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1. Introduction

Let M be a compact C∞-Riemannian manifold, C∞(M) the space of all smooth func-
tions on M , and ∆ the Laplacian on M . Then ∆ is a self-adjoint elliptic differential operator
acting on C∞(M), which has an infinite discrete sequence of eigenvalues:

Spec(M) = {0 = λ0 < λ1 < λ2 < · · · < λk < · · · ↑ ∞} .

Let Vk = Vk(M) be the eigenspace of ∆ corresponding to the k-th eigenvalue λk . Then Vk is
finite-dimensional. We define an inner product ( , )L2 on C∞(M) by

(f, g)L2 =
∫

M

f g dvM ,

where dvM denotes the volume element on M . Then
∑∞

t=0 Vt is dense in C∞(M) and the
decomposition is orthogonal with respect to the inner product ( , )L2 . Thus we have

C∞(M) =
∞∑
t=0

Vt(M) (in L2-sense) .

Since M is compact, V0 is the space of all constant functions which is 1-dimensional.
In this point of view, it is one of the simplest and the most interesting problems to esti-

mate the first eigenvalue. In [13], A. Ros gave the following sharp upper bound for the first
eigenvalue of Kähler submanifold of a complex projective space.

THEOREM 1.1. Suppose that M is a complex m-dimensional compact Kähler sub-
manifold of the complex projective space CPn of constant holomorphic sectional curvature
c. Then the first eigenvalue λ1 satisfies

λ1 � c(m + 1) .
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The equality holds if and only if M is congruent to a totally geodesic Kähler submanifold
CPm of CPn.

If M is not totally geodesic, J-P. Bourguignon, P. Li and S. T. Yau in [3] gave the follow-
ing sharper estimate. ( See also [11].)

THEOREM 1.2. Suppose that M is a complex m-dimensional compact Kähler sub-
manifold of CPn, which is fully immersed and not totally geodesic. Then the first eigenvalue
λ1 satisfies

λ1 � c m
n + 1

n
.

It is not known when the equality holds in this inequality.
The purpose of this paper is to give the upper bound for the first eigenvalue of Kähler

hypersurfaces of a complex Grassmann manifold.
Denote by Gr(Cn) the complex Grassmann manifold of r-planes in Cn, equipped with

the Kähler metric of maximal holomorphic sectional curvature c. In the case that M is a
complex hypersurface of Gr(Cn), we obtain the following result, which is a generalization of
Theorem 1.1.

THEOREM A. Suppose that M is a compact connected Kähler hypersurface of
Gr(Cn). Then the first eigenvalue λ1 satisfies

λ1 � c

(
n − n − 2

r(n − r) − 1

)
.

The equality holds if and only if r = 1 or n − 1, and M is congruent to the totally geodesic

complex hypersurface CPn−2 of the complex projective space CPn−1.

The 2-plane Grassmann manifold G2(Cn) admits the quaternionic Kähler structure J.

For the normal bundle T ⊥M of a Kähler hypersurface M of G2(Cn), JT ⊥M is a vector bundle
of real rank 6 over M which is a subbundle of the tangent bundle of G2(Cn). We consider a

Kähler hypersurface M of G2(Cn) satisfying the property that JT ⊥M is a subbundle of the
tangent bundle T M of M . In Section 5, we will provide examples satisfying this property.

For a Kähler hypersurface of G2(Cn) satisfying this property, we obtain the following
upper bound of the first eigenvalue.

THEOREM B. Suppose that M is a compact connected Kähler hypersurface of
G2(Cn), n � 4. If M satisfies the condition J T ⊥M ⊂ T M , then the first eigenvalue
λ1 satisfies

λ1 � c

(
n − n − 1

2n − 5

)
.

The equality holds if and only if n = 4 and M is congruent to the totally geodesic complex

hypersurface Q3 of the complex quadric Q4 = G2(C4).



SPECTRAL GEOMETRY OF KÄHLER HYPERSURFACES 417

The author wishes to thank Professors K. Ogiue and Y. Ohnita for many valuable com-
ments and suggestions.

NOTATIONS. Mr,s(C) denotes the set of all r ×s matrices with entries in C, and Mr(C)

stands for Mr,r(C). Ir and Or denote the identity r-matrix and the zero r-matrix.

2. Preliminaries

In this section, we discuss geometries of the complex r-plane Grassmann manifold and
its first standard imbedding.

Let Mr(Cn) be the complex Stiefel manifold which is the set of all unitary r-systems of
Cn, i.e.,

Mr(Cn) = {Z ∈ Mn,r (C) | Z∗Z = Ir } .

The complex r-plane Grassmann manifold Gr(Cn) is defined by

Gr(Cn) = Mr(Cn)/U(r) .

The origin o of Gr(Cn) is defined by π(Z0), where Z0 =
(

Ir

0

)
is an element of Mr(Cn), and

π : Mr(Cn) → Gr(Cn) is the natural projection.

The left action of the unitary group G̃ = SU(n) on Gr(Cn) is transitive, and the isotropy
subgroup at the origin o is

K̃ = S( U(r) · U(n − r) )

=
{(

U1 0
0 U2

) ∣∣∣∣ U1 ∈ U(r), U2 ∈ U(n − r), det U1 det U2 = 1

}
,

so that Gr(Cn) is identified with a homogeneous space G̃/K̃ .
Set g̃ = su(n) and

k̃ = R ⊕ su(r) ⊕ su(n − r)

=
{(

u1 0
0 u2

)
+ a

(− 1
r

√−1Ir 0
0 1

n−r

√−1In−r

) ∣∣∣∣ a ∈ R,
u1 ∈ su(r)

u2 ∈ su(n − r)

}
,

then g̃ and k̃ are the Lie algebras of G̃ and K̃ , respectively. Define a linear subspace m̃ of g̃ by

m̃ =
{(

0 −ξ∗
ξ 0

) ∣∣∣∣ ξ ∈ Mn−r,r (C)

}
.

Then m̃ is identified with the tangent space To(Gr(Cn)). The G̃-invariant complex structure

J of Gr(Cn) and the G̃-invariant Kähler metric g̃c of Gr(Cn) of the maximal holomorphic
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sectional curvature c are given by

J

(
0 −ξ∗
ξ 0

)
=

(
0

√−1ξ∗√−1ξ 0

)
,

g̃ co
(X, Y ) = −2

c
trXY , X, Y ∈ m̃ .(2.1)

Notice that g̃c satisfies

g̃ c o
= −2

c

1

2n
Bg̃ = −2

c

L(g̃)

2
Bg̃(2.2)

on m̃, where Bg̃ is the Killing form of g̃, and L(g̃) is the squared length of the longest root of
g̃ relative to the Killing form.

In the case of r = 2, the complex 2-plane Grassmann manifold G2(Cn) admits another

geometric structure named the quaternionic Kähler structure J. J is a G̃-invariant subbundle

of End(T (G2(Cn))) of rank 3, where End(T (G2(Cn))) is the G̃-invariant vector bundle
of all linear endmorphisms of the tangent bundle T (G2(Cn)). Under the identification of
To(Gr(Cn)) with m̃, the fiber Jo at the origin o is given by

Jo = {Jε̃ = ad(ε̃)
∣∣ ε̃ ∈ k̃q } ,

where k̃q is an ideal of k̃ defined by

k̃q =
{(

u1 0
0 0

) ∣∣∣∣ u1 ∈ su(2)

}
∼= su(2) .

Define a basis {ε1, ε2, ε3} of su(2) by

ε1 =
(√−1 0

0 −√−1

)
, ε2 =

(
0 1

−1 0

)
, ε3 =

(
0

√−1√−1 0

)
.

