# Spectral Geometry of Kähler Hypersurfaces in a Complex Grassmann Manifold 

Yoichiro MIYATA

Tokyo Metropolitan University
(Communicated by Y. Ohnita)

## 1. Introduction

Let $M$ be a compact $C^{\infty}$-Riemannian manifold, $C^{\infty}(M)$ the space of all smooth functions on $M$, and $\Delta$ the Laplacian on $M$. Then $\Delta$ is a self-adjoint elliptic differential operator acting on $C^{\infty}(M)$, which has an infinite discrete sequence of eigenvalues:

$$
\operatorname{Spec}(M)=\left\{0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}<\cdots \uparrow \infty\right\} .
$$

Let $V_{k}=V_{k}(M)$ be the eigenspace of $\Delta$ corresponding to the $k$-th eigenvalue $\lambda_{k}$. Then $V_{k}$ is finite-dimensional. We define an inner product $(,)_{L^{2}}$ on $C^{\infty}(M)$ by

$$
(f, g)_{L^{2}}=\int_{M} f g d v_{M}
$$

where $d v_{M}$ denotes the volume element on $M$. Then $\sum_{t=0}^{\infty} V_{t}$ is dense in $C^{\infty}(M)$ and the decomposition is orthogonal with respect to the inner product $(,)_{L^{2}}$. Thus we have

$$
C^{\infty}(M)=\sum_{t=0}^{\infty} V_{t}(M) \quad\left(\text { in } L^{2} \text {-sense }\right)
$$

Since $M$ is compact, $V_{0}$ is the space of all constant functions which is 1 -dimensional.
In this point of view, it is one of the simplest and the most interesting problems to estimate the first eigenvalue. In [13], A. Ros gave the following sharp upper bound for the first eigenvalue of Kähler submanifold of a complex projective space.

Theorem 1.1. Suppose that $M$ is a complex m-dimensional compact Kähler submanifold of the complex projective space $\mathbf{C} P^{n}$ of constant holomorphic sectional curvature $c$. Then the first eigenvalue $\lambda_{1}$ satisfies

$$
\lambda_{1} \leqq c(m+1) .
$$

[^0]The equality holds if and only if $M$ is congruent to a totally geodesic Kähler submanifold $\mathbf{C} P^{m}$ of $\mathbf{C} P^{n}$.

If $M$ is not totally geodesic, J-P. Bourguignon, P. Li and S. T. Yau in [3] gave the following sharper estimate. (See also [11].)

Theorem 1.2. Suppose that $M$ is a complex m-dimensional compact Kähler submanifold of $\mathbf{C} P^{n}$, which is fully immersed and not totally geodesic. Then the first eigenvalue $\lambda_{1}$ satisfies

$$
\lambda_{1} \leqq c m \frac{n+1}{n} .
$$

It is not known when the equality holds in this inequality.
The purpose of this paper is to give the upper bound for the first eigenvalue of Kähler hypersurfaces of a complex Grassmann manifold.

Denote by $G_{r}\left(\mathbf{C}^{n}\right)$ the complex Grassmann manifold of $r$-planes in $\mathbf{C}^{n}$, equipped with the Kähler metric of maximal holomorphic sectional curvature $c$. In the case that $M$ is a complex hypersurface of $G_{r}\left(\mathbf{C}^{n}\right)$, we obtain the following result, which is a generalization of Theorem 1.1.

Theorem A. Suppose that $M$ is a compact connected Kähler hypersurface of $G_{r}\left(\mathbf{C}^{n}\right)$. Then the first eigenvalue $\lambda_{1}$ satisfies

$$
\lambda_{1} \leqq c\left(n-\frac{n-2}{r(n-r)-1}\right) .
$$

The equality holds if and only if $r=1$ or $n-1$, and $M$ is congruent to the totally geodesic complex hypersurface $\mathbf{C} P^{n-2}$ of the complex projective space $\mathbf{C} P^{n-1}$.

The 2-plane Grassmann manifold $G_{2}\left(\mathbf{C}^{n}\right)$ admits the quaternionic Kähler structure $\mathfrak{J}$. For the normal bundle $T^{\perp} M$ of a Kähler hypersurface $M$ of $G_{2}\left(\mathbf{C}^{n}\right), \mathfrak{J} T^{\perp} M$ is a vector bundle of real rank 6 over $M$ which is a subbundle of the tangent bundle of $G_{2}\left(\mathbf{C}^{n}\right)$. We consider a Kähler hypersurface $M$ of $G_{2}\left(\mathbf{C}^{n}\right)$ satisfying the property that $\mathfrak{J} T^{\perp} M$ is a subbundle of the tangent bundle $T M$ of $M$. In Section 5, we will provide examples satisfying this property.

For a Kähler hypersurface of $G_{2}\left(\mathbf{C}^{n}\right)$ satisfying this property, we obtain the following upper bound of the first eigenvalue.

Theorem B. Suppose that $M$ is a compact connected Kähler hypersurface of $G_{2}\left(\mathbf{C}^{n}\right), \quad n \geqq 4$. If $M$ satisfies the condition $\mathfrak{J} T^{\perp} M \subset T M$, then the first eigenvalue $\lambda_{1}$ satisfies

$$
\lambda_{1} \leqq c\left(n-\frac{n-1}{2 n-5}\right) .
$$

The equality holds if and only if $n=4$ and $M$ is congruent to the totally geodesic complex hypersurface $Q^{3}$ of the complex quadric $Q^{4}=G_{2}\left(\mathbf{C}^{4}\right)$.

The author wishes to thank Professors K. Ogiue and Y. Ohnita for many valuable comments and suggestions.

Notations. $\quad M_{r, s}(\mathbf{C})$ denotes the set of all $r \times s$ matrices with entries in $\mathbf{C}$, and $M_{r}(\mathbf{C})$ stands for $M_{r, r}(\mathbf{C}) . I_{r}$ and $O_{r}$ denote the identity $r$-matrix and the zero $r$-matrix.

## 2. Preliminaries

In this section, we discuss geometries of the complex $r$-plane Grassmann manifold and its first standard imbedding.

Let $M_{r}\left(\mathbf{C}^{n}\right)$ be the complex Stiefel manifold which is the set of all unitary $r$-systems of $\mathbf{C}^{n}$, i.e.,

$$
M_{r}\left(\mathbf{C}^{n}\right)=\left\{Z \in M_{n, r}(\mathbf{C}) \mid Z^{*} Z=I_{r}\right\}
$$

The complex $r$-plane Grassmann manifold $G_{r}\left(\mathbf{C}^{n}\right)$ is defined by

$$
G_{r}\left(\mathbf{C}^{n}\right)=M_{r}\left(\mathbf{C}^{n}\right) / U(r) .
$$

The origin $o$ of $G_{r}\left(\mathbf{C}^{n}\right)$ is defined by $\pi\left(Z_{0}\right)$, where $Z_{0}=\binom{I_{r}}{0}$ is an element of $M_{r}\left(\mathbf{C}^{n}\right)$, and $\pi: M_{r}\left(\mathbf{C}^{n}\right) \rightarrow G_{r}\left(\mathbf{C}^{n}\right)$ is the natural projection.

The left action of the unitary group $\tilde{G}=S U(n)$ on $G_{r}\left(\mathbf{C}^{n}\right)$ is transitive, and the isotropy subgroup at the origin $o$ is

$$
\begin{aligned}
\tilde{K} & =S(U(r) \cdot U(n-r)) \\
& =\left\{\left.\left(\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right) \right\rvert\, U_{1} \in U(r), U_{2} \in U(n-r), \operatorname{det} U_{1} \operatorname{det} U_{2}=1\right\},
\end{aligned}
$$

so that $G_{r}\left(\mathbf{C}^{n}\right)$ is identified with a homogeneous space $\tilde{G} / \tilde{K}$.
Set $\tilde{\mathfrak{g}}=\mathfrak{s u}(n)$ and

$$
\begin{aligned}
\tilde{\mathfrak{k}} & =\mathbf{R} \oplus \mathfrak{s u}(r) \oplus \mathfrak{s u}(n-r) \\
& =\left\{\left.\left(\begin{array}{cc}
u_{1} & 0 \\
0 & u_{2}
\end{array}\right)+a\left(\begin{array}{cc}
-\frac{1}{r} \sqrt{-1} I_{r} & 0 \\
0 & \frac{1}{n-r} \sqrt{-1} I_{n-r}
\end{array}\right) \right\rvert\, a \in \mathbf{R}, \begin{array}{c}
u_{1} \in \mathfrak{s u}(r) \\
u_{2} \in \mathfrak{s u}(n-r)
\end{array}\right\},
\end{aligned}
$$

then $\tilde{\mathfrak{g}}$ and $\tilde{\mathfrak{k}}$ are the Lie algebras of $\tilde{G}$ and $\tilde{K}$, respectively. Define a linear subspace $\tilde{\mathfrak{m}}$ of $\tilde{\mathfrak{g}}$ by

$$
\tilde{\mathfrak{m}}=\left\{\left.\left(\begin{array}{cc}
0 & -\xi^{*} \\
\xi & 0
\end{array}\right) \right\rvert\, \xi \in M_{n-r, r}(\mathbf{C})\right\} .
$$

Then $\tilde{\mathfrak{m}}$ is identified with the tangent space $T_{o}\left(G_{r}\left(\mathbf{C}^{n}\right)\right)$. The $\tilde{G}$-invariant complex structure $J$ of $G_{r}\left(\mathbf{C}^{n}\right)$ and the $\tilde{G}$-invariant Kähler metric $\tilde{g}_{c}$ of $G_{r}\left(\mathbf{C}^{n}\right)$ of the maximal holomorphic
sectional curvature $c$ are given by

$$
\begin{align*}
& J\left(\begin{array}{cc}
0 & -\xi^{*} \\
\xi & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \sqrt{-1} \xi^{*} \\
\sqrt{-1} \xi & 0
\end{array}\right), \\
& \tilde{g}_{c_{o}}(X, Y)=-\frac{2}{c} \operatorname{tr} X Y, \quad X, Y \in \tilde{\mathfrak{m}} . \tag{2.1}
\end{align*}
$$

Notice that $\tilde{g}_{c}$ satisfies

$$
\begin{equation*}
\tilde{g}_{c_{o}}=-\frac{2}{c} \frac{1}{2 n} B_{\tilde{\mathfrak{g}}}=-\frac{2}{c} \frac{L(\tilde{\mathfrak{g}})}{2} B_{\tilde{\mathfrak{g}}} \tag{2.2}
\end{equation*}
$$

on $\tilde{\mathfrak{m}}$, where $B_{\tilde{\mathfrak{g}}}$ is the Killing form of $\tilde{\mathfrak{g}}$, and $L(\tilde{\mathfrak{g}})$ is the squared length of the longest root of $\tilde{\mathfrak{g}}$ relative to the Killing form.

In the case of $r=2$, the complex 2-plane Grassmann manifold $G_{2}\left(\mathbf{C}^{n}\right)$ admits another geometric structure named the quaternionic Kähler structure $\mathfrak{J}$. $\mathfrak{J}$ is a $\tilde{G}$-invariant subbundle of $\operatorname{End}\left(T\left(G_{2}\left(\mathbf{C}^{n}\right)\right)\right)$ of rank 3, where $\operatorname{End}\left(T\left(G_{2}\left(\mathbf{C}^{n}\right)\right)\right)$ is the $\tilde{G}$-invariant vector bundle of all linear endmorphisms of the tangent bundle $T\left(G_{2}\left(\mathbf{C}^{n}\right)\right)$. Under the identification of $T_{o}\left(G_{r}\left(\mathbf{C}^{n}\right)\right)$ with $\tilde{\mathfrak{m}}$, the fiber $\mathfrak{J}_{o}$ at the origin $o$ is given by

$$
\mathfrak{J}_{o}=\left\{J_{\tilde{\varepsilon}}=\operatorname{ad}(\tilde{\varepsilon}) \mid \tilde{\varepsilon} \in \tilde{\mathfrak{k}}_{q}\right\},
$$

where $\tilde{\mathfrak{k}}_{q}$ is an ideal of $\tilde{\mathfrak{k}}$ defined by

$$
\tilde{\mathfrak{k}}_{q}=\left\{\left.\left(\begin{array}{cc}
u_{1} & 0 \\
0 & 0
\end{array}\right) \right\rvert\, u_{1} \in \mathfrak{s u}(2)\right\} \cong \mathfrak{s u}(2) .
$$

Define a basis $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$ of $\mathfrak{s u}(2)$ by

$$
\varepsilon_{1}=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right), \quad \varepsilon_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \varepsilon_{3}=\left(\begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right) .
$$

Then $\varepsilon_{1}, \varepsilon_{2}$ and $\varepsilon_{3}$ satisfy

$$
\left[\varepsilon_{1}, \varepsilon_{2}\right]=2 \varepsilon_{3}, \quad\left[\varepsilon_{2}, \varepsilon_{3}\right]=2 \varepsilon_{1}, \quad\left[\varepsilon_{3}, \varepsilon_{1}\right]=2 \varepsilon_{2}
$$

