \begin{pmatrix} c_1 I_{k_1} & & & & \\ & c_2 I_{k_2} & & & \\ & & \ddots & & \\ 0 & & & c_m I_{k_m} \end{pmatrix}, \quad k_i > 0, \quad c_i \neq c_j \ (i \neq j).$$

Notice that

$$n=k_1+k_2+\cdots+k_m.$$

Define a linear subspace L of $HM(n, \mathbb{C})$ by $L = \{Z \in HM(n, \mathbb{C}) \mid ZC = CZ\}$, so that

$$L = \left\{ \begin{pmatrix} Z_1 & & & 0 \\ & Z_2 & & \\ & & \ddots & \\ 0 & & & Z_m \end{pmatrix} \middle| \begin{array}{c} Z_i \in M_{k_i}(\mathbf{C}) \\ \end{array} \right\}.$$

From (6.7), M is contained in $G_r(\mathbb{C}^n) \cap L$.

For each integer r_i with $0 \le r_i \le k_i$, $\sum_{i=1}^m r_i = r$, let's define connected subsets of $G_r(\mathbb{C}^n)$ by

$$W_{r_1,\dots,r_m} = \left\{ \begin{pmatrix} A_1 & & & & \\ & A_2 & & & \\ & & \ddots & & \\ 0 & & & A_m \end{pmatrix} \middle| \begin{array}{l} A_i \in M_{k_i}(\mathbb{C}), \\ A_i^2 = A_i, & tr A_i = r_i \end{array} \right\}.$$

So, $G_r(\mathbb{C}^n) \cap L$ is a disjoint union of all W_{r_1, \dots, r_m} 's. Since M is connected, M is contained in suitable one of W_{r_1, \dots, r_m} 's, saying W_{r_1, \dots, r_m} . By the definition, we see

$$W_{r_1,\dots,r_m} = G_{r_1}(\mathbf{C}^{k_1}) \times G_{r_2}(\mathbf{C}^{k_2}) \times \dots \times G_{r_m}(\mathbf{C}^{k_m}).$$

Without loss of generality, we can choose a diagonal matrix C with respect to which the inequalities $r_1 \ge r_2 \ge \cdots \ge r_m$ hold.

From (2.9), (2.11) and (6.2), we get

(6.9)
$$H_A = \frac{c}{2(r(n-r)-1)} \left\{ (rI - nA) - \frac{4}{c} (\Psi_* \xi)^2 (I - 2A) \right\}.$$

Using (2.3) and (2.4), we see

(6.10)
$$(H_A, H_A) = \frac{c}{2(r(n-r)-1)^2} \left\{ nr(n-r) - 2tr \frac{4}{c} r (\Psi_* \xi)^2 \left(I + \frac{n-2r}{r} A \right) + tr \frac{16}{c^2} (\Psi_* \xi)^2 (I - 2A) (\Psi_* \xi)^2 (I - 2A) \right\}.$$

Since the immersion Ψ is \tilde{G} -equivariant, for any $A \in \Phi(M)$, there exists a element $g_A \in \tilde{G}$ and a matrix $v_A \in M_{n-r,r}(\mathbb{C})$ satisfying $A_o = g_A A g_A^*$ and

(6.11)
$$\sqrt{\frac{c}{4}} \begin{pmatrix} 0 & v_A^* \\ v_A & 0 \end{pmatrix} = g_A(\Psi_* \xi) g_A^*.$$

Since the inner product (,) is \tilde{G} -equivariant and ξ is unit, we have $tr\ v_A^*v_A=tr\ v_Av_A^*=1$. After translating by g_A , together with (6.11), (6.10) implies

(6.12)
$$(H_A, H_A) = \frac{c}{2(r(n-r)-1)^2} \left\{ n(r(n-r)-2) + 2tr \left(v_A^* v_A v_A^* v_A\right) \right\}.$$

LEMMA 6.3. For $v \in M_{n-r,r}(\mathbb{C})$ with $tr \ v^*v = 1$, the following inequality holds

$$(6.13) tr v^*vv^*v \le 1.$$

Moreover, the following three conditions are equivalent to each other.

- (1) The equality holds in (6.13).
- (2) The hermitian r-matrix v^*v is similar to $\begin{pmatrix} 1 & 0 \\ 0 & 0_{r-1} \end{pmatrix}$.

(3) The hermitian
$$(n-r)$$
-matrix vv^* is similar to $\begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix}$.