Then ε1, ε2 and ε3 satisfy

[ ε1, ε2] = 2 ε3 , [ ε2, ε3] = 2 ε1 , [ ε3, ε1] = 2 ε2 .

Set ε̃i =
(

εi 0
0 0

)
and Ji = Jε̃i

for i = 1, 2, 3. Then the basis {J1, J2, J3 } is a canonical

basis of Jo, satisfying

J 2
i = −idm̃ for i = 1, 2, 3 ,

J1J2 = −J2J1 = J3 , J2J3 = −J3J2 = J1 , J3J1 = −J1J3 = J2 ,

g̃ co
(JiX, JiY ) = g̃ co

(X, Y ) , for X,Y ∈ m̃ and i = 1, 2, 3 .

Since J is given by

J = ad(ε̃C) , ε̃C = r(n − r)

n

(− 1
r

√−1Ir 0
0 1

n−r

√−1In−r

)
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on m, and since ε̃C is an element of the center of k̃, J is commutable with J.
Let HM(n, C) be the set of all Hermitian (n, n)-matrices over C, which can be identified

with Rn2
. For X,Y ∈ HM(n, C), the natural inner product is given by

(X, Y ) = 2

c
trXY .(2.3)

GL(n, C) acts on HM(n, C) by X �→ BXB∗, B ∈ GL(n, C), X ∈ HM(n, C). Then the
action of SU(n) leaves the inner product (2.3) invariant. Define two linear subspaces of
HM(n, C) as follows:

HM0 = {X ∈ HM(n, C) | trX = 0} ,

HMR = {aI | a ∈ R} ,

where I is the n-identity matrix. Both of them are invariant under the action of SU(n), and
irreducible. We get the orthogonal decomposition of HM(n, C) as follows:

HM(n, C) = HM0 ⊕ HMR .

It is well-known that HM0 (resp. HMR) is identified with the first eigenspace V1(Gr(Cn))

(resp. the set of all constant functions, i.e. V0(Gr(Cn))).
The first standard imbedding Ψ of Gr(Cn) is defined by

Ψ (π(Z)) = ZZ∗ ∈ HM(n, C) , Z ∈ Mr(Cn) .

Ψ is SU(n)-equivariant and the image N of Gr(Cn) under Ψ is given by

N = Ψ (Gr(Cn)) = {A ∈ HM(n, C) | A2 = A, trA = r} ,(2.4)

so that it is contained fully in a hyperplane

HMr = {A ∈ HM(n, C) | trA = r} =
{
A + r

n
I

∣∣∣∣ A ∈ HM0

}

of HM(n, C). The tangent bundle T N and the normal bundle T ⊥N are given by

TAN = {X ∈ HM(n, C) | XA + AX = X} ⊂ HM0 ,

T ⊥
A N = {Z ∈ HM(n, C) | ZA = AZ} .

(2.5)

In particular, at the origin Ao = Ψ (o) =
(

Ir 0
0 0

)
, we can obtain

TAoN =
{(

0 ξ∗
ξ 0

) ∣∣∣∣ ξ ∈ Mn−r,r (C)

}
,

T ⊥
Ao

N =
{(

Z1 0
0 Z2

) ∣∣∣∣ Z1 ∈ HM(r, C), Z2 ∈ HM(n − r, C)

}
.

(2.6)



420 YOICHIRO MIYATA

The complex structure J acts on TAoN as

J

(
0 ξ∗
ξ 0

)
=

(
0 −√−1ξ∗√−1ξ 0

)
.(2.7)

If r = 2, then the quaternionic Kähler structure J acts on TAoN as

Jε̃

(
0 ξ∗
ξ 0

)
=

(
0 εξ∗

−ξε 0

)
, ε ∈ su(2) .(2.8)

Let σ̃ and H̃ denote the second fundamental form and the mean curvature vector of Ψ ,
respectively. Then, for A ∈ N and X,Y ∈ TAN , we can see

σ̃A(X, Y ) = (XY + YX)(I − 2A) ,(2.9)

H̃A = c

2r(n − r)
(rI − nA)(2.10)

and σ̃ satisfies the following:

σ̃A(JX, JY ) = σ̃A(X, Y ) ,(2.11)

(σ̃A(X, Y ), A) = −(X, Y ) .(2.12)

Denote by Sn2−2( c
2

n
r(n−r)

) the hypersphere in HMr centered at r
n
I with radius√

2
c

r(n−r)
n

. Then we see that Ψ is a minimal immersion of Gr(Cn) into Sn2−2( c
2

n
r(n−r)

),

and that the center of mass of Ψ (Gr(Cn)) is r
n
I . In fact, Ψ satisfies the equation ∆Ψ =

cn(Ψ − r
n
I ). Moreover, all coefficients of Ψ − r

n
I span the first eigenspace V1(Gr(Cn)).

Let’s assume that M is a submanifold of Gr(Cn) with an immersion ϕ. Then F = Ψ ◦ ϕ

is an immersion of M into HM(n, C), and the set of all coefficients of F − r
n
I spans the

pull-back ϕ∗V1(Gr(Cn)).

3. Examples

One of the simplest typical examples of submanifolds of Gr(Cn) is a totally geodesic
submanifold. B. Y. Chen and T. Nagano in [5, 6] determined maximal totally geodesic sub-
manifolds of G2(Cn). I. Satake and S. Ihara in [14, 9] determined all (equivariant) holomor-
phic, totally geodesic imbeddings of a symmetric domain into another symmetric domain.
When an ambient symmetric domain is of type (I)p,q , taking a compact dual symmetric space,
we obtain the complete list of maximal totally geodesic Kähler submanifolds of Gr(Cn).

Let M be a maximal totally geodesic Kähler submanifold of Gr(Cn) given by a Kähler
immersion ϕ : M → Gr(Cn). Since M is a symmetric space, denote by (G,K) the compact
symmetric pair of M , and denote by (g, k) its Lie algebra. Then there exists a certain unitary

representation ρ : G → G̃ = SU(n), such that ϕ(M) is given by the orbit of ρ(G) through

the origin o = {K̃} in Gr(Cn).
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Let L(g) be the squared length of the longest root of g relative to the Killing form Bg.
Tables of the L(g) constants appear in [8]. The Kähler metric induced by ϕ is a G-invariant
metric corresponding to an Ad(G)-invariant inner product

ρ∗
(

− 2

c

L(g̃)

2
Bg̃

)
= −2

c

L(g)

2
lρ Bg(3.1)

on g, where lρ is the index of a linear representation ρ defined by Dynkin. Tables of indices
of basic representations of simple Lie algebras appear in [7].

Using Freudenthal’s formula with respect to the inner product (3.1), we can calculate the
first eigenvalue of the Laplacian of M . (cf. [17])

Summing up these results, we obtain the following.

THEOREM 3.1. Let M = G/K be a proper maximal totally geodesic Kähler subman-
ifold of Gr(Cn), ρ a corresponding unitary representation of G to SU(n), and λ1 the first
eigenvalue of the Laplacian with respect to the induced Kähler metric. Then, M , ρ and λ1 are
one of the following (up to isomorphism).