Set $\tilde{\varepsilon}_{i}=\left(\begin{array}{rr}\varepsilon_{i} & 0 \\ 0 & 0\end{array}\right)$ and $J_{i}=J_{\tilde{\varepsilon}_{i}}$ for $i=1,2,3$. Then the basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ is a canonical basis of $\mathfrak{J}_{o}$, satisfying

$$
\begin{gathered}
J_{i}^{2}=-i d_{\tilde{\mathfrak{m}}} \quad \text { for } i=1,2,3 \\
J_{1} J_{2}=-J_{2} J_{1}=J_{3}, \quad J_{2} J_{3}=-J_{3} J_{2}=J_{1}, \quad J_{3} J_{1}=-J_{1} J_{3}=J_{2}, \\
\tilde{g}_{c_{o}}\left(J_{i} X, \quad J_{i} Y\right)=\tilde{g}_{c_{o}}(X, Y), \quad \text { for } X, Y \in \tilde{\mathfrak{m}} \text { and } i=1,2,3 .
\end{gathered}
$$

Since $J$ is given by

$$
J=\operatorname{ad}\left(\tilde{\varepsilon}_{\mathbf{C}}\right), \quad \tilde{\varepsilon}_{\mathbf{C}}=\frac{r(n-r)}{n}\left(\begin{array}{cc}
-\frac{1}{r} \sqrt{-1} I_{r} & 0 \\
0 & \frac{1}{n-r} \sqrt{-1} I_{n-r}
\end{array}\right)
$$

on $\mathfrak{m}$, and since $\tilde{\varepsilon}_{\mathbf{C}}$ is an element of the center of $\tilde{\mathfrak{k}}, J$ is commutable with $\mathfrak{J}$.
Let $H M(n, \mathbf{C})$ be the set of all Hermitian $(n, n)$-matrices over $\mathbf{C}$, which can be identified with $\mathbf{R}^{n^{2}}$. For $X, Y \in H M(n, \mathbf{C})$, the natural inner product is given by

$$
\begin{equation*}
(X, Y)=\frac{2}{c} \operatorname{tr} X Y \tag{2.3}
\end{equation*}
$$

$G L(n, \mathbf{C})$ acts on $H M(n, \mathbf{C})$ by $X \mapsto B X B^{*}, B \in G L(n, \mathbf{C}), X \in H M(n, \mathbf{C})$. Then the action of $S U(n)$ leaves the inner product (2.3) invariant. Define two linear subspaces of $H M(n, \mathbf{C})$ as follows:

$$
\begin{aligned}
& H M_{0}=\{X \in H M(n, \mathbf{C}) \mid \operatorname{tr} X=0\} \\
& H M_{\mathbf{R}}=\{a I \mid a \in \mathbf{R}\}
\end{aligned}
$$

where $I$ is the $n$-identity matrix. Both of them are invariant under the action of $S U(n)$, and irreducible. We get the orthogonal decomposition of $H M(n, \mathbf{C})$ as follows:

$$
H M(n, \mathbf{C})=H M_{0} \oplus H M_{\mathbf{R}}
$$

It is well-known that $H M_{0}$ (resp. $H M_{\mathbf{R}}$ ) is identified with the first eigenspace $V_{1}\left(G_{r}\left(\mathbf{C}^{n}\right)\right)$ (resp. the set of all constant functions, i.e. $V_{0}\left(G_{r}\left(\mathbf{C}^{n}\right)\right)$ ).

The first standard imbedding $\Psi$ of $G_{r}\left(\mathbf{C}^{n}\right)$ is defined by

$$
\Psi(\pi(Z))=Z Z^{*} \in H M(n, \mathbf{C}), \quad Z \in M_{r}\left(\mathbf{C}^{n}\right)
$$

$\Psi$ is $S U(n)$-equivariant and the image $N$ of $G_{r}\left(\mathbf{C}^{n}\right)$ under $\Psi$ is given by

$$
\begin{equation*}
N=\Psi\left(G_{r}\left(\mathbf{C}^{n}\right)\right)=\left\{A \in H M(n, \mathbf{C}) \mid A^{2}=A, \operatorname{tr} A=r\right\}, \tag{2.4}
\end{equation*}
$$

so that it is contained fully in a hyperplane

$$
H M_{r}=\{A \in H M(n, \mathbf{C}) \mid \operatorname{tr} A=r\}=\left\{\left.A+\frac{r}{n} I \right\rvert\, A \in H M_{0}\right\}
$$

of $H M(n, \mathbf{C})$. The tangent bundle $T N$ and the normal bundle $T^{\perp} N$ are given by

$$
\begin{align*}
T_{A} N & =\{X \in H M(n, \mathbf{C}) \mid X A+A X=X\} \subset H M_{0} \\
T_{A}^{\perp} N & =\{Z \in H M(n, \mathbf{C}) \mid Z A=A Z\} \tag{2.5}
\end{align*}
$$

In particular, at the origin $A_{o}=\Psi(o)=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$, we can obtain

$$
\begin{align*}
T_{A_{o}} N & =\left\{\left.\left(\begin{array}{cc}
0 & \xi^{*} \\
\xi & 0
\end{array}\right) \right\rvert\, \xi \in M_{n-r, r}(\mathbf{C})\right\}, \\
T_{A_{o}}^{\perp} N & =\left\{\left.\left(\begin{array}{cc}
Z_{1} & 0 \\
0 & Z_{2}
\end{array}\right) \right\rvert\, Z_{1} \in H M(r, \mathbf{C}), Z_{2} \in H M(n-r, \mathbf{C})\right\} . \tag{2.6}
\end{align*}
$$

The complex structure $J$ acts on $T_{A_{o}} N$ as

$$
J\left(\begin{array}{cc}
0 & \xi^{*}  \tag{2.7}\\
\xi & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -\sqrt{-1} \xi^{*} \\
\sqrt{-1} \xi & 0
\end{array}\right) .
$$

If $r=2$, then the quaternionic Kähler structure $\mathfrak{J}$ acts on $T_{A_{o}} N$ as

$$
J_{\tilde{\varepsilon}}\left(\begin{array}{cc}
0 & \xi^{*}  \tag{2.8}\\
\xi & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \varepsilon \xi^{*} \\
-\xi \varepsilon & 0
\end{array}\right), \quad \varepsilon \in \mathfrak{s u}(2) .
$$

Let $\tilde{\sigma}$ and $\tilde{H}$ denote the second fundamental form and the mean curvature vector of $\Psi$, respectively. Then, for $A \in N$ and $X, Y \in T_{A} N$, we can see

$$
\begin{gather*}
\tilde{\sigma}_{A}(X, Y)=(X Y+Y X)(I-2 A),  \tag{2.9}\\
\tilde{H}_{A}=\frac{c}{2 r(n-r)}(r I-n A) \tag{2.10}
\end{gather*}
$$

and $\tilde{\sigma}$ satisfies the following:

$$
\begin{align*}
& \tilde{\sigma}_{A}(J X, J Y)=\tilde{\sigma}_{A}(X, Y),  \tag{2.11}\\
& \left(\tilde{\sigma}_{A}(X, Y), A\right)=-(X, Y) . \tag{2.12}
\end{align*}
$$

Denote by $S^{n^{2}-2}\left(\frac{c}{2} \frac{n}{r(n-r)}\right)$ the hypersphere in $H M_{r}$ centered at $\frac{r}{n} I$ with radius $\sqrt{\frac{2}{c} \frac{r(n-r)}{n}}$. Then we see that $\Psi$ is a minimal immersion of $G_{r}\left(\mathbf{C}^{n}\right)$ into $S^{n^{2}-2}\left(\frac{c}{2} \frac{n}{r(n-r)}\right)$, and that the center of mass of $\Psi\left(G_{r}\left(\mathbf{C}^{n}\right)\right)$ is $\frac{r}{n} I$. In fact, $\Psi$ satisfies the equation $\Delta \Psi=$ $c n\left(\Psi-\frac{r}{n} I\right)$. Moreover, all coefficients of $\Psi-\frac{r}{n} I$ span the first eigenspace $V_{1}\left(G_{r}\left(\mathbf{C}^{n}\right)\right)$.

Let's assume that $M$ is a submanifold of $G_{r}\left(\mathbf{C}^{n}\right)$ with an immersion $\varphi$. Then $F=\Psi \circ \varphi$ is an immersion of $M$ into $H M(n, \mathbf{C})$, and the set of all coefficients of $F-\frac{r}{n} I$ spans the pull-back $\varphi^{*} V_{1}\left(G_{r}\left(\mathbf{C}^{n}\right)\right)$.

## 3. Examples

One of the simplest typical examples of submanifolds of $G_{r}\left(\mathbf{C}^{n}\right)$ is a totally geodesic submanifold. B. Y. Chen and T. Nagano in [5, 6] determined maximal totally geodesic submanifolds of $G_{2}\left(\mathbf{C}^{n}\right)$. I. Satake and S. Ihara in [14, 9] determined all (equivariant) holomorphic, totally geodesic imbeddings of a symmetric domain into another symmetric domain. When an ambient symmetric domain is of type ( I$)_{p, q}$, taking a compact dual symmetric space, we obtain the complete list of maximal totally geodesic Kähler submanifolds of $G_{r}\left(\mathbf{C}^{n}\right)$.

Let $M$ be a maximal totally geodesic Kähler submanifold of $G_{r}\left(\mathbf{C}^{n}\right)$ given by a Kähler immersion $\varphi: M \rightarrow G_{r}\left(\mathbf{C}^{n}\right)$. Since $M$ is a symmetric space, denote by $(G, K)$ the compact symmetric pair of $M$, and denote by $(\mathfrak{g}, \mathfrak{k})$ its Lie algebra. Then there exists a certain unitary representation $\rho: G \rightarrow \tilde{G}=S U(n)$, such that $\varphi(M)$ is given by the orbit of $\rho(G)$ through the origin $o=\{\tilde{K}\}$ in $G_{r}\left(\mathbf{C}^{n}\right)$.

Let $L(\mathfrak{g})$ be the squared length of the longest root of $\mathfrak{g}$ relative to the Killing form $B_{\mathfrak{g}}$. Tables of the $L(\mathfrak{g})$ constants appear in [8]. The Kähler metric induced by $\varphi$ is a $G$-invariant metric corresponding to an $\operatorname{Ad}(G)$-invariant inner product

$$
\begin{equation*}
\rho^{*}\left(-\frac{2}{c} \frac{L(\tilde{\mathfrak{g}})}{2} B_{\tilde{\mathfrak{g}}}\right)=-\frac{2}{c} \frac{L(\mathfrak{g})}{2} l_{\rho} B_{\mathfrak{g}} \tag{3.1}
\end{equation*}
$$

on $\mathfrak{g}$, where $l_{\rho}$ is the index of a linear representation $\rho$ defined by Dynkin. Tables of indices of basic representations of simple Lie algebras appear in [7].

Using Freudenthal's formula with respect to the inner product (3.1), we can calculate the first eigenvalue of the Laplacian of $M$. (cf. [17])

Summing up these results, we obtain the following.
THEOREM 3.1. Let $M=G / K$ be a proper maximal totally geodesic Kähler submanifold of $G_{r}\left(\mathbf{C}^{n}\right), \rho$ a corresponding unitary representation of $G$ to $S U(n)$, and $\lambda_{1}$ the first eigenvalue of the Laplacian with respect to the induced Kähler metric. Then, $M, \rho$ and $\lambda_{1}$ are one of the following (up to isomorphism).
(1) $\quad M_{1}=G_{r}\left(\mathbf{C}^{n-1}\right) \hookrightarrow G_{r}\left(\mathbf{C}^{n}\right), \quad 1 \leqq r \leqq n-2$, $\rho_{1}=$ natural inclusion and $\lambda_{1}=c(n-1)$
(2) $\quad M_{2}=G_{r-1}\left(\mathbf{C}^{n-1}\right) \hookrightarrow G_{r}\left(\mathbf{C}^{n}\right), \quad 2 \leqq r \leqq n-1$, $\rho_{2}=$ natural inclusion and $\lambda_{1}=c(n-1)$
(3) $\quad M_{3}=G_{r_{1}}\left(\mathbf{C}^{n_{1}}\right) \times G_{r_{2}}\left(\mathbf{C}^{n_{2}}\right) \hookrightarrow G_{r_{1}+r_{2}}\left(\mathbf{C}^{n_{1}+n_{2}}\right), \quad 1 \leqq r_{i} \leqq n_{i}-1, \quad i=1,2$, $\rho_{3}=$ natural inclusion and $\lambda_{1}=c \min \left\{n_{1}, n_{2}\right\}$
(4) $\quad M_{4}=M_{4, p}=\operatorname{Sp}(p) / U(p) \hookrightarrow G_{p}\left(\mathbf{C}^{2 p}\right), \quad p \geqq 2$, $\rho_{4}=$ natural inclusion and $\quad \lambda_{1}=c(p+1)$
(5) $\quad M_{5}=M_{5, p}=S O(2 p) / U(p) \hookrightarrow G_{p}\left(\mathbf{C}^{2 p}\right), \quad p \geqq 4$, $\rho_{5}=$ natural inclusion and $\lambda_{1}=c(p-1)$
(6) $M_{6, m}=\mathbf{C} P^{p} \hookrightarrow G_{r}\left(\mathbf{C}^{n}\right)$ : the complex projective space, $r=\binom{p}{m-1}, \quad n=\binom{p+1}{m}, \quad 2 \leqq m \leqq p-1$, $\rho_{6, m}=$ the exterior representation of degree $m$, and $\quad \lambda_{1}=c(p+1)\binom{p-1}{m-1}^{-1}$
(7) $\quad M_{7}=Q^{3} \hookrightarrow Q^{4}=G_{2}\left(\mathbf{C}^{4}\right):$ the complex quadric, $\rho_{7}=$ spin representation and $\lambda_{1}=3 c$
(8) $\quad M_{8}=M_{8,2 l}=Q^{2 l} \hookrightarrow G_{r}\left(\mathbf{C}^{2 r}\right)$ : the complex quadric, $\quad r=2^{l-1}, \quad l \geqq 3$, $\rho_{8}^{ \pm}=(t w o)$ spin representations $\quad$ and $\quad \lambda_{1}=c \frac{2 l}{2^{l-2}}$
In the above list, notice that $M_{4,2}=M_{7}$ and $M_{5,4}=M_{8,6}$.
Another one of the simplest typical examples of submanifolds of $G_{r}\left(\mathbf{C}^{n}\right)$ is a homogeneous Kähler hypersurface. K. Konno in [10] determined all Kähler C-spaces embedded as a hypersurface into a Kähler C -space with the second Betti number $b_{2}=1$.