If the equality holds in (6.13), then there exists $R = \begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix} \in S(U(r) \cdot U(n-r))$ such that $v' = QvP^*$ satisfies

$$v'^*v' = \begin{pmatrix} 1 & 0 \\ 0 & 0_{r-1} \end{pmatrix}$$
 and $v'v'^* = \begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix}$.

PROOF. Lemma 6.3 follows from that both of Hermitian matrices v^*v and vv^* are similar to diagonal matrices with non-negative eigenvalues.

Form (6.12) and Lemma 6.3, the following lemma is immediately obtained, which is used to prove Theorem A.

LEMMA 6.4.

(6.14)
$$(H_A, H_A) \leq \frac{c}{2(r(n-r)-1)} \left\{ n - \frac{n-2}{r(n-r)-1} \right\}.$$

The equality holds if and only if, for any $A \in \Phi(M)$, it is possible to choose v_A satisfying

(6.15)
$$v_A^* v_A = \begin{pmatrix} 1 & 0 \\ 0 & 0_{r-1} \end{pmatrix} \quad and \quad v_A v_A^* = \begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix}.$$

PROOF OF THEOREM A. (6.4) and (6.14) imply

$$\lambda_1 \leq c \left(n - \frac{n-2}{r(n-r)-1} \right)$$
.

Let's assume that this equality holds. Then, the equality conditions of Lemmas 6.1 and 6.4 hold.

Assume m = 1. Then, (6.5) and (6.9) imply

$$\frac{1}{R^2}(c_1I - A) = \frac{c}{2(r(n-r) - 1)} \left\{ (rI - nA) - \frac{4}{c} (\Psi_* \xi)^2 (I - 2A) \right\}.$$

After translating by g_A , together with (6.11) and (6.15), we obtain

$$\frac{1}{R^2}(c_1 - 1)I_r = \frac{c}{2(r(n-r) - 1)} \left\{ (r - n)I_r + \begin{pmatrix} 1 & 0 \\ 0 & 0_{r-1} \end{pmatrix} \right\},$$

$$\frac{1}{R^2}c_1I_{n-r} = \frac{c}{2(r(n-r) - 1)} \left\{ rI_{n-r} - \begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix} \right\}.$$

The first equation implies r=1, and the second one implies n-r=1. So, we have n=2 and r=1. This contradicts that M is a complex hypersurface.

Since $m \ge 2$, from Lemma 6.2, M is contained in a proper totally geodesic submanifold of $G_r(\mathbb{C}^n)$. On the other hand, M is of complex codimension 1 in $G_r(\mathbb{C}^n)$. Consequently,

either r=1 or r=n-1 occurs, and M is a totally geodesic complex hypersurface of a complex projective space $\mathbb{C}P^{n-1} \cong G_1(\mathbb{C}^n) \cong G_{n-1}(\mathbb{C}^n)$.

PROOF OF THEOREM B. Let's assume that M is a compact connected Kähler hypersurface of $G_2(\mathbb{C}^n)$ satisfying the condition $J\xi \perp \mathfrak{J}\xi$. Since both of the complex structure and the quaternionic Kähler structure are \tilde{G} -invariant, we obtain, at the origin A_o ,

(6.16)
$$J\begin{pmatrix} 0 & v_A^* \\ v_A & 0 \end{pmatrix} \perp J_i \begin{pmatrix} 0 & v_A^* \\ v_A & 0 \end{pmatrix}, \quad i = 1, 2, 3,$$

where J_1 , J_2 and J_3 are a canonical basis of \mathfrak{J}_o defined in the section 2. Set

$$v_A = (v_A' \quad v_A''), \quad v_A', v_A'' \in M_{n-2,1}(\mathbb{C}) \cong \mathbb{C}^{n-2}.$$

Using (2.7) and (2.8), (6.16) implies that $|v_A'| = |v_A''|$ and $v_A' \perp v_A''$. Combining these with $tr\ v_A^*v_A = 1$, we obtain $|v_A'| = |v_A''| = \frac{1}{\sqrt{2}}$, so that

(6.17)
$$v_A^* v_A = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Together with (6.17), (6.12) implies

$$(H_A, H_A) = \frac{c}{2(2n-5)} \left\{ n - \frac{n-1}{2n-5} \right\}.$$

Therefore, form Lemma 6.1, we obtain

$$\lambda_1 \leq c \left(n - \frac{n-1}{2n-5} \right)$$
.