(1) M1 = Gr(Cn−1) ↪→ Gr(Cn), 1 � r � n − 2,
ρ1 = natural inclusion and λ1 = c(n − 1)

(2) M2 = Gr−1(Cn−1) ↪→ Gr(Cn), 2 � r � n − 1,
ρ2 = natural inclusion and λ1 = c(n − 1)

(3) M3 = Gr1(C
n1) × Gr2(C

n2) ↪→ Gr1+r2(C
n1+n2), 1 � ri � ni − 1, i = 1, 2,

ρ3 = natural inclusion and λ1 = c min{n1, n2}
(4) M4 = M4,p = Sp(p)/U(p) ↪→ Gp(C2p), p � 2,

ρ4 = natural inclusion and λ1 = c(p + 1)

(5) M5 = M5,p = SO(2p)/U(p) ↪→ Gp(C2p), p � 4,
ρ5 = natural inclusion and λ1 = c(p − 1)

(6) M6,m = CPp ↪→ Gr(Cn) : the complex projective space,

r =
(

p

m − 1

)
, n =

(
p + 1

m

)
, 2 � m � p − 1,

ρ6,m = the exterior representation of degree m,

and λ1 = c(p + 1)

(
p − 1
m − 1

)−1

(7) M7 = Q3 ↪→ Q4 = G2(C4) : the complex quadric,
ρ7 = spin representation and λ1 = 3c

(8) M8 = M8,2l = Q2l ↪→ Gr(C2r ) : the complex quadric, r = 2l−1, l � 3,

ρ±
8 = (two) spin representations and λ1 = c

2l

2l−2

In the above list, notice that M4,2 = M7 and M5,4 = M8,6.
Another one of the simplest typical examples of submanifolds of Gr(Cn) is a homoge-

neous Kähler hypersurface. K. Konno in [10] determined all Kähler C-spaces embedded as a
hypersurface into a Kähler C-space with the second Betti number b2 = 1.
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THEOREM 3.2. Let M be a compact, simply connected homogeneous Kähler hyper-
surface of Gr(Cn), and λ1 the first eigenvalue of the Laplacian with respect to the induced
Kähler metric. Then, M and λ1 are one of the following (up to isomorphism).

(1) M9 = CPn−2 ↪→ CPn−1 = G1(Cn) and λ1 = c(n − 1)

(2) M10 = Qn−2 ↪→ CPn−1 = G1(Cn) and λ1 = c(n − 2)

(3) M7 = Q3 ↪→ Q4 = G2(C4) and λ1 = 3c

(4) M11 = Sp(l)/U(2) · Sp(l − 2) ↪→ G2(C2l) : Kähler C-space of type (Cl, α2),
l � 2 and λ1 = c(2l − 1)

M9 and M7 are totally geodesic. M9, M10 and M7 are symmetric spaces. If l = 2, then M11

is congruent to M7.

For each l with l > 2, M11 is not a symmetric space. Then, it is not easy to calculate the
first eigenvalue λ1 of M11. We will calculate λ1 of M11 in the next section.

From these two theorems, we obtain the following proposition:

PROPOSITION 3.3. Let M be either a proper maximal totally geodesic Kähler sub-
manifold of Gr(Cn) or a compact, simply connected homogeneous Kähler hypersurface of
Gr(Cn). Then, the first eigenvalue λ1 of M with respect to the induced Kähler metric satisfies

λ1 � c (n − 1) .

Moreover, the equality holds if and only if M is congruent to one of the following:
M1 , M2 , M4,2 = M7 , M9 , M11 .

4. The Kähler C-spaces with b2 = 1

In this section, we will consider the first eigenvalue of the Kähler C-space whose second
Betti number is equal to 1. First, we review the general theory of Kähler C-spaces. For details,
see [2] and [16].

Let g be a compact semisimple Lie algebra and t be a maximal abelian subalgebra of g.

Denote by gC and tC the complexifications of g and t, respectively. tC is a Cartan subalgebra

of gC. Let ( , ) be an Ad(G)-invariant inner product on g defined by −Bg, where Bg is the

Killing form of g. Let Σ ⊂ (tC)∗ denote the root system of g relative to t. We have a root
space decomposition of g:

gC = tC +
∑
α∈Σ

gC
α ,(4.1)

where gC
α = {X ∈ gC | (adH)X = α(H)X for any H ∈ t}. Since g is compact type, for any

α ∈ Σ and H ∈ t, α(H) is pure imaginary, so that there exists a unique element α̌ ∈ t such

that, for any H ∈ t, the equality α(H) = √−1(α̌,H) holds. We identify α with α̌, so that the
root system Σ is identified with a subset {α̌ | α ∈ Σ} of t. Choose a lexicographic order > on
Σ and put Σ+ = {α ∈ Σ | α > 0}. Let Π be the fundamental root system of Σ consisting of
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simple roots with respect to the linear order >. Π is identified with its Dynkin diagram. Let

{Λα}α∈Π ⊂ t be the fundamental weight system of gC corresponding to Π :

2(Λα, β)

(β, β)
=

{
1 if α = β ,

0 if α = β .

Let Π0 be a subdiagram of Π . We may suppose that the pair (Π,Π0) is effective, that
is, Π0 contains no irreducible component of Π . Put Σ0 = Σ ∩ {Π0}Z, where {Π0}Z denote

the subgroup of t generated by Π0 over Z. Define a subalgebra u of gC by

u = tC +
∑

α∈Σ0∪Σ+
gC
α .(4.2)

Let GC be the connected complex semisimple Lie group without center, whose Lie al-

gebra is gC, and U the connected closed complex subgroup of GC generated by u. Let G be

a compact connected semisimple subgroup of GC generated by g and put K = G ∩ U .

The canonical imbedding G → GC gives the diffeomorphism of a compact coset space

M = G/K to a simply connected complex coset space GC/U . Therefore, the homogeneous
space M = G/K is a complex, compact, simply connected manifold called a generalized flag
manifold or a Kähler C-space. Lie algebra k of K is given by

kC = tC +
∑
α∈Σ0

gC
α .(4.3)

Define a subspace c of t and a cone c+ in c by

c =
∑

α∈Π−Π0

RΛα ,

c+ = {θ ∈ c − {0} ∣∣ (θ, α) > 0 for each α ∈ Π − Π0} ,(4.4)

respectively. Then we have c+ = ∑
α∈Π−Π0

R+Λα , where R+ denotes the set of positive real

numbers.
Let m be the orthogonal complement of k in g with respect to ( , ), so that we have a

direct sum decomposition g = k + m as vector space. The subspace m is K-invariant under
the adjoint action and identified with the tangent space ToM of M at the origin o = {K}. Put

Σ+
m = Σ+ − Σ0, Σ−

m = −Σ+
m and define K-invariant subspaces m± of gC by

m± =
∑

α∈Σ±
m

gC−α .(4.5)

Then the complexification mC of m is the direct sum mC = m+ + m−, and m± is the ±√−1-
eigenspace of the complex structure J of M at the origin o.

Denote by X → X̄ the complex conjugation of gC with respect to the real form g. We

can choose root vectors Eα ∈ gC
α for α ∈ Σ with the following properties and fix them once
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for all:

[Eα,E−α] = √−1α , (Eα,E−α) = 1 , Ēα = E−α for α ∈ Σ .(4.6)

Let {ωα}α∈Σ be the linear forms of gC dual to {Eα}α∈Σ , more precisely, the linear forms
defined by

ωα(tC) = {0} ,

ωα(Eβ) =
{

1 if α = β ,

0 if α = β .

Every G-invariant Kähler metric on M is given by

g(θ) = 2
∑

α∈Σ+
m

(θ, α) ω−α · ω̄−α , ω−α · ω̄−α = 1

2
(ω−α ⊗ ω̄−α + ω̄−α ⊗ ω−α)(4.7)

for θ ∈ c+. Note that the inner product ( , ) satisfies

( , )m+×m+ = 2
∑

α∈Σ+
m

ω−α · ω̄−α .