THEOREM 3.2. Let $M$ be a compact, simply connected homogeneous Kähler hypersurface of $G_{r}\left(\mathbf{C}^{n}\right)$, and $\lambda_{1}$ the first eigenvalue of the Laplacian with respect to the induced Kähler metric. Then, $M$ and $\lambda_{1}$ are one of the following (up to isomorphism).
(1) $M_{9}=\mathbf{C} P^{n-2} \hookrightarrow \mathbf{C} P^{n-1}=G_{1}\left(\mathbf{C}^{n}\right) \quad$ and $\quad \lambda_{1}=c(n-1)$
(2) $\quad M_{10}=Q^{n-2} \hookrightarrow \mathbf{C} P^{n-1}=G_{1}\left(\mathbf{C}^{n}\right)$ and $\quad \lambda_{1}=c(n-2)$
(3) $M_{7}=Q^{3} \hookrightarrow Q^{4}=G_{2}\left(\mathbf{C}^{4}\right)$ and $\lambda_{1}=3 c$
(4) $\quad M_{11}=\operatorname{Sp}(l) / U(2) \cdot \operatorname{Sp}(l-2) \hookrightarrow G_{2}\left(\mathbf{C}^{2 l}\right)$ : Kähler C-space of type $\left(C_{l}, \alpha_{2}\right)$, $l \geqq 2 \quad$ and $\quad \lambda_{1}=c(2 l-1)$
$M_{9}$ and $M_{7}$ are totally geodesic. $M_{9}, M_{10}$ and $M_{7}$ are symmetric spaces. If $l=2$, then $M_{11}$ is congruent to $M_{7}$.

For each $l$ with $l>2, M_{11}$ is not a symmetric space. Then, it is not easy to calculate the first eigenvalue $\lambda_{1}$ of $M_{11}$. We will calculate $\lambda_{1}$ of $M_{11}$ in the next section.

From these two theorems, we obtain the following proposition:
Proposition 3.3. Let $M$ be either a proper maximal totally geodesic Kähler submanifold of $G_{r}\left(\mathbf{C}^{n}\right)$ or a compact, simply connected homogeneous Kähler hypersurface of $G_{r}\left(\mathbf{C}^{n}\right)$. Then, the first eigenvalue $\lambda_{1}$ of $M$ with respect to the induced Kähler metric satisfies

$$
\lambda_{1} \leqq c(n-1)
$$

Moreover, the equality holds if and only if $M$ is congruent to one of the following:

$$
M_{1}, \quad M_{2}, \quad M_{4,2}=M_{7}, \quad M_{9}, \quad M_{11} .
$$

## 4. The Kähler C-spaces with $b_{2}=1$

In this section, we will consider the first eigenvalue of the Kähler C-space whose second Betti number is equal to 1 . First, we review the general theory of Kähler C-spaces. For details, see [2] and [16].

Let $\mathfrak{g}$ be a compact semisimple Lie algebra and $\mathfrak{t}$ be a maximal abelian subalgebra of $\mathfrak{g}$. Denote by $\mathfrak{g}^{\mathbf{C}}$ and $\mathfrak{t}^{\mathbf{C}}$ the complexifications of $\mathfrak{g}$ and $\mathfrak{t}$, respectively. $\mathfrak{t}^{\mathbf{C}}$ is a Cartan subalgebra of $\mathfrak{g}^{\mathbf{C}}$. Let (, ) be an $\operatorname{Ad}(G)$-invariant inner product on $\mathfrak{g}$ defined by $-B_{\mathfrak{g}}$, where $B_{\mathfrak{g}}$ is the Killing form of $\mathfrak{g}$. Let $\Sigma \subset\left(\mathfrak{t}^{\mathbf{C}}\right)^{*}$ denote the root system of $\mathfrak{g}$ relative to $\mathfrak{t}$. We have a root space decomposition of $\mathfrak{g}$ :

$$
\begin{equation*}
\mathfrak{g}^{\mathbf{C}}=\mathfrak{t}^{\mathbf{C}}+\sum_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}^{\mathbf{C}}, \tag{4.1}
\end{equation*}
$$

where $\mathfrak{g}_{\alpha}^{\mathbf{C}}=\left\{X \in \mathfrak{g}^{\mathbf{C}} \mid(a d H) X=\alpha(H) X\right.$ for any $\left.H \in \mathfrak{t}\right\}$. Since $\mathfrak{g}$ is compact type, for any $\alpha \in \Sigma$ and $H \in \mathfrak{t}, \alpha(H)$ is pure imaginary, so that there exists a unique element $\check{\alpha} \in \mathfrak{t}$ such that, for any $H \in \mathfrak{t}$, the equality $\alpha(H)=\sqrt{-1}(\check{\alpha}, H)$ holds. We identify $\alpha$ with $\check{\alpha}$, so that the root system $\Sigma$ is identified with a subset $\{\check{\alpha} \mid \alpha \in \Sigma\}$ of $\mathfrak{t}$. Choose a lexicographic order $>$ on $\Sigma$ and put $\Sigma^{+}=\{\alpha \in \Sigma \mid \alpha>0\}$. Let $\Pi$ be the fundamental root system of $\Sigma$ consisting of
simple roots with respect to the linear order $>. \Pi$ is identified with its Dynkin diagram. Let $\left\{\Lambda_{\alpha}\right\}_{\alpha \in \Pi} \subset \mathfrak{t}$ be the fundamental weight system of $\mathfrak{g}$ corresponding to $\Pi$ :

$$
\frac{2\left(\Lambda_{\alpha}, \beta\right)}{(\beta, \beta)}= \begin{cases}1 & \text { if } \alpha=\beta \\ 0 & \text { if } \alpha \neq \beta\end{cases}
$$

Let $\Pi_{0}$ be a subdiagram of $\Pi$. We may suppose that the pair $\left(\Pi, \Pi_{0}\right)$ is effective, that is, $\Pi_{0}$ contains no irreducible component of $\Pi$. Put $\Sigma_{0}=\Sigma \cap\left\{\Pi_{0}\right\}_{\mathbf{Z}}$, where $\left\{\Pi_{0}\right\}_{\mathbf{Z}}$ denote the subgroup of $\mathfrak{t}$ generated by $\Pi_{0}$ over $\mathbf{Z}$. Define a subalgebra $\mathfrak{u}$ of $\mathfrak{g}^{\mathbf{C}}$ by

$$
\begin{equation*}
\mathfrak{u}=\mathfrak{t}^{\mathbf{C}}+\sum_{\alpha \in \Sigma_{0} \cup \Sigma^{+}} \mathfrak{g}_{\alpha}^{\mathbf{C}} \tag{4.2}
\end{equation*}
$$

Let $G^{\mathbf{C}}$ be the connected complex semisimple Lie group without center, whose Lie algebra is $\mathfrak{g}^{\mathbf{C}}$, and $U$ the connected closed complex subgroup of $G^{\mathbf{C}}$ generated by $\mathfrak{u}$. Let $G$ be a compact connected semisimple subgroup of $G^{\mathbf{C}}$ generated by $\mathfrak{g}$ and put $K=G \cap U$. The canonical imbedding $G \rightarrow G^{\mathbf{C}}$ gives the diffeomorphism of a compact coset space $M=G / K$ to a simply connected complex coset space $G^{\mathbf{C}} / U$. Therefore, the homogeneous space $M=G / K$ is a complex, compact, simply connected manifold called a generalized flag manifold or a Kähler $C$-space. Lie algebra $\mathfrak{k}$ of $K$ is given by

$$
\begin{equation*}
\mathfrak{k}^{\mathbf{C}}=\mathfrak{t}^{\mathbf{C}}+\sum_{\alpha \in \Sigma_{0}} \mathfrak{g}_{\alpha}^{\mathbf{C}} \tag{4.3}
\end{equation*}
$$

Define a subspace $\mathfrak{c}$ of $\mathfrak{t}$ and a cone $\mathfrak{c}^{+}$in $\mathfrak{c}$ by

$$
\begin{gather*}
\mathfrak{c}=\sum_{\alpha \in \Pi-\Pi_{0}} \mathbf{R} \Lambda_{\alpha}, \\
\mathfrak{c}^{+}=\left\{\theta \in \mathfrak{c}-\{0\} \mid(\theta, \alpha)>0 \text { for each } \alpha \in \Pi-\Pi_{0}\right\}, \tag{4.4}
\end{gather*}
$$

respectively. Then we have $\mathfrak{c}^{+}=\sum_{\alpha \in \Pi-\Pi_{0}} \mathbf{R}^{+} \Lambda_{\alpha}$, where $\mathbf{R}^{+}$denotes the set of positive real numbers.

Let $\mathfrak{m}$ be the orthogonal complement of $\mathfrak{k}$ in $\mathfrak{g}$ with respect to (, ), so that we have a direct sum decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ as vector space. The subspace $\mathfrak{m}$ is $K$-invariant under the adjoint action and identified with the tangent space $T_{o} M$ of $M$ at the origin $o=\{K\}$. Put $\Sigma_{\mathfrak{m}}^{+}=\Sigma^{+}-\Sigma_{0}, \Sigma_{\mathfrak{m}}^{-}=-\Sigma_{\mathfrak{m}}^{+}$and define $K$-invariant subspaces $\mathfrak{m}^{ \pm}$of $\mathfrak{g}^{\mathbf{C}}$ by

$$
\begin{equation*}
\mathfrak{m}^{ \pm}=\sum_{\alpha \in \Sigma_{\mathfrak{m}}^{ \pm}} \mathfrak{g}_{-\alpha}^{\mathbf{C}} \tag{4.5}
\end{equation*}
$$

Then the complexification $\mathfrak{m}^{\mathbf{C}}$ of $\mathfrak{m}$ is the direct sum $\mathfrak{m}^{\mathbf{C}}=\mathfrak{m}^{+}+\mathfrak{m}^{-}$, and $\mathfrak{m}^{ \pm}$is the $\pm \sqrt{-1}$ eigenspace of the complex structure $J$ of $M$ at the origin $o$.