Let's assume that this equality holds. Then, the equality conditions of Lemma 6.1 holds. Computing dimensions of manifolds in (6.6), we have

(6.18)
$$2n - 5 \leq \sum_{i=1}^{m} r_i (k_i - r_i).$$

From $\sum_{i=1}^{m} r_i = 2$ and $r_1 \ge r_2 \ge \cdots \ge r_m$, the following two cases occur:

Case I:
$$r_1 = r_2 = 1$$
, $r_3 = \cdots = r_m = 0$,

Case II:
$$r_1 = 2$$
, $r_2 = \cdots = r_m = 0$.

In Case I, (6.18) implies $2n-5 \le k_1+k_2-2 \le n-2$, so $n \le 3$. This is contradiction. Therefore, Case II occurs. Then, (6.18) implies $2n-5 \le 2(k_1-2)$, so that we have $n=k_1, m=1, k_2=\cdots=k_m=0$. (6.5) and (6.9) imply

$$\frac{1}{R^2}(c_1I - A) = \frac{c}{2(2n-5)} \left\{ (2I - nA) - \frac{4}{c} (\Psi_* \xi)^2 (I - 2A) \right\}.$$

After translating by g_A , together with (6.11) and (6.17), we obtain

$$\frac{1}{R^2}(c_1 - 1) = \frac{c}{2(2n - 5)} \left\{ 2 - n + \frac{1}{2} \right\},$$

$$\frac{1}{R^2}c_1 I_{n-2} = \frac{c}{2(2n - 5)} \left\{ 2I_{n-2} - v_A v_A^* \right\}.$$

The second equation implies

(6.19)
$$v_A v_A^* = dI_{n-2}, \quad d = 2 - \frac{2(2n-5)}{c} \frac{c_1}{R^2}.$$

From (6.17), we have

$$dv_A = dI_{n-2}v_A = (v_A v_A^*)v_A = v_A(v_A^* v_A) = \frac{1}{2}v_A$$

so that $d = \frac{1}{2}$. Consequently, taking traces of both sides of (6.19), we obtain n = 4.

Therefore, from Proposition 5.3, M is congruent to Q^3 .

References

- J. BERNDT, Riemannian geometry of complex two-plane Grassmannians, Rend. Sem. Mat. Univ. Politec. Torino 55 (1997), 19–83.
- [2] A. BOREL and F. HIRZEBRUCH, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458–538.
- [3] J.-P. BOURGUIGNON, P. LI and S. T. YAU, Upper bound for the first eigenvalue of algebraic submanifolds, Comment. Math. Helv. 69 (1994), 199–207.
- [4] B. Y. CHEN, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore (1984).
- [5] B. Y. CHEN and T. NAGANO, Totally geodesic submanifolds of symmetric spaces, I, Duke Math. J. 44 (1977), 745–755.
- [6] B. Y. CHEN and T. NAGANO, Totally geodesic submanifolds of symmetric spaces, II, Duke Math. J. 45 (1978), 405–425
- [7] E. B. DYNKIN, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. series 2 6 (1957), 111–244.
- [8] S. HELGASON, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York (1978).
- [9] S. IHARA, Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan 19 (1967), 261–302.
- [10] K. Konno, Homogeneous hypersurfaces in Kähler C-spaces with $b_2=1$, J. Math. Soc. Japan **40** (1988), 687–703
- [11] Y. MIYATA, On an upper bound for the first eigenvalue of Kähler submanifolds of $\mathbb{C}P^n$, Bulletin of the Liberal Arts & Science Course, Nihon University School of Medicine **21** (1993), 13–23.
- [12] M. OBATA, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. U.S.-Japan Sem. in Differential Geom., Kyoto, Japan (1965), 101–114.
- [13] A. Ros, On spectral geometry of Kaehler submanifolds, J. Math. Soc. Japan 36 (1984), 433–448.
- [14] I. SATAKE, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math. 87 (1965), 425–461.
- [15] T. TAKAHASHI, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385.
- [16] M. TAKEUCHI, Homogeneous Kähler submanifolds in complex projective spaces, Japan. J. Math. 4 (1978), 171–219.

[17] M. TAKEUCHI, Modern Spherical Functions, Translations of Mathematical Monographs, vol. 135, Amer. Math. Soc. (1994).

Present Address:

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, MINAMI-OHSAWA, HACHIOJI-SHI, TOKYO, 192–0397 JAPAN.

e-mail: miyata@comp.metro-u.ac.jp