We define an element δm ∈ t by

δm = 1

2

∑
α∈Σ+

m

α ∈ c+ .

Then, for the Kähler metric g(θ), the Ricci tensor Ric and the scalar curvature τ are given
respectively by

Ric = 4
∑

α∈Σ+
m

(δm, α) ω−α · ω̄−α ,

τ = 4
∑

α∈Σ+
m

(δm, α)

(θ, α)
.(4.8)

If Π − Π0 consists of only one root, say αr , then the Kähler C-space M is said to be of
type (g, αr ). The second Betti number b2 of M is equal to 1. In this case, we obtain

c+ = R+Λαr ,

so that there exists a positive real number b with 2δm = bΛαr . Therefore, (g, αr ) is a Kähler-
Einstein manifold, and the Ricci tensor and the scalar curvature with respect to a Kähler metric
g(aΛαr ) are given by

Ric = b

a
g(aΛαr ) , τ = 2

b

a
dimC M ,

respectively.
Y. Matsushima and M. Obata showed the following:
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THEOREM 4.1 ([12]). Let M be an n-dimensional compact Einstein Kähler manifold
of positive scalar curvature τ . Then the first eigenvalue λ1(M) of the Laplacian satisfies that

λ1(M) � τ

n
.

The equality holds if and only if M admits a one-parameter group of isometries (i.e., a non-
trivial Killing vector field).

This theorem implies the following proposition immediately.

PROPOSITION 4.2. For the Kähler C-space M = (g, αr ) equipped with the Kähler

metric g(aΛαr ), the first eigenvalue λ1(M) of the Laplacian is given by λ1(M) = 2b
a

.

From now on, we assume that g is a compact semisimple simple Lie algebra of type
Cl, l � 2, and we consider a Kähler C-space of type (g, αr ). Then, Π is identified with the
Dynkin diagram of type Cl

◦—–◦—– · · · —–◦⇐�◦
α1 α2 αl−1 αl

and Σ+ is given by

Σ+ =
{

αi + · · · + αj−1 (1 � i < j � l + 1) ,

(αi + · · · + αl−1) + (αj + · · · + αl−1) + αl (1 � i � j � l − 1)

}
.

Therefore, we have

Σ+
m = Σ ′ ∪ Σ ′′: disjoint ,

Σ ′ = {αi + · · · + αr + · · · + αj (1 � i � r � j � l)} ,

Σ ′′ = {(αi + · · · + αl−1) + (αj + · · · + αl−1) + αl (1 � i � r, i � j � l − 1)} .

Immediately, we get

dimC M = #Σ+
m = r

2
(4l − 3r + 1) .

Put

Σ ′ = Σ ′
1 ∪ Σ ′

2 ∪ Σ ′
3 ∪ {αr } ,

Σ ′
1 = {αi + · · · + αr−1 + αr + αr+1 + · · · + αj (1 � i � r − 1, r + 1 � j � l)} ,

Σ ′
2 = {αi + · · · + +αr−1 + αr (1 � i � r − 1)} ,

Σ ′
3 = {

αr + αr+1 + · · · + αj (r + 1 � j � l)
}
.
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Then a direct computation gives

∑
α∈Σ ′

1

α =
r−1∑
i=1

l∑
j=r+1

αi + · · · + αr−1 + αr + αr+1 + · · · + αj

= (l − r)

r−1∑
i=1

αi + · · · + αr−1

+ (r − 1)(l − r)αr + (r − 1)

l∑
j=r+1

αr+1 + · · · + αj

= (l − r)

r−1∑
i=1

iαi + (r − 1)(l − r)αr + (r − 1)

l∑
j=r+1

(l − j + 1)αj ,

∑
α∈Σ ′

2

α =
r−1∑
i=1

iαi + (r − 1)αr ,
∑
α∈Σ ′

3

α = (l − r)αr +
l∑

j=r+1

(l − j + 1)αj ,

so that we have

∑
α∈Σ ′

α = (l − r + 1)

r−1∑
i=1

iαi + r(l − r + 1)αr + r

l∑
j=r+1

(l − j + 1)αj .(4.9)

On the other hand, we get

∑
α∈Σ ′′

α =
∑
i�r

l−1∑
j=i

{(αi + · · · + αl−1) + (αj + · · · + αl−1) + αl}(4.10)

=
∑
i�r

(l − i)(αi + · · · + αl) +
∑
i�r

l−1∑
j=i

(j − i + 1)αj .

We have ∑
i�r

(l − i)(αi + · · · + αl)(4.11)

=
∑
i�r

(l − i)(αi + · · · + αr−1) +
∑
i�r

(l − i)(αr + · · · + αl)

=
r−1∑
m=1

( m∑
k=1

(l − k)

)
αm +

l∑
m=r

( r∑
k=1

(l − k)

)
αm



SPECTRAL GEOMETRY OF KÄHLER HYPERSURFACES 427

and

∑
i�r

l−1∑
j=i

(j − i + 1)αj =
∑
i�r

r∑
j=i

(j − i + 1)αj +
∑
i�r

l−1∑
j=r+1

(j − i + 1)αj(4.12)

=
r−1∑
m=1

( m∑
k=1

k

)
αm +

l−1∑
m=r

( r∑
k=1

(m − k + 1)

)
αm .

Then, from (4.10), (4.11) and (4.12), we have

∑
α∈Σ ′′

α = l

r−1∑
m=1

mαm + r

l−1∑
m=r

(l + m − r)αm + 1

2
r(2l − r − 1)αl ,

which, combined with (4.9), implies

2δm =
∑

α∈Σ+
m

α = (2l − r + 1)

( r−1∑
m=1

mαm + r

l−1∑
m=r

αm + 1

2
rαl

)
.

The Cartan matrix C of g = Cl and its inverse matrix are given by

C =
(

cij

)
1�i,j�l

, cij = 2(αi, αj )

(αj , αj )
,

C−1 =
(

dij

)
1�i,j�l

,

dij =




j if 1 � j � l − 1 and j � i � l ,

i if 1 � j � l − 1 and 1 � i � j ,

i
2 if j = l ,

so that the following holds

Λαr =
l∑

m=1

drmαm =
r−1∑
m=1

mαm + r

l−1∑
m=r

αm + 1

2
rαl .

Therefore, we obtain

2δm = (2l − r + 1)Λαr .

Summing up the above consideration, we obtain following.