Denote by $X \rightarrow \bar{X}$ the complex conjugation of $\mathfrak{g}^{\mathbf{C}}$ with respect to the real form $\mathfrak{g}$. We can choose root vectors $E_{\alpha} \in \mathfrak{g}_{\alpha}^{\mathbf{C}}$ for $\alpha \in \Sigma$ with the following properties and fix them once
for all:

$$
\begin{equation*}
\left[E_{\alpha}, E_{-\alpha}\right]=\sqrt{-1} \alpha, \quad\left(E_{\alpha}, E_{-\alpha}\right)=1, \quad \bar{E}_{\alpha}=E_{-\alpha} \quad \text { for } \alpha \in \Sigma \tag{4.6}
\end{equation*}
$$

Let $\left\{\omega^{\alpha}\right\}_{\alpha \in \Sigma}$ be the linear forms of $\mathfrak{g}^{\mathbf{C}}$ dual to $\left\{E_{\alpha}\right\}_{\alpha \in \Sigma}$, more precisely, the linear forms defined by

$$
\begin{aligned}
\omega^{\alpha}\left(\mathfrak{t}^{\mathbf{C}}\right) & =\{0\}, \\
\omega^{\alpha}\left(E_{\beta}\right) & = \begin{cases}1 & \text { if } \alpha=\beta \\
0 & \text { if } \alpha \neq \beta\end{cases}
\end{aligned}
$$

Every $G$-invariant Kähler metric on $M$ is given by

$$
\begin{equation*}
g(\theta)=2 \sum_{\alpha \in \Sigma_{\mathfrak{m}}^{+}}(\theta, \alpha) \omega^{-\alpha} \cdot \bar{\omega}^{-\alpha}, \quad \omega^{-\alpha} \cdot \bar{\omega}^{-\alpha}=\frac{1}{2}\left(\omega^{-\alpha} \otimes \bar{\omega}^{-\alpha}+\bar{\omega}^{-\alpha} \otimes \omega^{-\alpha}\right) \tag{4.7}
\end{equation*}
$$

for $\theta \in \mathfrak{c}^{+}$. Note that the inner product (, ) satisfies

$$
(,)_{\mathfrak{m}^{+} \times \overline{\mathfrak{m}^{+}}}=2 \sum_{\alpha \in \Sigma_{\mathfrak{m}}^{+}} \omega^{-\alpha} \cdot \bar{\omega}^{-\alpha}
$$

We define an element $\delta_{\mathfrak{m}} \in \mathfrak{t}$ by

$$
\delta_{\mathfrak{m}}=\frac{1}{2} \sum_{\alpha \in \Sigma_{\mathfrak{m}}^{+}} \alpha \quad \in \mathfrak{c}^{+}
$$

Then, for the Kähler metric $g(\theta)$, the Ricci tensor Ric and the scalar curvature $\tau$ are given respectively by

$$
\begin{gather*}
\operatorname{Ric}=4 \sum_{\alpha \in \Sigma_{\mathfrak{m}}^{+}}\left(\delta_{\mathfrak{m}}, \alpha\right) \omega^{-\alpha} \cdot \bar{\omega}^{-\alpha} \\
\tau=4 \sum_{\alpha \in \Sigma_{\mathfrak{m}}^{+}} \frac{\left(\delta_{\mathfrak{m}}, \alpha\right)}{(\theta, \alpha)} \tag{4.8}
\end{gather*}
$$

If $\Pi-\Pi_{0}$ consists of only one root, say $\alpha_{r}$, then the Kähler C -space $M$ is said to be of type ( $\mathfrak{g}, \alpha_{r}$ ). The second Betti number $b_{2}$ of $M$ is equal to 1 . In this case, we obtain

$$
\mathfrak{c}^{+}=\mathbf{R}^{+} \Lambda_{\alpha_{r}}
$$

so that there exists a positive real number $b$ with $2 \delta_{\mathfrak{m}}=b \Lambda_{\alpha_{r}}$. Therefore, ( $\mathfrak{g}, \alpha_{r}$ ) is a KählerEinstein manifold, and the Ricci tensor and the scalar curvature with respect to a Kähler metric $g\left(a \Lambda_{\alpha_{r}}\right)$ are given by

$$
R i c=\frac{b}{a} g\left(a \Lambda_{\alpha_{r}}\right), \quad \tau=2 \frac{b}{a} \operatorname{dim}_{\mathbf{C}} M,
$$

respectively.
Y. Matsushima and M. Obata showed the following:

Theorem 4.1 ([12]). Let $M$ be an n-dimensional compact Einstein Kähler manifold of positive scalar curvature $\tau$. Then the first eigenvalue $\lambda_{1}(M)$ of the Laplacian satisfies that

$$
\lambda_{1}(M) \geqq \frac{\tau}{n} .
$$

The equality holds if and only if $M$ admits a one-parameter group of isometries (i.e., a nontrivial Killing vector field).

This theorem implies the following proposition immediately.
Proposition 4.2. For the Kähler $C$-space $M=\left(\mathfrak{g}, \alpha_{r}\right)$ equipped with the Kähler metric $g\left(a \Lambda_{\alpha_{r}}\right)$, the first eigenvalue $\lambda_{1}(M)$ of the Laplacian is given by $\lambda_{1}(M)=\frac{2 b}{a}$.

From now on, we assume that $\mathfrak{g}$ is a compact semisimple simple Lie algebra of type $C_{l}, l \geqq 2$, and we consider a Kähler C-space of type ( $\mathfrak{g}, \alpha_{r}$ ). Then, $\Pi$ is identified with the Dynkin diagram of type $C_{l}$

$$
\stackrel{\circ}{\alpha_{1}} \quad \alpha_{2}-\cdots{\underset{\alpha}{l-1}}_{\circ}^{\circ} \alpha_{l}
$$

and $\Sigma^{+}$is given by

$$
\Sigma^{+}=\left\{\begin{array}{l}
\alpha_{i}+\cdots+\alpha_{j-1} \quad(1 \leqq i<j \leqq l+1) \\
\left(\alpha_{i}+\cdots+\alpha_{l-1}\right)+\left(\alpha_{j}+\cdots+\alpha_{l-1}\right)+\alpha_{l} \quad(1 \leqq i \leqq j \leqq l-1)
\end{array}\right\}
$$

Therefore, we have

$$
\begin{aligned}
\Sigma_{\mathfrak{m}}^{+} & =\Sigma^{\prime} \cup \Sigma^{\prime \prime}: \text { disjoint }, \\
\Sigma^{\prime} & =\left\{\alpha_{i}+\cdots+\alpha_{r}+\cdots+\alpha_{j} \quad(1 \leqq i \leqq r \leqq j \leqq l)\right\} \\
\Sigma^{\prime \prime} & =\left\{\left(\alpha_{i}+\cdots+\alpha_{l-1}\right)+\left(\alpha_{j}+\cdots+\alpha_{l-1}\right)+\alpha_{l} \quad(1 \leqq i \leqq r, i \leqq j \leqq l-1)\right\} .
\end{aligned}
$$

Immediately, we get

$$
\operatorname{dim}_{\mathbf{C}} M=\# \Sigma_{\mathfrak{m}}^{+}=\frac{r}{2}(4 l-3 r+1)
$$

Put

$$
\begin{aligned}
& \Sigma^{\prime}=\Sigma_{1}^{\prime} \cup \Sigma_{2}^{\prime} \cup \Sigma_{3}^{\prime} \cup\left\{\alpha_{r}\right\}, \\
& \Sigma_{1}^{\prime}=\left\{\alpha_{i}+\cdots+\alpha_{r-1}+\alpha_{r}+\alpha_{r+1}+\cdots+\alpha_{j} \quad(1 \leqq i \leqq r-1, r+1 \leqq j \leqq l)\right\} \\
& \Sigma_{2}^{\prime}=\left\{\alpha_{i}+\cdots++\alpha_{r-1}+\alpha_{r} \quad(1 \leqq i \leqq r-1)\right\}, \\
& \Sigma_{3}^{\prime}=\left\{\alpha_{r}+\alpha_{r+1}+\cdots+\alpha_{j} \quad(r+1 \leqq j \leqq l)\right\} .
\end{aligned}
$$

Then a direct computation gives

$$
\begin{aligned}
\sum_{\alpha \in \Sigma_{1}^{\prime}} \alpha= & \sum_{i=1}^{r-1} \sum_{j=r+1}^{l} \alpha_{i}+\cdots+\alpha_{r-1}+\alpha_{r}+\alpha_{r+1}+\cdots+\alpha_{j} \\
= & (l-r) \sum_{i=1}^{r-1} \alpha_{i}+\cdots+\alpha_{r-1} \\
& +(r-1)(l-r) \alpha_{r}+(r-1) \sum_{j=r+1}^{l} \alpha_{r+1}+\cdots+\alpha_{j} \\
= & (l-r) \sum_{i=1}^{r-1} i \alpha_{i}+(r-1)(l-r) \alpha_{r}+(r-1) \sum_{j=r+1}^{l}(l-j+1) \alpha_{j} \\
\sum_{\alpha \in \Sigma_{2}^{\prime}} \alpha= & \sum_{i=1}^{r-1} i \alpha_{i}+(r-1) \alpha_{r}, \quad \sum_{\alpha \in \Sigma_{3}^{\prime}} \alpha=(l-r) \alpha_{r}+\sum_{j=r+1}^{l}(l-j+1) \alpha_{j}
\end{aligned}
$$

so that we have
(4.9) $\quad \sum_{\alpha \in \Sigma^{\prime}} \alpha=(l-r+1) \sum_{i=1}^{r-1} i \alpha_{i}+r(l-r+1) \alpha_{r}+r \sum_{j=r+1}^{l}(l-j+1) \alpha_{j}$.

On the other hand, we get

$$
\begin{align*}
\sum_{\alpha \in \Sigma^{\prime \prime}} \alpha & =\sum_{i \leqq r} \sum_{j=i}^{l-1}\left\{\left(\alpha_{i}+\cdots+\alpha_{l-1}\right)+\left(\alpha_{j}+\cdots+\alpha_{l-1}\right)+\alpha_{l}\right\}  \tag{4.10}\\
& =\sum_{i \leqq r}(l-i)\left(\alpha_{i}+\cdots+\alpha_{l}\right)+\sum_{i \leqq r} \sum_{j=i}^{l-1}(j-i+1) \alpha_{j}
\end{align*}
$$

We have

$$
\begin{align*}
& \sum_{i \leqq r}(l-i)\left(\alpha_{i}+\cdots+\alpha_{l}\right)  \tag{4.11}\\
& \quad=\sum_{i \leqq r}(l-i)\left(\alpha_{i}+\cdots+\alpha_{r-1}\right)+\sum_{i \leqq r}(l-i)\left(\alpha_{r}+\cdots+\alpha_{l}\right) \\
& \quad=\sum_{m=1}^{r-1}\left(\sum_{k=1}^{m}(l-k)\right) \alpha_{m}+\sum_{m=r}^{l}\left(\sum_{k=1}^{r}(l-k)\right) \alpha_{m}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{i \leqq r} \sum_{j=i}^{l-1}(j-i+1) \alpha_{j} & =\sum_{i \leqq r} \sum_{j=i}^{r}(j-i+1) \alpha_{j}+\sum_{i \leqq r} \sum_{j=r+1}^{l-1}(j-i+1) \alpha_{j}  \tag{4.12}\\
& =\sum_{m=1}^{r-1}\left(\sum_{k=1}^{m} k\right) \alpha_{m}+\sum_{m=r}^{l-1}\left(\sum_{k=1}^{r}(m-k+1)\right) \alpha_{m}
\end{align*}
$$

Then, from (4.10), (4.11) and (4.12), we have

$$
\sum_{\alpha \in \Sigma^{\prime \prime}} \alpha=l \sum_{m=1}^{r-1} m \alpha_{m}+r \sum_{m=r}^{l-1}(l+m-r) \alpha_{m}+\frac{1}{2} r(2 l-r-1) \alpha_{l}
$$

which, combined with (4.9), implies

$$
2 \delta_{\mathfrak{m}}=\sum_{\alpha \in \Sigma_{\mathfrak{m}}^{+}} \alpha=(2 l-r+1)\left(\sum_{m=1}^{r-1} m \alpha_{m}+r \sum_{m=r}^{l-1} \alpha_{m}+\frac{1}{2} r \alpha_{l}\right) .
$$

The Cartan matrix $C$ of $\mathfrak{g}=C_{l}$ and its inverse matrix are given by

$$
\begin{aligned}
& C=\left(c_{i j}\right)_{1 \leqq i, j \leqq l}, \quad c_{i j}=\frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{j}, \alpha_{j}\right)}, \\
& C^{-1}=\left(d_{i j}\right)_{1 \leqq i, j \leqq l}, \\
& d_{i j}= \begin{cases}j & \text { if } 1 \leqq j \leqq l-1 \text { and } j \leqq i \leqq l, \\
i & \text { if } 1 \leqq j \leqq l-1 \text { and } 1 \leqq i \leqq j, \\
\frac{i}{2} & \text { if } j=l,\end{cases}
\end{aligned}
$$

so that the following holds

$$
\Lambda_{\alpha_{r}}=\sum_{m=1}^{l} d_{r m} \alpha_{m}=\sum_{m=1}^{r-1} m \alpha_{m}+r \sum_{m=r}^{l-1} \alpha_{m}+\frac{1}{2} r \alpha_{l}
$$

Therefore, we obtain

$$
2 \delta_{\mathfrak{m}}=(2 l-r+1) \Lambda_{\alpha_{r}} .
$$

Summing up the above consideration, we obtain following.
TheOrem 4.3. For the Kähler $C$-space $M$ of type $\left(C_{l}, \alpha_{r}\right)$ equipped with the Kähler metric $g\left(a \Lambda_{\alpha_{r}}\right)$, the complex dimension, the scalar curvature $\tau$ and the first eigenvalue $\lambda_{1}(M)$ of the Laplacian are given respectively by

$$
\operatorname{dim}_{\mathbf{C}} M=\frac{r(4 l-3 r+1)}{2}, \quad \tau=\frac{2(2 l-r+1)}{a} \operatorname{dim}_{\mathbf{C}} M, \quad \lambda_{1}(M)=\frac{2(2 l-r+1)}{a} .
$$

When $\mathfrak{g}$ is a compact simple Lie algebra of the other classical type, suppose that the simple roots $\alpha_{i}$ are naturally numbered as follows:


By an argument similar to Theorem 4.3, we can obtain the following theorem:
THEOREM 4.4. Let $\mathfrak{g}$ be a compact simple Lie algebra of classical type. Then, for the Kähler C-space $M$ of type $\left(\mathfrak{g}, \alpha_{r}\right)$ equipped with the Kähler metric $g\left(a \Lambda_{\alpha_{r}}\right)$, the complex dimension and the first eigenvalue $\lambda_{1}(M)$ of the Laplacian are given as follows:

| $\mathfrak{g}$ | $\operatorname{dim}_{\mathbf{C}} M$ | $\lambda_{1}(M)$ |  |
| :---: | :---: | :---: | :---: |
| $A_{l}$ | $r(l-r+1)$ | $\frac{2(l+1)}{a}$ |  |
| $B_{l}$ | $\frac{r(4 l-3 r+1)}{2}$ | $\frac{2(2 l-r)}{a}$ | $1 \leqq r \leqq l-1$ |
|  | $\frac{l(l+1)}{2}$ | $\frac{4 l}{a}$ | $r=l$ |
| $C_{l}$ | $\frac{r(4 l-3 r+1)}{2}$ | $\frac{2(2 l-r+1)}{a}$ |  |
| $D_{l}$ | $\frac{r(4 l-3 r-1)}{2}$ | $\frac{2(2 l-r-1)}{a}$ | $1 \leqq r \leqq l-2$ |
|  | $\frac{l(l-1)}{2}$ | $\frac{4(l-1)}{a}$ | $r=l-1, l$ |

## 5. The homogeneous Kähler hypersurface ( $C_{l}, \alpha_{2}$ )

In this section, we will consider a Kähler C-space of type ( $C_{l}, \alpha_{r}$ ) as a Kähler submanifold of $G_{r}\left(\mathbf{C}^{2 l}\right)$.