THEOREM 4.3. For the Kähler C-space M of type (Cl, αr ) equipped with the Kähler
metric g(aΛαr ), the complex dimension, the scalar curvature τ and the first eigenvalue λ1(M)

of the Laplacian are given respectively by

dimC M = r(4l − 3r + 1)

2
, τ = 2(2l − r + 1)

a
dimC M , λ1(M) = 2(2l − r + 1)

a
.
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When g is a compact simple Lie algebra of the other classical type, suppose that the simple
roots αi are naturally numbered as follows:

Al:◦—–◦—– · · · —–◦—–◦
α1 α2 αl−1 αl

Bl : ◦—–◦—– · · · —–◦�⇒◦
α1 α2 αl−1 αl

◦ αl−1

Dl :◦—–◦—– · · · —–◦�
�α1 α2 αl−2 ◦ αl

By an argument similar to Theorem 4.3, we can obtain the following theorem:

THEOREM 4.4. Let g be a compact simple Lie algebra of classical type. Then, for
the Kähler C-space M of type (g, αr ) equipped with the Kähler metric g(aΛαr ), the complex
dimension and the first eigenvalue λ1(M) of the Laplacian are given as follows:

g dimC M λ1(M)

Al r(l − r + 1)
2(l+1)

a

Bl

r(4l−3r+1)
2

2(2l−r)
a

1 � r � l − 1

l(l+1)
2

4l
a

r = l

Cl
r(4l−3r+1)

2
2(2l−r+1)

a

Dl

r(4l−3r−1)
2

2(2l−r−1)
a

1 � r � l − 2

l(l−1)
2

4(l−1)
a

r = l − 1, l

5. The homogeneous Kähler hypersurface (Cl, α2)

In this section, we will consider a Kähler C-space of type (Cl, αr ) as a Kähler submani-

fold of Gr(C2l).
Let’s set

g = sp(l) =
{(

A −C

C A

) ∣∣∣∣ A,C ∈ Ml(C),

A∗ = −A, tC = C

}
,

then g is a compact semisimple Lie algebra of type Cl whose complexification is given by

gC = sp(l, C) =
{(

A B

C −tA

) ∣∣∣∣ A,B,C ∈ Ml(C),
tB = B, tC = C

}
.

Note that the Killing form Bg is given by

Bg(X, Y ) = 2(l + 1)trXY , X, Y ∈ g .
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For integers i and j with 1 ≤ i, j ≤ l, let Eij be the matrix in Ml(C) whose (i, j)-coefficient
is 1 and others are zero. and let’s set

eij =
(

Eij 0
0 −Eji

)
, fij =

(
0 Eij + Eji

0 0

)
, gij =

(
0 0

Eij + Eji 0

)
,

θi =
√−1

4(l + 1)
eii

for 1 ≤ i, j ≤ l. Relative to an abelian subalgebra t = R{θi, 1 � i � l}, the set Σ+ of all
positive roots is given as

Σ+ = {θi − θj (i < j) , θi + θj (i � j)} .

The simple roots αi numbered as the last section is given by

αi = θi − θi+1 (1 � i � l − 1) , αl = 2θl ,

so that we have linear combinations

θi − θj = αi + · · · + αj−1 (1 � i < j � l) ,

θi + θj = (αi + · · · + αl−1) + (αj + · · · + αl−1) + αl (1 � i � j � l − 1) ,

θi + θl = αi + · · · + αl (1 � i � l − 1) , 2θl = αl .

The root vectors

Eθi−θj = 1

2
√

l + 1
eij , E−θi+θj = − 1

2
√

l + 1
eji ,

Eθi+θj = 1

2
√

l + 1
fij , E−θi−θj = − 1

2
√

l + 1
gij , for 1 � i < j � l

E2θi = 1

2
√

2(l + 1)
fii , E−2θi = − 1

2
√

2(l + 1)
gii , for 1 � i � l

satisfy (4.6).
Σ0 and Σ+

m are given by, for 1 � r � l − 1,

Σ0 =
{±(θi − θj ) (1 � i < j � r or r + 1 � i < j � l) ,

±(θi + θj ) (r + 1 � i � j � l)

}
,

Σ+
m =

{
θi − θj (1 � i � r and r + 1 � j � l) ,

θi + θj (1 � i � r and i � j � l)

}
,

and, for r = l,

Σ0 = {±(θi − θj ) (1 � i < j � l)} ,

Σ+
m = {θi + θj (1 � i � j � l)} .



430 YOICHIRO MIYATA

By a direct computation, (4.2) and (4.3) imply

u =







A A′′ B B ′′
0 A′ tB ′′ B ′
0 0 −tA 0
0 C′ −tA′′ −tA′




∣∣∣∣∣∣∣∣
A,B ∈ Mr(C) ,

A′, B ′, C′ ∈ Ml−r (C) ,

A′′, B ′′ ∈ Mr,l−r (C) ,
tB = B , tB ′ = B ′ , tC′ = C′


 ,

k = g ∩ u

=







A 0 0 0
0 A′ 0 −C′
0 0 A 0
0 C′ 0 A′




∣∣∣∣∣∣∣∣
A ∈ Mr(C) ,

A′, C′ ∈ Ml−r (C) ,

A∗ = −A , A′∗ = −A′ , tC′ = C′




= u(r) + sp(l − r) .

Therefore, the Kähler C-space M of type (Cl, αr ) is identified with the homogeneous space
G/K = Sp(l)/U(r) · Sp(l − r).

For x, y ∈ Ml−r,r (C) and z ∈ Mr(C) with tz = z, define

η(x, y, z) =




0 0 0 0
x 0 0 0
z ty 0 −tx

y 0 0 0


 .

Note that, if r = l, then we ignore x and y, and η(x, y, z) and η(0, 0, z) denote a matrix(
0l 0l

z 0l

)
, z ∈ Ml(C), tz = z. (4.5) implies

m = {η(x, y, z) − η(x, y, z)∗} ,

m+ = {η(x, y, z)} .

If 1 � r � l − 1, then (αr , αr ) = 1
2(l+1) . Thus, define subsets of Σ+

m by

Σ+
m1

=
{
α ∈ Σ+

m

∣∣∣∣ (α,Λαr ) = 1

4(l + 1)

}
=

{
α ∈ Σ+

m

∣∣∣∣ 2(α,Λαr )

(αr , αr )
= 1

}

= {
α ∈ Σ+

m

∣∣ α = αr + (sum of other αi)
}

=
{

θi − θj (1 � i � r and r + 1 � j � l),

θi + θj (1 � i � r and r + 1 � j � l)

}
,

Σ+
m2

=
{
α ∈ Σ+

m

∣∣∣∣ (α,Λαr ) = 1

2(l + 1)

}
=

{
α ∈ Σ+

m

∣∣∣∣ 2(α,Λαr )

(αr , αr )
= 2

}

= {
α ∈ Σ+

m

∣∣ α = 2αr + (sum of other αi)
}

= { θi + θj (1 � i � r and i � j � r)} ,
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and we have an orthogonal decomposition m+ = m+
1 + m+

2 ,

m+
1 =

∑
α∈Σ+

m1

gC−α = {η(x, y, 0)} ,

m+
2 =

∑
α∈Σ+

m2

gC−α = {η(0, 0, z)} .

From (4.7), the G-invariant Kähler metric corresponding to aΛαr is given by

g(aΛαr ) = a

4(l + 1)

{
( , )

m+
1 ×m+

1
+ 2( , )

m+
2 ×m+

2

}
,

so that, for X = η(x, y, z) − η(x, y, z)∗ ∈ m, we get

g(aΛαr )(X,X) = 2g(aΛαr )(X
+,X+)

= a

2(l + 1)

{
(X+

1 ,X+
1 ) + 2(X+

2 ,X+
2 )

} = 2a tr(x∗x + y∗y + z̄z) ,

where X+ = η(x, y, z) ∈ m+, X+
1 = η(x, y, 0) ∈ m+

1 and X+
2 = η(0, 0, z) ∈ m+

2 .

If r = l, then (αl, αl) = 1
l+1 . So, Σ+

m satisfies the following:

Σ+
m =

{
α ∈ Σ+

m

∣∣∣∣ (α,Λαl ) = 1

2(l + 1)

}
=

{
α ∈ Σ+

m

∣∣∣∣ 2(α,Λαl )

(αl, αl)
= 1

}

= {
α ∈ Σ+

m

∣∣ α = αl + (sum of other αi)
}
.

From (4.7), the G-invariant Kähler metric corresponding to aΛαr is given by

g(aΛαl ) = a

2(l + 1)
( , )m+×m+ ,

so that, for X = η(0, 0, z) − η(0, 0, z)∗ ∈ m, we get

g(aΛαl )(X,X) = 2g(aΛαl )(X
+,X+) = a

l + 1
(X+,X+) = 2a tr(z̄z) ,

where X+ = η(0, 0, z) ∈ m+.

Consequently, for any r with 1 � r � l, we see

g(aΛαr )(X,X) = 2a tr(x∗x + y∗y + z̄z) , X = η(x, y, z) − η(x, y, z)∗ ∈ m .(5.1)

The natural inclusion Sp(l) → SU(2l) defines an immersion ϕ of M into M̃ =
Gr(C2l ) = G̃/K̃ = SU(2l)/S(U(r) · U(2l − r)) by

ϕ(g · K) = g · K̃ , g ∈ G .
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Under identification of ToM̃ with m̃, the image of X = η(x, y, z) − η(x, y, z)∗ ∈ m is

ϕ∗(X) =




0 −x∗ −z̄ −y∗
x 0 0 0
z 0 0 0
y 0 0 0


 ,

so that we have

g̃c(ϕ∗(X), ϕ∗(X)) = 4

c
tr(x∗x + y∗y + z̄z) ,(5.2)

where c is the maximal holomorphic sectional curvature of Gr(C2l). Therefore, Theorem 4.3,
(5.1) and (5.2) imply the following.

THEOREM 5.1. For the Kähler C-space M = Sp(l)/U(r) · Sp(l − r) of type (Cl, αr )

equipped with the Kähler metric g( 2
c
Λαr ), M is immersed in Gr(C2l) by the Kähler immer-

sion ϕ. The complex dimension, and the first eigenvalue λ1(M) of the Laplacian are given
by

dimC M = r(4l − 3r + 1)

2
, λ1(M) = c (2l − r + 1) .

In particular, if r = 2, then M = Sp(l)/U(2) ·Sp(l−2) is a Kähler hypersurface of G2(C2l ),
whose first eigenvalue λ1(M) of the Laplacian is given by

λ1(M) = c (2l − 1) .

REMARK 5.1.
(1) (Cl, αl) is a Hermitian symmetric space Sp(l)/U(l).

(2) (Cl, α1) is a complex projective space CP 2l−1 so it is Hermitian symmetric. But
the pair (Sp(l), U(1) · Sp(l − 1)) is not a compact symmetric pair.

(3) Other (Cl, αr ), 2 � r � l − 1 are not symmetric spaces.

For z ∈ Mr(C), define an unit vector ν at the origin o of G2(C2l ) by

ν(z) =




0 0 −z∗ 0
0 0 0 0
z 0 0 0
0 0 0 0


 ∈ m̃ ,

4

c
tr z∗z = 1 .

Then ν(z) is tangent to M if and only if z is symmetric.
The Kähler hypersurface M = (Cl, α2) satisfies the following property relative to the

quaternionic Kähler structure J of G2(C2l).

PROPOSITION 5.2. The Kähler hypersurface M = Sp(l)/U(2) ·Sp(l −2) of G2(C2l)

satisfies

J T ⊥M ⊂ T M (⇔ J ξ ⊥ Jξ for any ξ ∈ T ⊥M) ,(5.3)
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where T M and T ⊥M are the tangent bundle and the normal bundle of M , respectively.

PROOF. Let νo be an unit normal vector of M at o defined by

νo = ν(zo) , zo = 1

2

√
c

2

(
0 −1
1 0

)
,

so that the normal space T ⊥
o M is given by

T ⊥
o M = R{νo, J νo = ν(

√−1zo)} .

Then we see

Jo T ⊥
o M = R {Jiνo, JiJ νo, i = 1, 2, 3}

= R{ν(zoεi), ν(
√−1zoεi), i = 1, 2, 3} ,

where J1, J2 and J3 are a canonical basis of Jo defined in the section 2. It is easy to check

that zoεi and
√−1zoεi are symmetric, so that we obtain

Jo T ⊥
o M ⊂ ToM .

Since the quaternionic Kähler structure J is G̃-invariant, and since the immersion ϕ is G-
equivariant, (5.3) holds at any point of M . �

If the ambient space is G2(C4), then the condition (5.3) determines a Kähler hypersur-
face as follows:

PROPOSITION 5.3. Suppose that a Kähler hypersurface M of Q4 = G2(C4) satisfies
the condition

J T ⊥M ⊂ T M .

Then M is totally geodesic. Moreover, if M is compact, then M is congruent to a complex

quadric Q3 = Sp(2)/U(2).

PROOF. Denote by ∇̃ the Riemannian connection of Q4, and denote by ∇, σ , A and

∇⊥, the Riemannian connection, the second fundamental form, the shape operator, and the
normal connection of M , respectively. It is well-known that Gauss’ formula and Weingarten’s
formula hold:

∇̃XY = ∇XY + σ(X, Y ) ,

∇̃Xξ = −AξX + ∇⊥
Xξ ,

(5.4)

for X,Y ∈ T M and ξ ∈ T ⊥M . The metric condition implies

g̃c(σ (X, Y ), ξ) = g̃c(AξX, Y ) .(5.5)

Relative to the complex structure J , σ and A satisfy

σ(X, JY ) = Jσ(X, Y ) , Aξ ◦ J = −J ◦ Aξ = −AJξ .(5.6)
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For a local unit normal vector field ξ , we define local vector fields as follow: ei = Jiξ, i =
1, 2, 3, where J1, J2 and J3 are a local canonical basis of J. Then, under the assumption of

this proposition, {e1, e2, e3, J e1, J e2, J e3, ξ, J ξ} is a local orthonormal frame field of Q4

such that {e1, e2, e3, J e1, J e2, J e3} is a tangent frame of M . For X ∈ T M , (5.4) implies

∇Xei + σ(X, ei) = ∇̃Xei = (∇̃XJi)ξ + Ji(∇̃Xξ)(5.7)

= (∇̃XJi)ξ − JiAξX + Ji(∇⊥
Xξ) .

Since J is parallel with respect to the connection ∇̃, we have ∇̃XJi ∈ J, so that the normal
component of (5.7) is

σ(X, ei) = −g̃c(JiAξX, ξ)ξ − g̃c(JiAξX, J ξ)J ξ

= gc(AξX, ei)ξ + gc(AξX, J ei)J ξ ,

where gc is the induced Kähler metric of M . On the other hand, (5.5) and (5.6) imply

σ(X, ei) = g̃c(σ (X, ei), ξ)ξ + g̃c(σ (X, ei), J ξ)J ξ

= gc(AξX, ei)ξ − gc(AξX, J ei)J ξ .

From these two equations, we get

gc(AξX, J ei) = 0 .(5.8)

Instead of X, applying to JX, we have

gc(AξX, ei) = gc(−AξJX, J ei) = 0 .

Therefore, we have Aξ = 0, or σ = 0, so that M is totally geodesic. By B. Y. Chen

and T. Nagano [5]’s results, if M is compact, M is congruent to a complex quadric Q3 =
Sp(2)/U(2). �

The Kähler submanifold M = (Cl, αr ) satisfies another interesting property as follows:

PROPOSITION 5.4. The isometric immersion Ψ ◦ϕ : M = Sp(l)/U(r)·Sp(l−r) −→
HM(2l, C) is a sum of (HM(2l, C)-valued) eigenfunctions with eigenvalues 0, c(2l − r + 1)

and 2cl. More precisely, Ψ ◦ ϕ satisfies

Ψ ◦ ϕ = F0 + F1 + F2 ,

∆F0 = 0 , ∆F1 = c(2l − r + 1)F1 , ∆F2 = 2clF2 ,

where F0, F1 and F2 are HM(2l, C)-valued functions defined by

F0 = r

2l
I2l , F1 = 1

2
(A + SĀS) , F2 = − r

2l
I2l + 1

2
(A − SĀS) ,

A = Ψ ◦ ϕ is a position vector in HM(2l, C), and

S =
(

0 −Il

Il 0

)
.
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REMARK 5.2. If r = l, then F2 vanishes. If r = 1, then two positive eigenvalues

coincide with each other, and Ψ ◦ ϕ is the first standard imbedding of CP 2l−1.