Let's set

$$
\mathfrak{g}=\mathfrak{s p}(l)=\left\{\left(\begin{array}{cc}
A & -\bar{C} \\
C & \bar{A}
\end{array}\right) \left\lvert\, \begin{array}{c}
A, C \in M_{l}(\mathbf{C}) \\
A^{*}=-A,{ }^{t} C=C
\end{array}\right.\right\}
$$

then $\mathfrak{g}$ is a compact semisimple Lie algebra of type $C_{l}$ whose complexification is given by

$$
\left.\left.\mathfrak{g}^{\mathbf{C}}=\mathfrak{s p}(l, \mathbf{C})=\left\{\begin{array}{cc|c}
A & B \\
C & -{ }^{t} A
\end{array}\right) \right\rvert\, \begin{array}{c}
A, B, C \in M_{l}(\mathbf{C}), \\
{ }^{t} B=B,{ }^{t} C=C
\end{array}\right\} .
$$

Note that the Killing form $B_{\mathfrak{g}}$ is given by

$$
B_{\mathfrak{g}}(X, Y)=2(l+1) \operatorname{tr} X Y, \quad X, Y \in \mathfrak{g} .
$$

For integers $i$ and $j$ with $1 \leq i, j \leq l$, let $E_{i j}$ be the matrix in $M_{l}(\mathbf{C})$ whose $(i, j)$-coefficient is 1 and others are zero. and let's set

$$
\begin{gathered}
e_{i j}=\left(\begin{array}{cc}
E_{i j} & 0 \\
0 & -E_{j i}
\end{array}\right), \quad f_{i j}=\left(\begin{array}{cc}
0 & E_{i j}+E_{j i} \\
0 & 0
\end{array}\right), \quad g_{i j}=\left(\begin{array}{cc}
0 & 0 \\
E_{i j}+E_{j i} & 0
\end{array}\right), \\
\theta_{i}=\frac{\sqrt{-1}}{4(l+1)} e_{i i}
\end{gathered}
$$

for $1 \leq i, j \leq l$. Relative to an abelian subalgebra $\mathfrak{t}=\mathbf{R}\left\{\theta_{i}, 1 \leqq i \leqq l\right\}$, the set $\Sigma^{+}$of all positive roots is given as

$$
\Sigma^{+}=\left\{\theta_{i}-\theta_{j}(i<j), \quad \theta_{i}+\theta_{j}(i \leqq j)\right\}
$$

The simple roots $\alpha_{i}$ numbered as the last section is given by

$$
\alpha_{i}=\theta_{i}-\theta_{i+1}(1 \leqq i \leqq l-1), \quad \alpha_{l}=2 \theta_{l},
$$

so that we have linear combinations

$$
\begin{gathered}
\theta_{i}-\theta_{j}=\alpha_{i}+\cdots+\alpha_{j-1} \quad(1 \leqq i<j \leqq l) \\
\theta_{i}+\theta_{j}=\left(\alpha_{i}+\cdots+\alpha_{l-1}\right)+\left(\alpha_{j}+\cdots+\alpha_{l-1}\right)+\alpha_{l} \quad(1 \leqq i \leqq j \leqq l-1) \\
\theta_{i}+\theta_{l}=\alpha_{i}+\cdots+\alpha_{l} \quad(1 \leqq i \leqq l-1), \quad 2 \theta_{l}=\alpha_{l}
\end{gathered}
$$

The root vectors

$$
\begin{aligned}
E_{\theta_{i}-\theta_{j}} & =\frac{1}{2 \sqrt{l+1}} e_{i j}, \quad E_{-\theta_{i}+\theta_{j}}=-\frac{1}{2 \sqrt{l+1}} e_{j i}, \\
E_{\theta_{i}+\theta_{j}} & =\frac{1}{2 \sqrt{l+1}} f_{i j}, \quad E_{-\theta_{i}-\theta_{j}}=-\frac{1}{2 \sqrt{l+1}} g_{i j}, \quad \text { for } 1 \leqq i<j \leqq l \\
E_{2 \theta_{i}} & =\frac{1}{2 \sqrt{2(l+1)}} f_{i i}, \quad E_{-2 \theta_{i}}=-\frac{1}{2 \sqrt{2(l+1)}} g_{i i}, \quad \text { for } 1 \leqq i \leqq l
\end{aligned}
$$

satisfy (4.6).
$\Sigma_{0}$ and $\Sigma_{\mathfrak{m}}^{+}$are given by, for $1 \leqq r \leqq l-1$,

$$
\begin{aligned}
& \Sigma_{0}=\left\{\begin{array}{ll} 
\pm\left(\theta_{i}-\theta_{j}\right) & (1 \leqq i<j \leqq r \text { or } r+1 \leqq i<j \leqq l), \\
\pm\left(\theta_{i}+\theta_{j}\right) & (r+1 \leqq i \leqq j \leqq l)
\end{array}\right\}, \\
& \Sigma_{\mathfrak{m}}^{+}=\left\{\begin{array}{ll}
\theta_{i}-\theta_{j} & (1 \leqq i \leqq r \text { and } r+1 \leqq j \leqq l) \\
\theta_{i}+\theta_{j} & (1 \leqq i \leqq r \text { and } i \leqq j \leqq l)
\end{array}\right\},
\end{aligned}
$$

and, for $r=l$,

$$
\begin{aligned}
\Sigma_{0} & =\left\{ \pm\left(\theta_{i}-\theta_{j}\right) \quad(1 \leqq i<j \leqq l)\right\}, \\
\Sigma_{\mathfrak{m}}^{+} & =\left\{\theta_{i}+\theta_{j} \quad(1 \leqq i \leqq j \leqq l)\right\}
\end{aligned}
$$

By a direct computation, (4.2) and (4.3) imply

$$
\begin{aligned}
\mathfrak{u} & =\left\{\left(\begin{array}{cccc}
A & A^{\prime \prime} & B & B^{\prime \prime} \\
0 & A^{\prime} & { }^{t} B^{\prime \prime} & B^{\prime} \\
0 & 0 & -{ }^{t} A & 0 \\
0 & C^{\prime} & -{ }^{t} A^{\prime \prime} & -^{t} A^{\prime}
\end{array}\right) \left\lvert\, \begin{array}{c}
A, B \in M_{r}(\mathbf{C}), \\
A^{\prime}, B^{\prime}, C^{\prime} \in M_{l-r}(\mathbf{C}), \\
A^{\prime \prime}, B^{\prime \prime} \in M_{r, l-r}(\mathbf{C}), \\
{ }^{t} B=B,{ }^{t} B^{\prime}=B^{\prime},{ }^{t} C^{\prime}=C^{\prime}
\end{array}\right.\right\}, \\
\mathfrak{k} & =\mathfrak{g} \cap \mathfrak{u} \\
& =\left\{\left.\left(\begin{array}{cccc}
A & 0 & 0 & 0 \\
0 & A^{\prime} & 0 & -\overline{C^{\prime}} \\
0 & 0 & \bar{A} & 0 \\
0 & C^{\prime} & 0 & \overline{A^{\prime}}
\end{array}\right) \right\rvert\, \begin{array}{c}
A \in M_{r}(\mathbf{C}), \\
A^{\prime}, C^{\prime} \in M_{l-r}(\mathbf{C}), \\
A^{*}=-A, A^{\prime *}=-A^{\prime},{ }^{t} C^{\prime}=C^{\prime}
\end{array}\right\} \\
& =\mathfrak{u}(r)+\mathfrak{s p}(l-r) .
\end{aligned}
$$

Therefore, the Kähler C-space M of type $\left(C_{l}, \alpha_{r}\right)$ is identified with the homogeneous space $G / K=S p(l) / U(r) \cdot S p(l-r)$.

For $x, y \in M_{l-r, r}(\mathbf{C})$ and $z \in M_{r}(\mathbf{C})$ with ${ }^{t} z=z$, define

$$
\eta(x, y, z)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
x & 0 & 0 & 0 \\
z & { }^{t} y & 0 & -{ }^{t} x \\
y & 0 & 0 & 0
\end{array}\right)
$$

Note that, if $r=l$, then we ignore $x$ and $y$, and $\eta(x, y, z)$ and $\eta(0,0, z)$ denote a matrix $\left(\begin{array}{cc}0_{l} & 0_{l} \\ z & 0_{l}\end{array}\right), z \in M_{l}(\mathbf{C}), t_{z}=z$. (4.5) implies

$$
\begin{aligned}
\mathfrak{m} & =\left\{\eta(x, y, z)-\eta(x, y, z)^{*}\right\} \\
\mathfrak{m}^{+} & =\{\eta(x, y, z)\}
\end{aligned}
$$

If $1 \leqq r \leqq l-1$, then $\left(\alpha_{r}, \alpha_{r}\right)=\frac{1}{2(l+1)}$. Thus, define subsets of $\Sigma_{\mathfrak{m}}^{+}$by

$$
\begin{aligned}
\Sigma_{\mathfrak{m}_{1}}^{+} & =\left\{\alpha \in \Sigma_{\mathfrak{m}}^{+} \left\lvert\,\left(\alpha, \Lambda_{\alpha_{r}}\right)=\frac{1}{4(l+1)}\right.\right\}=\left\{\alpha \in \Sigma_{\mathfrak{m}}^{+} \left\lvert\, \frac{2\left(\alpha, \Lambda_{\alpha_{r}}\right)}{\left(\alpha_{r}, \alpha_{r}\right)}=1\right.\right\} \\
& =\left\{\alpha \in \Sigma_{\mathfrak{m}}^{+} \mid \alpha=\alpha_{r}+\left(\text { sum of other } \alpha_{i}\right)\right\} \\
& =\left\{\begin{array}{cl}
\theta_{i}-\theta_{j} & (1 \leqq i \leqq r \text { and } r+1 \leqq j \leqq l), \\
\theta_{i}+\theta_{j} & (1 \leqq i \leqq r \text { and } r+1 \leqq j \leqq l)
\end{array}\right\}, \\
\Sigma_{\mathfrak{m}_{2}}^{+} & =\left\{\alpha \in \Sigma_{\mathfrak{m}}^{+} \left\lvert\,\left(\alpha, \Lambda_{\alpha_{r}}\right)=\frac{1}{2(l+1)}\right.\right\}=\left\{\alpha \in \Sigma_{\mathfrak{m}}^{+} \left\lvert\, \frac{2\left(\alpha, \Lambda_{\alpha_{r}}\right)}{\left(\alpha_{r}, \alpha_{r}\right)}=2\right.\right\} \\
& =\left\{\alpha \in \Sigma_{\mathfrak{m}}^{+} \mid \alpha=2 \alpha_{r}+\left(\text { sum of other } \alpha_{i}\right)\right\} \\
& =\left\{\theta_{i}+\theta_{j} \quad(1 \leqq i \leqq r \text { and } i \leqq j \leqq r)\right\},
\end{aligned}
$$

and we have an orthogonal decomposition $\mathfrak{m}^{+}=\mathfrak{m}_{1}^{+}+\mathfrak{m}_{2}^{+}$,

$$
\begin{aligned}
\mathfrak{m}_{1}^{+} & =\sum_{\alpha \in \Sigma_{\mathfrak{m}_{1}}^{+}} \mathfrak{g}_{-\alpha}^{\mathbf{C}}=\{\eta(x, y, 0)\} \\
\mathfrak{m}_{2}^{+} & =\sum_{\alpha \in \Sigma_{\mathfrak{m}_{2}}^{+}} \mathfrak{g}_{-\alpha}^{\mathbf{C}}=\{\eta(0,0, z)\}
\end{aligned}
$$