COROLLARY 5.5. For l � 3 and 2 � r � l − 1, 2cl is an eigenvalue of the Laplacian
of Sp(l)/U(r) · Sp(l − r), which is greater than the first eigenvalue.

REMARK 5.3. By B. Y. Chen’s definition, if l � 3 and 2 � r � l − 1, then
Sp(l)/U(r) ·Sp(l − r) is a mass-symmetric 2-type submanifold of order {c(2l − r + 1), 2cl}.
On the other hand, for any l � 1, (Cl, α1) = CP 2l−1 is a mass-symmetric 1-type submanifold
of order {2cl}, and (Cl, αl) = Sp(l)/U(l) is a mass-symmetric 1-type submanifold of order
{c (l + 1)}. (cf. [4])

PROOF OF PROPOSITION 5.4. Notice that G = Sp(l) is a subgroup of G̃ = SU(2l)

and satisfies

G = Sp(l) = {g ∈ SU(2l) | tgSg = S} .

For 1 � i < j � r , let’s set

zij = 1

2

√
c

2
(Eij − Eji) ,

so that ν(zij ), J ν(zij ) = ν(
√−1zij ), 1 � i < j � r are an orthonormal basis of T ⊥

o M . By
a simple computation, we get

∑
i<j

Ψ∗(ν(zij ))
2 =

∑
i<j

Ψ∗(J ν(zij ))
2 = c

4

r − 1

2




Ir 0 0 0
0 0l−r 0 0
0 0 Ir 0
0 0 0 0l−r


 .

From (2.9), at the origin Ao = Ψ (o) =
(

Ir 0
0 02l−r

)
,

∑
i<j

(
σ̃Ao (ν(zij ), ν(zij )) + σ̃Ao (J ν(zij ), J ν(zij ))

)

= 4

(∑
i<j

Ψ∗(ν(zij ))
2
)

(I − 2Ao) = c(r − 1)

2
(−Ao − SAoS) .

Since M is minimal in Gr(C2l ), it follows from (2.10) that, at the origin Ao, the mean curva-
ture vector HAo of M in HM(2l, C) is given by

2 dimC M HAo = 2r(2l − r)H̃Ao −
∑
i<j

(
σ̃Ao (ν(zij ), ν(zij )) + σ̃Ao (J ν(zij ), J ν(zij ))

)

= c

2

(
2rI − (4l − r + 1)Ao + (r − 1)SAoS

)
.
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Since the immersions ϕ and Ψ are equivariant under the actions G and G̃, at a point A =
gAog∗, g ∈ G, the mean curvature HA is given by

2 dimC M HA = 2 dimC M g HAog
∗ = c

2

(
2rI − (4l − r + 1)A + (r − 1)SĀS

)
.

Therefore, we obtain

∆A = −2 dimC M HA = − c

2

(
2rI − (4l − r + 1)A + (r − 1)SĀS

)
.

which implies Proposition 5.4. �

REMARK 5.4. A quaternionic projective space HP l−1 admits a totally geodesic em-

bedding ϕHP l−1 into G2(C2l ). (See [5] and [6].) ϕHP l−1 is a quaternionic embedding with

respect to the quaternionic Kähler structure of G2(C2l), and is a totally real embedding
with respect to the complex structure of G2(C2l). It is known that the Kähler hypersurface

M = (Cl, α2) is the focal set of HP l−1 in G2(C2l ). (cf. [1])

6. Proof of main theorems

Let M be a compact connected Kähler hypersurface of Gr(Cn) immersed by a immersion
ϕ. It is well-known that every HM(n, C)-valued function F satisfies

(∆F, ∆F)L2 − λ1(∆F, F )L2 � 0 .(6.1)

The equality holds if and only if F is a sum of eigenfunctions with respect to eigenvalues
0 and λ1. It is equivalent to that there exists a constant vector C ∈ HM(n, C) such that
∆(F − C) = λ1(F − C).

Denote by H the mean curvature vector of the isometric immersion Φ = Ψ ◦ ϕ. Then,
since M is minimal in Gr(Cn), (2.10) implies

2(r(n − r) − 1)HA = 2r(n − r)H̃A − σ̃A(ξ, ξ) − σ̃A(J ξ, J ξ)(6.2)

= c(rI − nA) − σ̃A(ξ, ξ) − σ̃A(J ξ, J ξ) ,

where A is a position vector of Φ(M) in HM(n, C), and ξ is a local unit normal vector field
of ϕ. Using (2.12) and (6.2), we get

(HA, A) = −1 .(6.3)

HM(n, C)-valued function Φ satisfies ∆Φ = −2(r(n − r) − 1)H , so that (6.1) and (6.3)
imply the following. The equality condition dues to T. Takahashi’s theorem in [15].

LEMMA 6.1.

2(r(n − r) − 1)

∫
M

(HA, HA)dvM − λ1vol(M) � 0 .(6.4)
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The equality holds if and only if Φ is a minimal immersion of M into some round sphere in
HM(n, C), more precisely, there exists some positive constant R and some constant vector
C ∈ HM(n, C) such that HA satisfies

HA = 1

R2 (C − A) .(6.5)

LEMMA 6.2. If the equality holds in (6.4), then M is contained in a totally geodesic
submanifold of Gr(Cn) which is product of Grassmann manifolds, more precisely, there exist
integers ki, ri , i = 1, · · · ,m such that

0 � ri � ki , r1 � r2 � · · · � rm ,

m∑
i=1

ri = r ,

m∑
i=1

ki = n ,

M ⊂ Gr1(C
k1) × Gr2(C

k2) × · · · × Grm(Ckm) ⊂ Gr(Cn) .(6.6)

Notice that G0(Cki ) = Gki (C
ki ) = {one point}.

PROOF. Assume that the equality holds in (6.4).
Since M is minimal in Gr(Cn), H is normal to Gr(Cn). Then, from (2.5) and (6.5), we

get

CA = AC ,(6.7)

where C is a constant vector in Lemma 6.1. Since SU(n) acts on Gr(Cn) transitively, without
loss of generality, we can assume that C is a diagonal matrix as follows:

C =




c1Ik1 0
c2Ik2

. . .

0 cmIkm


 , ki > 0 , ci = cj (i = j) .(6.8)

Notice that

n = k1 + k2 + · · · + km .

Define a linear subspace L of HM(n, C) by L = {
Z ∈ HM(n, C)

∣∣ ZC = CZ
}
, so that

L =







Z1 0
Z2

. . .

0 Zm




∣∣∣∣∣∣∣∣∣
Zi ∈ Mki (C)




.

From (6.7), M is contained in Gr(Cn) ∩ L.
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For each integer ri with 0 � ri � ki,
∑m

i=1 ri = r , let’s define connected subsets of
Gr(Cn) by

Wr1,··· ,rm =







A1 0
A2

. . .