From (4.7), the $G$-invariant Kähler metric corresponding to $a \Lambda_{\alpha_{r}}$ is given by

$$
g\left(a \Lambda_{\alpha_{r}}\right)=\frac{a}{4(l+1)}\left\{(,)_{\mathfrak{m}_{1}^{+} \times \overline{\mathfrak{m}_{1}^{+}}}+2(,)_{\mathfrak{m}_{2}^{+} \times \overline{\mathfrak{m}_{2}^{+}}}\right\}
$$

so that, for $X=\eta(x, y, z)-\eta(x, y, z)^{*} \in \mathfrak{m}$, we get

$$
\begin{aligned}
g\left(a \Lambda_{\alpha_{r}}\right)(X, X) & =2 g\left(a \Lambda_{\alpha_{r}}\right)\left(X^{+}, \overline{X^{+}}\right) \\
& =\frac{a}{2(l+1)}\left\{\left(X_{1}^{+}, \overline{X_{1}^{+}}\right)+2\left(X_{2}^{+}, \overline{X_{2}^{+}}\right)\right\}=2 a \operatorname{tr}\left(x^{*} x+y^{*} y+\bar{z} z\right)
\end{aligned}
$$

where $X^{+}=\eta(x, y, z) \in \mathfrak{m}^{+}, X_{1}^{+}=\eta(x, y, 0) \in \mathfrak{m}_{1}^{+}$and $X_{2}^{+}=\eta(0,0, z) \in \mathfrak{m}_{2}^{+}$.
If $r=l$, then $\left(\alpha_{l}, \alpha_{l}\right)=\frac{1}{l+1}$. So, $\Sigma_{\mathfrak{m}}^{+}$satisfies the following:

$$
\left.\left.\begin{array}{rl}
\Sigma_{\mathfrak{m}}^{+} & =\left\{\alpha \in \Sigma_{\mathfrak{m}}^{+} \left\lvert\,\left(\alpha, \Lambda_{\alpha_{l}}\right)=\frac{1}{2(l+1)}\right.\right\}=\left\{\alpha \in \Sigma_{\mathfrak{m}}^{+}\right.
\end{array} \right\rvert\, \frac{2\left(\alpha, \Lambda_{\alpha_{l}}\right)}{\left(\alpha_{l}, \alpha_{l}\right)}=1\right\},
$$

From (4.7), the $G$-invariant Kähler metric corresponding to $a \Lambda_{\alpha_{r}}$ is given by

$$
g\left(a \Lambda_{\alpha_{l}}\right)=\frac{a}{2(l+1)}(,)_{\mathfrak{m}^{+} \times \overline{\mathfrak{m}^{+}}}
$$

so that, for $X=\eta(0,0, z)-\eta(0,0, z)^{*} \in \mathfrak{m}$, we get

$$
g\left(a \Lambda_{\alpha_{l}}\right)(X, X)=2 g\left(a \Lambda_{\alpha_{l}}\right)\left(X^{+}, \overline{X^{+}}\right)=\frac{a}{l+1}\left(X^{+}, \overline{X^{+}}\right)=2 a \operatorname{tr}(\bar{z} z)
$$

where $X^{+}=\eta(0,0, z) \in \mathfrak{m}^{+}$.
Consequently, for any $r$ with $1 \leqq r \leqq l$, we see
(5.1) $\quad g\left(a \Lambda_{\alpha_{r}}\right)(X, X)=2 \operatorname{atr}\left(x^{*} x+y^{*} y+\bar{z} z\right), \quad X=\eta(x, y, z)-\eta(x, y, z)^{*} \in \mathfrak{m}$.

The natural inclusion $S p(l) \rightarrow S U(2 l)$ defines an immersion $\varphi$ of $M$ into $\tilde{M}=$ $G_{r}\left(\mathbf{C}^{2 l}\right)=\tilde{G} / \tilde{K}=S U(2 l) / S(U(r) \cdot U(2 l-r))$ by

$$
\varphi(g \cdot K)=g \cdot \tilde{K}, \quad g \in G
$$

Under identification of $T_{o} \tilde{M}$ with $\tilde{\mathfrak{m}}$, the image of $X=\eta(x, y, z)-\eta(x, y, z)^{*} \in \mathfrak{m}$ is

$$
\varphi_{*}(X)=\left(\begin{array}{cccc}
0 & -x^{*} & -\bar{z} & -y^{*} \\
x & 0 & 0 & 0 \\
z & 0 & 0 & 0 \\
y & 0 & 0 & 0
\end{array}\right)
$$

so that we have

$$
\begin{equation*}
\tilde{g}_{c}\left(\varphi_{*}(X), \varphi_{*}(X)\right)=\frac{4}{c} \operatorname{tr}\left(x^{*} x+y^{*} y+\bar{z} z\right) \tag{5.2}
\end{equation*}
$$

where $c$ is the maximal holomorphic sectional curvature of $G_{r}\left(\mathbf{C}^{2 l}\right)$. Therefore, Theorem 4.3, (5.1) and (5.2) imply the following.

THEOREM 5.1. For the Kähler $C$-space $M=S p(l) / U(r) \cdot S p(l-r)$ of type $\left(C_{l}, \alpha_{r}\right)$ equipped with the Kähler metric $g\left(\frac{2}{c} \Lambda_{\alpha_{r}}\right), M$ is immersed in $G_{r}\left(\mathbf{C}^{2 l}\right)$ by the Kähler immersion $\varphi$. The complex dimension, and the first eigenvalue $\lambda_{1}(M)$ of the Laplacian are given by

$$
\operatorname{dim}_{\mathbf{C}} M=\frac{r(4 l-3 r+1)}{2}, \quad \lambda_{1}(M)=c(2 l-r+1)
$$

In particular, if $r=2$, then $M=S p(l) / U(2) \cdot S p(l-2)$ is a Kähler hypersurface of $G_{2}\left(\mathbf{C}^{2 l}\right)$, whose first eigenvalue $\lambda_{1}(M)$ of the Laplacian is given by

$$
\lambda_{1}(M)=c(2 l-1) .
$$

REMARK 5.1.
(1) $\left(C_{l}, \alpha_{l}\right)$ is a Hermitian symmetric space $S p(l) / U(l)$.
(2) $\left(C_{l}, \alpha_{1}\right)$ is a complex projective space $\mathbf{C} P^{2 l-1}$ so it is Hermitian symmetric. But the pair $(S p(l), U(1) \cdot S p(l-1))$ is not a compact symmetric pair.
(3) Other $\left(C_{l}, \alpha_{r}\right), 2 \leqq r \leqq l-1$ are not symmetric spaces.

For $z \in M_{r}(\mathbf{C})$, define an unit vector $v$ at the origin $o$ of $G_{2}\left(\mathbf{C}^{2 l}\right)$ by

$$
\nu(z)=\left(\begin{array}{cccc}
0 & 0 & -z^{*} & 0 \\
0 & 0 & 0 & 0 \\
z & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \in \tilde{\mathfrak{m}}, \quad \frac{4}{c} \operatorname{tr} z^{*} z=1
$$

Then $v(z)$ is tangent to $M$ if and only if $z$ is symmetric.
The Kähler hypersurface $M=\left(C_{l}, \alpha_{2}\right)$ satisfies the following property relative to the quaternionic Kähler structure $\mathfrak{J}$ of $G_{2}\left(\mathbf{C}^{2 l}\right)$.

PROPOSITION 5.2. The Kähler hypersurface $M=S p(l) / U(2) \cdot S p(l-2)$ of $G_{2}\left(\mathbf{C}^{2 l}\right)$ satisfies

$$
\begin{equation*}
\mathfrak{J} T^{\perp} M \subset T M \quad\left(\Leftrightarrow J \xi \perp \mathfrak{J} \xi \text { for any } \xi \in T^{\perp} M\right) \tag{5.3}
\end{equation*}
$$

where $T M$ and $T^{\perp} M$ are the tangent bundle and the normal bundle of $M$, respectively.
PROOF. Let $v_{o}$ be an unit normal vector of $M$ at $o$ defined by

$$
v_{o}=v\left(z_{o}\right), \quad z_{o}=\frac{1}{2} \sqrt{\frac{c}{2}}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

so that the normal space $T_{o}^{\perp} M$ is given by

$$
T_{o}^{\perp} M=\mathbf{R}\left\{v_{o}, J v_{o}=v\left(\sqrt{-1} z_{o}\right)\right\} .
$$

Then we see

$$
\begin{aligned}
\mathfrak{J}_{o} T_{o}^{\perp} M & =\mathbf{R}\left\{J_{i} v_{o}, J_{i} J v_{o}, \quad i=1,2,3\right\} \\
& =\mathbf{R}\left\{v\left(z_{o} \varepsilon_{i}\right), v\left(\sqrt{-1} z_{o} \varepsilon_{i}\right), \quad i=1,2,3\right\}
\end{aligned}
$$

where $J_{1}, J_{2}$ and $J_{3}$ are a canonical basis of $\mathfrak{J}_{o}$ defined in the section 2. It is easy to check that $z_{o} \varepsilon_{i}$ and $\sqrt{-1} z_{o} \varepsilon_{i}$ are symmetric, so that we obtain

$$
\mathfrak{J}_{o} T_{o}^{\perp} M \subset T_{o} M
$$

Since the quaternionic Kähler structure $\mathfrak{J}$ is $\tilde{G}$-invariant, and since the immersion $\varphi$ is $G$ equivariant, (5.3) holds at any point of $M$.

If the ambient space is $G_{2}\left(\mathbf{C}^{4}\right)$, then the condition (5.3) determines a Kähler hypersurface as follows:

Proposition 5.3. Suppose that a Kähler hypersurface $M$ of $Q^{4}=G_{2}\left(\mathbf{C}^{4}\right)$ satisfies the condition

$$
\mathfrak{J} T^{\perp} M \subset T M
$$

Then $M$ is totally geodesic. Moreover, if $M$ is compact, then $M$ is congruent to a complex quadric $Q^{3}=S p(2) / U(2)$.

Proof. Denote by $\tilde{\nabla}$ the Riemannian connection of $Q^{4}$, and denote by $\nabla, \sigma, A$ and $\nabla^{\perp}$, the Riemannian connection, the second fundamental form, the shape operator, and the normal connection of $M$, respectively. It is well-known that Gauss' formula and Weingarten's formula hold:

$$
\begin{align*}
\tilde{\nabla}_{X} Y & =\nabla_{X} Y+\sigma(X, Y) \\
\tilde{\nabla}_{X} \xi & =-A_{\xi} X+\nabla_{X}^{\perp} \xi \tag{5.4}
\end{align*}
$$

for $X, Y \in T M$ and $\xi \in T^{\perp} M$. The metric condition implies

$$
\begin{equation*}
\tilde{g}_{c}(\sigma(X, Y), \xi)=\tilde{g}_{c}\left(A_{\xi} X, Y\right) \tag{5.5}
\end{equation*}
$$

Relative to the complex structure $J, \sigma$ and $A$ satisfy

$$
\begin{equation*}
\sigma(X, J Y)=J \sigma(X, Y), \quad A_{\xi} \circ J=-J \circ A_{\xi}=-A_{J \xi} . \tag{5.6}
\end{equation*}
$$

For a local unit normal vector field $\xi$, we define local vector fields as follow: $e_{i}=J_{i} \xi, i=$ $1,2,3$, where $J_{1}, J_{2}$ and $J_{3}$ are a local canonical basis of $\mathfrak{J}$. Then, under the assumption of this proposition, $\left\{e_{1}, e_{2}, e_{3}, J e_{1}, J e_{2}, J e_{3}, \xi, J \xi\right\}$ is a local orthonormal frame field of $Q^{4}$ such that $\left\{e_{1}, e_{2}, e_{3}, J e_{1}, J e_{2}, J e_{3}\right\}$ is a tangent frame of $M$. For $X \in T M$, (5.4) implies

$$
\begin{align*}
\nabla_{X} e_{i}+\sigma\left(X, e_{i}\right)=\tilde{\nabla}_{X} e_{i} & =\left(\tilde{\nabla}_{X} J_{i}\right) \xi+J_{i}\left(\tilde{\nabla}_{X} \xi\right)  \tag{5.7}\\
& =\left(\tilde{\nabla}_{X} J_{i}\right) \xi-J_{i} A_{\xi} X+J_{i}\left(\nabla_{X}^{\perp} \xi\right)
\end{align*}
$$

Since $\mathfrak{J}$ is parallel with respect to the connection $\tilde{\nabla}$, we have $\tilde{\nabla}_{X} J_{i} \in \mathfrak{J}$, so that the normal component of (5.7) is

$$
\begin{aligned}
\sigma\left(X, e_{i}\right) & =-\tilde{g}_{c}\left(J_{i} A_{\xi} X, \xi\right) \xi-\tilde{g}_{c}\left(J_{i} A_{\xi} X, J \xi\right) J \xi \\
& =g_{c}\left(A_{\xi} X, e_{i}\right) \xi+g_{c}\left(A_{\xi} X, J e_{i}\right) J \xi
\end{aligned}
$$

where $g_{c}$ is the induced Kähler metric of $M$. On the other hand, (5.5) and (5.6) imply

$$
\begin{aligned}
\sigma\left(X, e_{i}\right) & =\tilde{g}_{c}\left(\sigma\left(X, e_{i}\right), \xi\right) \xi+\tilde{g}_{c}\left(\sigma\left(X, e_{i}\right), J \xi\right) J \xi \\
& =g_{c}\left(A_{\xi} X, e_{i}\right) \xi-g_{c}\left(A_{\xi} X, J e_{i}\right) J \xi
\end{aligned}
$$

From these two equations, we get

$$
\begin{equation*}
g_{c}\left(A_{\xi} X, J e_{i}\right)=0 . \tag{5.8}
\end{equation*}
$$

Instead of $X$, applying to $J X$, we have

$$
g_{c}\left(A_{\xi} X, e_{i}\right)=g_{c}\left(-A_{\xi} J X, J e_{i}\right)=0 .
$$

Therefore, we have $A_{\xi}=0$, or $\sigma=0$, so that $M$ is totally geodesic. By B. Y. Chen and T. Nagano [5]'s results, if $M$ is compact, $M$ is congruent to a complex quadric $Q^{3}=$ $S p(2) / U(2)$.

The Kähler submanifold $M=\left(C_{l}, \alpha_{r}\right)$ satisfies another interesting property as follows:
Proposition 5.4. The isometric immersion $\Psi \circ \varphi: M=S p(l) / U(r) \cdot S p(l-r) \longrightarrow$ $H M(2 l, \mathbf{C})$ is a sum of $(H M(2 l, \mathbf{C})$-valued) eigenfunctions with eigenvalues $0, c(2 l-r+1)$ and 2 cl. More precisely, $\Psi \circ \varphi$ satisfies

$$
\begin{gathered}
\Psi \circ \varphi=F_{0}+F_{1}+F_{2} \\
\Delta F_{0}=0, \quad \Delta F_{1}=c(2 l-r+1) F_{1}, \quad \Delta F_{2}=2 c l F_{2}
\end{gathered}
$$

where $F_{0}, F_{1}$ and $F_{2}$ are $H M(2 l, \mathbf{C})$-valued functions defined by

$$
F_{0}=\frac{r}{2 l} I_{2 l}, \quad F_{1}=\frac{1}{2}(A+S \bar{A} S), \quad F_{2}=-\frac{r}{2 l} I_{2 l}+\frac{1}{2}(A-S \bar{A} S),
$$

$A=\Psi \circ \varphi$ is a position vector in $H M(2 l, \mathbf{C})$, and

$$
S=\left(\begin{array}{cc}
0 & -I_{l} \\
I_{l} & 0
\end{array}\right)
$$

REMARK 5.2. If $r=l$, then $F_{2}$ vanishes. If $r=1$, then two positive eigenvalues coincide with each other, and $\Psi \circ \varphi$ is the first standard imbedding of $\mathbf{C} P^{2 l-1}$.

COROLLARY 5.5. For $l \geqq 3$ and $2 \leqq r \leqq l-1,2 c l$ is an eigenvalue of the Laplacian of $\operatorname{Sp}(l) / U(r) \cdot S p(l-r)$, which is greater than the first eigenvalue.

REMARK 5.3. By B. Y. Chen's definition, if $l \geqq 3$ and $2 \leqq r \leqq l-1$, then $S p(l) / U(r) \cdot S p(l-r)$ is a mass-symmetric 2-type submanifold of order $\{c(2 l-r+1), 2 c l\}$. On the other hand, for any $l \geqq 1,\left(C_{l}, \alpha_{1}\right)=\mathbf{C} P^{2 l-1}$ is a mass-symmetric 1-type submanifold of order $\{2 c l\}$, and $\left(C_{l}, \alpha_{l}\right)=S p(l) / U(l)$ is a mass-symmetric 1-type submanifold of order $\{c(l+1)\}$. (cf. [4])

Proof of Proposition 5.4. Notice that $G=S p(l)$ is a subgroup of $\tilde{G}=S U(2 l)$ and satisfies

$$
G=S p(l)=\left\{\left.g \in S U(2 l)\right|^{t} g S g=S\right\}
$$

For $1 \leqq i<j \leqq r$, let's set

$$
z_{i j}=\frac{1}{2} \sqrt{\frac{c}{2}}\left(E_{i j}-E_{j i}\right),
$$

so that $v\left(z_{i j}\right), J v\left(z_{i j}\right)=v\left(\sqrt{-1} z_{i j}\right), 1 \leqq i<j \leqq r$ are an orthonormal basis of $T_{o}^{\perp} M$. By a simple computation, we get

$$
\sum_{i<j} \Psi_{*}\left(\nu\left(z_{i j}\right)\right)^{2}=\sum_{i<j} \Psi_{*}\left(J \nu\left(z_{i j}\right)\right)^{2}=\frac{c}{4} \frac{r-1}{2}\left(\begin{array}{cccc}
I_{r} & 0 & 0 & 0 \\
0 & 0_{l-r} & 0 & 0 \\
0 & 0 & I_{r} & 0 \\
0 & 0 & 0 & 0_{l-r}
\end{array}\right)
$$

From (2.9), at the origin $A_{o}=\Psi(o)=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0_{2 l-r}\end{array}\right)$,

$$
\begin{aligned}
& \sum_{i<j}\left(\tilde{\sigma}_{A_{o}}\left(\nu\left(z_{i j}\right), \nu\left(z_{i j}\right)\right)+\tilde{\sigma}_{A_{o}}\left(J v\left(z_{i j}\right), J v\left(z_{i j}\right)\right)\right) \\
& \quad=4\left(\sum_{i<j} \Psi_{*}\left(\nu\left(z_{i j}\right)\right)^{2}\right)\left(I-2 A_{o}\right)=\frac{c(r-1)}{2}\left(-A_{o}-S A_{o} S\right)
\end{aligned}
$$

Since $M$ is minimal in $G_{r}\left(\mathbf{C}^{2 l}\right)$, it follows from (2.10) that, at the origin $A_{o}$, the mean curvature vector $H_{A_{o}}$ of $M$ in $\operatorname{HM}(2 l, \mathbf{C})$ is given by

$$
\begin{aligned}
2 \operatorname{dim}_{\mathbf{C}} M H_{A_{o}} & =2 r(2 l-r) \tilde{H}_{A_{o}}-\sum_{i<j}\left(\tilde{\sigma}_{A_{o}}\left(v\left(z_{i j}\right), \nu\left(z_{i j}\right)\right)+\tilde{\sigma}_{A_{o}}\left(J v\left(z_{i j}\right), J v\left(z_{i j}\right)\right)\right) \\
& =\frac{c}{2}\left(2 r I-(4 l-r+1) A_{o}+(r-1) S A_{o} S\right) .
\end{aligned}
$$

Since the immersions $\varphi$ and $\Psi$ are equivariant under the actions $G$ and $\tilde{G}$, at a point $A=$ $g A_{o} g^{*}, g \in G$, the mean curvature $H_{A}$ is given by

$$
2 \operatorname{dim}_{\mathbf{C}} M H_{A}=2 \operatorname{dim}_{\mathbf{C}} M g H_{A_{o}} g^{*}=\frac{c}{2}(2 r I-(4 l-r+1) A+(r-1) S \bar{A} S)
$$

Therefore, we obtain

$$
\Delta A=-2 \operatorname{dim}_{\mathbf{C}} M H_{A}=-\frac{c}{2}(2 r I-(4 l-r+1) A+(r-1) S \bar{A} S)
$$

which implies Proposition 5.4.
REMARK 5.4. A quaternionic projective space $\mathbf{H} P^{l-1}$ admits a totally geodesic embedding $\varphi_{\mathbf{H} P^{l-1}}$ into $G_{2}\left(\mathbf{C}^{2 l}\right)$. (See [5] and [6].) $\varphi_{\mathbf{H} P^{l-1}}$ is a quaternionic embedding with respect to the quaternionic Kähler structure of $G_{2}\left(\mathbf{C}^{2 l}\right)$, and is a totally real embedding with respect to the complex structure of $G_{2}\left(\mathbf{C}^{2 l}\right)$. It is known that the Kähler hypersurface $M=\left(C_{l}, \alpha_{2}\right)$ is the focal set of $\mathbf{H} P^{l-1}$ in $G_{2}\left(\mathbf{C}^{2 l}\right)$. (cf. [1])

## 6. Proof of main theorems

Let $M$ be a compact connected Kähler hypersurface of $G_{r}\left(\mathbf{C}^{n}\right)$ immersed by a immersion $\varphi$. It is well-known that every $\operatorname{HM}(n, \mathbf{C})$-valued function $F$ satisfies

$$
\begin{equation*}
(\Delta F, \Delta F)_{L^{2}}-\lambda_{1}(\Delta F, F)_{L^{2}} \geqq 0 \tag{6.1}
\end{equation*}
$$

The equality holds if and only if $F$ is a sum of eigenfunctions with respect to eigenvalues 0 and $\lambda_{1}$. It is equivalent to that there exists a constant vector $C \in H M(n, \mathbf{C})$ such that $\Delta(F-C)=\lambda_{1}(F-C)$.

Denote by $H$ the mean curvature vector of the isometric immersion $\Phi=\Psi \circ \varphi$. Then, since $M$ is minimal in $G_{r}\left(\mathbf{C}^{n}\right)$, (2.10) implies

$$
\begin{align*}
2(r(n-r)-1) H_{A} & =2 r(n-r) \tilde{H}_{A}-\tilde{\sigma}_{A}(\xi, \xi)-\tilde{\sigma}_{A}(J \xi, J \xi)  \tag{6.2}\\
& =c(r I-n A)-\tilde{\sigma}_{A}(\xi, \xi)-\tilde{\sigma}_{A}(J \xi, J \xi)
\end{align*}
$$

where $A$ is a position vector of $\Phi(M)$ in $H M(n, \mathbf{C})$, and $\xi$ is a local unit normal vector field of $\varphi$. Using (2.12) and (6.2), we get

$$
\begin{equation*}
\left(H_{A}, A\right)=-1 \tag{6.3}
\end{equation*}
$$

$H M(n, \mathbf{C})$-valued function $\Phi$ satisfies $\Delta \Phi=-2(r(n-r)-1) H$, so that (6.1) and (6.3) imply the following. The equality condition dues to T. Takahashi's theorem in [15].

Lemma 6.1.

$$
\begin{equation*}
2(r(n-r)-1) \int_{M}\left(H_{A}, H_{A}\right) d v_{M}-\lambda_{1} \operatorname{vol}(M) \geqq 0 \tag{6.4}
\end{equation*}
$$

The equality holds if and only if $\Phi$ is a minimal immersion of $M$ into some round sphere in $H M(n, \mathbf{C})$, more precisely, there exists some positive constant $R$ and some constant vector $C \in H M(n, \mathbf{C})$ such that $H_{A}$ satisfies

$$
\begin{equation*}
H_{A}=\frac{1}{R^{2}}(C-A) \tag{6.5}
\end{equation*}
$$

LEMMA 6.2. If the equality holds in (6.4), then $M$ is contained in a totally geodesic submanifold of $G_{r}\left(\mathbf{C}^{n}\right)$ which is product of Grassmann manifolds, more precisely, there exist integers $k_{i}, r_{i}, i=1, \cdots, m$ such that

$$
\begin{gather*}
0 \leqq r_{i} \leqq k_{i}, \quad r_{1} \geqq r_{2} \geqq \cdots \geqq r_{m}, \\
\sum_{i=1}^{m} r_{i}=r, \quad \sum_{i=1}^{m} k_{i}=n, \tag{6.6}
\end{gather*}
$$

Notice that $G_{0}\left(\mathbf{C}^{k_{i}}\right)=G_{k_{i}}\left(\mathbf{C}^{k_{i}}\right)=\{$ one point $\}$.
Proof. Assume that the equality holds in (6.4).
Since $M$ is minimal in $G_{r}\left(\mathbf{C}^{n}\right), H$ is normal to $G_{r}\left(\mathbf{C}^{n}\right)$. Then, from (2.5) and (6.5), we get

$$
\begin{equation*}
C A=A C \tag{6.7}
\end{equation*}
$$

where $C$ is a constant vector in Lemma 6.1. Since $S U(n)$ acts on $G_{r}\left(\mathbf{C}^{n}\right)$ transitively, without loss of generality, we can assume that $C$ is a diagonal matrix as follows:

$$
C=\left(\begin{array}{cccc}
c_{1} I_{k_{1}} & & & 0  \tag{6.8}\\
& c_{2} I_{k_{2}} & & \\
& & \ddots & \\
0 & & & c_{m} I_{k_{m}}
\end{array}\right), \quad k_{i}>0, \quad c_{i} \neq c_{j}(i \neq j)
$$

Notice that

$$
n=k_{1}+k_{2}+\cdots+k_{m}
$$

Define a linear subspace $L$ of $H M(n, \mathbf{C})$ by $L=\{Z \in H M(n, \mathbf{C}) \mid Z C=C Z\}$, so that

$$
L=\left\{\left.\left(\begin{array}{llll}
Z_{1} & & & 0 \\
& Z_{2} & & \\
& & \ddots & \\
0 & & & Z_{m}
\end{array}\right) \right\rvert\, Z_{i} \in M_{k_{i}}(\mathbf{C})\right\}
$$

From (6.7), $M$ is contained in $G_{r}\left(\mathbf{C}^{n}\right) \cap L$.