0 Am




∣∣∣∣∣∣∣∣∣
Ai ∈ Mki (C) ,

A2
i = Ai , tr Ai = ri




.

So, Gr(Cn) ∩ L is a disjoint union of all Wr1,··· ,rm’s. Since M is connected, M is contained
in suitable one of Wr1,··· ,rm’s, saying Wr1,··· ,rm . By the definition, we see

Wr1,··· ,rm = Gr1(C
k1) × Gr2(C

k2) × · · · × Grm(Ckm) .

Without loss of generality, we can choose a diagonal matrix C with respect to which the
inequalities r1 � r2 � · · · � rm hold. �

From (2.9), (2.11) and (6.2), we get

HA = c

2(r(n − r) − 1)

{
(rI − nA) − 4

c
(Ψ∗ξ)2(I − 2A)

}
.(6.9)

Using (2.3) and (2.4), we see

(HA, HA) = c

2(r(n − r) − 1)2

{
nr(n − r) − 2 tr

4

c
r (Ψ∗ξ)2

(
I + n − 2r

r
A

)
(6.10)

+ tr
16

c2 (Ψ∗ξ)2(I − 2A)(Ψ∗ξ)2(I − 2A)

}
.

Since the immersion Ψ is G̃-equivariant, for any A ∈ Φ(M), there exists a element gA ∈ G̃

and a matrix vA ∈ Mn−r,r (C) satisfying Ao = gAA g∗
A and√

c

4

(
0 v∗

A

vA 0

)
= gA(Ψ∗ξ) g∗

A .(6.11)

Since the inner product ( , ) is G̃-equivariant and ξ is unit, we have tr v∗
AvA = tr vAv∗

A = 1.
After translating by gA, together with (6.11), (6.10) implies

(HA, HA) = c

2(r(n − r) − 1)2

{
n(r(n − r) − 2) + 2 tr (v∗

AvAv∗
AvA)

}
.(6.12)

LEMMA 6.3. For v ∈ Mn−r,r (C) with tr v∗v = 1, the following inequality holds

tr v∗vv∗v � 1 .(6.13)

Moreover, the following three conditions are equivalent to each other.
(1) The equality holds in (6.13).

(2) The hermitian r-matrix v∗v is similar to

(
1 0
0 0r−1

)
.
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(3) The hermitian (n − r)-matrix vv∗ is similar to

(
1 0
0 0n−r−1

)
.

If the equality holds in (6.13), then there exists R =
(

P 0
0 Q

)
∈ S(U(r) · U(n − r)) such

that v′ = QvP ∗ satisfies

v′∗v′ =
(

1 0
0 0r−1

)
and v′v′∗ =

(
1 0
0 0n−r−1

)
.

PROOF. Lemma 6.3 follows from that both of Hermitian matrices v∗v and vv∗ are sim-
ilar to diagonal matrices with non-negative eigenvalues. �

Form (6.12) and Lemma 6.3, the following lemma is immediately obtained, which is used to
prove Theorem A.

LEMMA 6.4.

(HA, HA) � c

2(r(n − r) − 1)

{
n − n − 2

r(n − r) − 1

}
.(6.14)

The equality holds if and only if, for any A ∈ Φ(M), it is possible to choose vA satisfying

v∗
AvA =

(
1 0
0 0r−1

)
and vAv∗

A =
(

1 0
0 0n−r−1

)
.(6.15)

PROOF OF THEOREM A. (6.4) and (6.14) imply

λ1 � c

(
n − n − 2

r(n − r) − 1

)
.

Let’s assume that this equality holds. Then, the equality conditions of Lemmas 6.1 and
6.4 hold.

Assume m = 1. Then, (6.5) and (6.9) imply

1

R2 (c1I − A) = c

2(r(n − r) − 1)

{
(rI − nA) − 4

c
(Ψ∗ξ)2(I − 2A)

}
.

After translating by gA, together with (6.11) and (6.15), we obtain

1

R2
(c1 − 1)Ir = c

2(r(n − r) − 1)

{
(r − n)Ir +

(
1 0
0 0r−1

)}
,

1

R2 c1In−r = c

2(r(n − r) − 1)

{
rIn−r −

(
1 0
0 0n−r−1

)}
.

The first equation implies r = 1, and the second one implies n − r = 1. So, we have n = 2
and r = 1. This contradicts that M is a complex hypersurface.

Since m � 2, from Lemma 6.2, M is contained in a proper totally geodesic submanifold
of Gr(Cn). On the other hand, M is of complex codimension 1 in Gr(Cn). Consequently,
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either r = 1 or r = n − 1 occurs, and M is a totally geodesic complex hypersurface of a

complex projective space CPn−1 ∼= G1(Cn) ∼= Gn−1(Cn). �

PROOF OF THEOREM B. Let’s assume that M is a compact connected Kähler hypersur-
face of G2(Cn) satisfying the condition J ξ ⊥ Jξ . Since both of the complex structure and

the quaternionic Kähler structure are G̃-invariant, we obtain, at the origin Ao,

J

(
0 v∗

A

vA 0

)
⊥ Ji

(
0 v∗

A

vA 0

)
, i = 1, 2, 3 ,(6.16)

where J1, J2 and J3 are a canonical basis of Jo defined in the section 2. Set

vA = (v′
A v′′

A) , v′
A, v′′

A ∈ Mn−2,1(C) ∼= Cn−2 .

Using (2.7) and (2.8), (6.16) implies that |v′
A| = |v′′

A| and v′
A ⊥ v′′

A . Combining these with

tr v∗
AvA = 1, we obtain |v′

A| = |v′′
A| = 1√

2
, so that

v∗
AvA = 1

2

(
1 0
0 1

)
.(6.17)

Together with (6.17), (6.12) implies

(HA, HA) = c

2(2n − 5)

{
n − n − 1

2n − 5

}
.

Therefore, form Lemma 6.1, we obtain

λ1 � c

(
n − n − 1

2n − 5

)
.

Let’s assume that this equality holds. Then, the equality conditions of Lemma 6.1 holds.
Computing dimensions of manifolds in (6.6), we have

2n − 5 �
m∑

i=1

ri (ki − ri) .(6.18)

From
∑m

i=1 ri = 2 and r1 � r2 � · · · � rm, the following two cases occur:

Case I : r1 = r2 = 1 , r3 = · · · = rm = 0 ,

Case II : r1 = 2 , r2 = · · · = rm = 0 .

In Case I, (6.18) implies 2n − 5 � k1 + k2 − 2 � n − 2, so n � 3. This is contradiction.
Therefore, Case II occurs. Then, (6.18) implies 2n − 5 � 2(k1 − 2), so that we have

n = k1,m = 1, k2 = · · · = km = 0. (6.5) and (6.9) imply

1

R2 (c1I − A) = c

2(2n − 5)

{
(2I − nA) − 4

c
(Ψ∗ξ)2(I − 2A)

}
.
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After translating by gA, together with (6.11) and (6.17), we obtain

1

R2 (c1 − 1) = c

2(2n − 5)

{
2 − n + 1

2

}
,

1

R2 c1In−2 = c

2(2n − 5)

{
2In−2 − vAv∗

A

}
.

The second equation implies

vAv∗
A = dIn−2 , d = 2 − 2(2n − 5)

c

c1

R2
.(6.19)

From (6.17), we have

d vA = dIn−2vA = (vAv∗
A)vA = vA(v∗

AvA) = 1

2
vA ,

so that d = 1
2 . Consequently, taking traces of both sides of (6.19), we obtain n = 4.

Therefore, from Proposition 5.3, M is congruent to Q3. �
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