For each integer $r_{i}$ with $0 \leqq r_{i} \leqq k_{i}, \quad \sum_{i=1}^{m} r_{i}=r$, let's define connected subsets of $G_{r}\left(\mathbf{C}^{n}\right)$ by

$$
W_{r_{1}, \cdots, r_{m}}=\left\{\left.\left(\begin{array}{llll}
A_{1} & & & 0 \\
& A_{2} & & \\
& & \ddots & \\
\mathbf{0} & & & A_{m}
\end{array}\right) \right\rvert\, \begin{array}{c}
A_{i} \in M_{k_{i}}(\mathbf{C}), \\
A_{i}^{2}=A_{i}, \quad \operatorname{tr} A_{i}=r_{i}
\end{array}\right\}
$$

So, $G_{r}\left(\mathbf{C}^{n}\right) \cap L$ is a disjoint union of all $W_{r_{1}, \cdots, r_{m}}$ 's. Since $M$ is connected, $M$ is contained in suitable one of $W_{r_{1}, \cdots, r_{m}}$ 's, saying $W_{r_{1}, \cdots, r_{m}}$. By the definition, we see

$$
W_{r_{1}, \cdots, r_{m}}=G_{r_{1}}\left(\mathbf{C}^{k_{1}}\right) \times G_{r_{2}}\left(\mathbf{C}^{k_{2}}\right) \times \cdots \times G_{r_{m}}\left(\mathbf{C}^{k_{m}}\right)
$$

Without loss of generality, we can choose a diagonal matrix $C$ with respect to which the inequalities $r_{1} \geqq r_{2} \geqq \cdots \geqq r_{m}$ hold.

From (2.9), (2.11) and (6.2), we get

$$
\begin{equation*}
H_{A}=\frac{c}{2(r(n-r)-1)}\left\{(r I-n A)-\frac{4}{c}\left(\Psi_{*} \xi\right)^{2}(I-2 A)\right\} \tag{6.9}
\end{equation*}
$$

Using (2.3) and (2.4), we see

$$
\begin{align*}
\left(H_{A}, H_{A}\right)=\frac{c}{2(r(n-r)-1)^{2}}\{ & n r(n-r)-2 \operatorname{tr} \frac{4}{c} r\left(\Psi_{*} \xi\right)^{2}\left(I+\frac{n-2 r}{r} A\right)  \tag{6.10}\\
& \left.+\operatorname{tr} \frac{16}{c^{2}}\left(\Psi_{*} \xi\right)^{2}(I-2 A)\left(\Psi_{*} \xi\right)^{2}(I-2 A)\right\} .
\end{align*}
$$

Since the immersion $\Psi$ is $\tilde{G}$-equivariant, for any $A \in \Phi(M)$, there exists a element $g_{A} \in \tilde{G}$ and a matrix $v_{A} \in M_{n-r, r}(\mathbf{C})$ satisfying $A_{o}=g_{A} A g_{A}^{*}$ and

$$
\sqrt{\frac{c}{4}}\left(\begin{array}{cc}
0 & v_{A}^{*}  \tag{6.11}\\
v_{A} & 0
\end{array}\right)=g_{A}\left(\Psi_{*} \xi\right) g_{A}^{*}
$$

Since the inner product (, ) is $\tilde{G}$-equivariant and $\xi$ is unit, we have $\operatorname{tr} v_{A}^{*} v_{A}=\operatorname{tr} v_{A} v_{A}^{*}=1$. After translating by $g_{A}$, together with (6.11), (6.10) implies

$$
\begin{equation*}
\left(H_{A}, H_{A}\right)=\frac{c}{2(r(n-r)-1)^{2}}\left\{n(r(n-r)-2)+2 \operatorname{tr}\left(v_{A}^{*} v_{A} v_{A}^{*} v_{A}\right)\right\} \tag{6.12}
\end{equation*}
$$

Lemma 6.3. For $v \in M_{n-r, r}(\mathbf{C})$ with $\operatorname{tr} v^{*} v=1$, the following inequality holds

$$
\begin{equation*}
\operatorname{tr} v^{*} v v^{*} v \leqq 1 \tag{6.13}
\end{equation*}
$$

Moreover, the following three conditions are equivalent to each other.
(1) The equality holds in (6.13).
(2) The hermitian $r$-matrix $v^{*} v$ is similar to $\left(\begin{array}{cc}1 & 0 \\ 0 & 0_{r-1}\end{array}\right)$.
(3) The hermitian $(n-r)$-matrix $v v^{*}$ is similar to $\left(\begin{array}{cc}1 & 0 \\ 0 & 0_{n-r-1}\end{array}\right)$.

If the equality holds in (6.13), then there exists $R=\left(\begin{array}{ll}P & 0 \\ 0 & Q\end{array}\right) \in S(U(r) \cdot U(n-r))$ such that $v^{\prime}=Q v P^{*}$ satisfies

$$
v^{*} v^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0_{r-1}
\end{array}\right) \quad \text { and } \quad v^{\prime} v^{*}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0_{n-r-1}
\end{array}\right)
$$

Proof. Lemma 6.3 follows from that both of Hermitian matrices $v^{*} v$ and $v v^{*}$ are similar to diagonal matrices with non-negative eigenvalues.

Form (6.12) and Lemma 6.3, the following lemma is immediately obtained, which is used to prove Theorem A.

Lemma 6.4.

$$
\begin{equation*}
\left(H_{A}, H_{A}\right) \leqq \frac{c}{2(r(n-r)-1)}\left\{n-\frac{n-2}{r(n-r)-1}\right\} \tag{6.14}
\end{equation*}
$$

The equality holds if and only if, for any $A \in \Phi(M)$, it is possible to choose $v_{A}$ satisfying

$$
v_{A}^{*} v_{A}=\left(\begin{array}{cc}
1 & 0  \tag{6.15}\\
0 & 0_{r-1}
\end{array}\right) \quad \text { and } \quad v_{A} v_{A}^{*}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0_{n-r-1}
\end{array}\right)
$$

Proof of Theorem A. (6.4) and (6.14) imply

$$
\lambda_{1} \leqq c\left(n-\frac{n-2}{r(n-r)-1}\right)
$$

Let's assume that this equality holds. Then, the equality conditions of Lemmas 6.1 and 6.4 hold.

Assume $m=1$. Then, (6.5) and (6.9) imply

$$
\frac{1}{R^{2}}\left(c_{1} I-A\right)=\frac{c}{2(r(n-r)-1)}\left\{(r I-n A)-\frac{4}{c}\left(\Psi_{*} \xi\right)^{2}(I-2 A)\right\}
$$

After translating by $g_{A}$, together with (6.11) and (6.15), we obtain

$$
\begin{aligned}
\frac{1}{R^{2}}\left(c_{1}-1\right) I_{r} & =\frac{c}{2(r(n-r)-1)}\left\{(r-n) I_{r}+\left(\begin{array}{cc}
1 & 0 \\
0 & 0_{r-1}
\end{array}\right)\right\}, \\
\frac{1}{R^{2}} c_{1} I_{n-r} & =\frac{c}{2(r(n-r)-1)}\left\{r I_{n-r}-\left(\begin{array}{cc}
1 & 0 \\
0 & 0_{n-r-1}
\end{array}\right)\right\}
\end{aligned}
$$

The first equation implies $r=1$, and the second one implies $n-r=1$. So, we have $n=2$ and $r=1$. This contradicts that $M$ is a complex hypersurface.

Since $m \geqq 2$, from Lemma $6.2, M$ is contained in a proper totally geodesic submanifold of $G_{r}\left(\mathbf{C}^{n}\right)$. On the other hand, $M$ is of complex codimension 1 in $G_{r}\left(\mathbf{C}^{n}\right)$. Consequently,
either $r=1$ or $r=n-1$ occurs, and $M$ is a totally geodesic complex hypersurface of a complex projective space $\mathbf{C} P^{n-1} \cong G_{1}\left(\mathbf{C}^{n}\right) \cong G_{n-1}\left(\mathbf{C}^{n}\right)$.

Proof of Theorem B. Let's assume that $M$ is a compact connected Kähler hypersurface of $G_{2}\left(\mathbf{C}^{n}\right)$ satisfying the condition $J \xi \perp \mathfrak{J} \xi$. Since both of the complex structure and the quaternionic Kähler structure are $\tilde{G}$-invariant, we obtain, at the origin $A_{o}$,

$$
J\left(\begin{array}{cc}
0 & v_{A}^{*}  \tag{6.16}\\
v_{A} & 0
\end{array}\right) \perp J_{i}\left(\begin{array}{cc}
0 & v_{A}^{*} \\
v_{A} & 0
\end{array}\right), \quad i=1,2,3,
$$

where $J_{1}, J_{2}$ and $J_{3}$ are a canonical basis of $\mathfrak{J}_{o}$ defined in the section 2 . Set

$$
v_{A}=\left(v_{A}^{\prime} \quad v_{A}^{\prime \prime}\right), \quad v_{A}^{\prime}, v_{A}^{\prime \prime} \in M_{n-2,1}(\mathbf{C}) \cong \mathbf{C}^{n-2}
$$

Using (2.7) and (2.8), (6.16) implies that $\left|v_{A}^{\prime}\right|=\left|v_{A}^{\prime \prime}\right|$ and $v_{A}^{\prime} \perp v_{A}^{\prime \prime}$. Combining these with $\operatorname{tr} v_{A}^{*} v_{A}=1$, we obtain $\left|v_{A}^{\prime}\right|=\left|v_{A}^{\prime \prime}\right|=\frac{1}{\sqrt{2}}$, so that

$$
v_{A}^{*} v_{A}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0  \tag{6.17}\\
0 & 1
\end{array}\right) .
$$

Together with (6.17), (6.12) implies

$$
\left(H_{A}, H_{A}\right)=\frac{c}{2(2 n-5)}\left\{n-\frac{n-1}{2 n-5}\right\} .
$$

Therefore, form Lemma 6.1, we obtain

$$
\lambda_{1} \leqq c\left(n-\frac{n-1}{2 n-5}\right)
$$

Let's assume that this equality holds. Then, the equality conditions of Lemma 6.1 holds. Computing dimensions of manifolds in (6.6), we have

$$
\begin{equation*}
2 n-5 \leqq \sum_{i=1}^{m} r_{i}\left(k_{i}-r_{i}\right) \tag{6.18}
\end{equation*}
$$

From $\sum_{i=1}^{m} r_{i}=2$ and $r_{1} \geqq r_{2} \geqq \cdots \geqq r_{m}$, the following two cases occur:

$$
\begin{array}{ll}
\text { Case I : } & r_{1}=r_{2}=1, \quad r_{3}=\cdots=r_{m}=0, \\
\text { Case II : } & r_{1}=2, \quad r_{2}=\cdots=r_{m}=0 .
\end{array}
$$

In Case I, (6.18) implies $2 n-5 \leqq k_{1}+k_{2}-2 \leqq n-2$, so $n \leqq 3$. This is contradiction. Therefore, Case II occurs. Then, (6.18) implies $2 n-5 \leqq 2\left(k_{1}-2\right)$, so that we have $n=k_{1}, m=1, k_{2}=\cdots=k_{m}=0$. (6.5) and (6.9) imply

$$
\frac{1}{R^{2}}\left(c_{1} I-A\right)=\frac{c}{2(2 n-5)}\left\{(2 I-n A)-\frac{4}{c}\left(\Psi_{*} \xi\right)^{2}(I-2 A)\right\} .
$$

After translating by $g_{A}$, together with (6.11) and (6.17), we obtain

$$
\begin{aligned}
\frac{1}{R^{2}}\left(c_{1}-1\right) & =\frac{c}{2(2 n-5)}\left\{2-n+\frac{1}{2}\right\}, \\
\frac{1}{R^{2}} c_{1} I_{n-2} & =\frac{c}{2(2 n-5)}\left\{2 I_{n-2}-v_{A} v_{A}^{*}\right\}
\end{aligned}
$$

The second equation implies

$$
\begin{equation*}
v_{A} v_{A}^{*}=d I_{n-2}, \quad d=2-\frac{2(2 n-5)}{c} \frac{c_{1}}{R^{2}} . \tag{6.19}
\end{equation*}
$$

From (6.17), we have

$$
d v_{A}=d I_{n-2} v_{A}=\left(v_{A} v_{A}^{*}\right) v_{A}=v_{A}\left(v_{A}^{*} v_{A}\right)=\frac{1}{2} v_{A}
$$

so that $d=\frac{1}{2}$. Consequently, taking traces of both sides of (6.19), we obtain $n=4$.
Therefore, from Proposition 5.3, $M$ is congruent to $Q^{3}$.

## References

[ 1] J. Berndt, Riemannian geometry of complex two-plane Grassmannians, Rend. Sem. Mat. Univ. Politec. Torino 55 (1997), 19-83.
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[3] J.-P. Bourguignon, P. Li and S. T. Yau, Upper bound for the first eigenvalue of algebraic submanifolds, Comment. Math. Helv. 69 (1994), 199-207.
[ 4 ] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore (1984).
[ 5 ] B. Y. Chen and T. NAGANO, Totally geodesic submanifolds of symmetric spaces, I, Duke Math. J. 44 (1977), 745-755.
[6] B. Y. Chen and T. NAGANo, Totally geodesic submanifolds of symmetric spaces, II, Duke Math. J. 45 (1978), 405-425.
[7] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. series 26 (1957), 111-244.
[8] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York (1978).
[ 9 ] S. Ihara, Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan 19 (1967), 261-302.
[10] K. Konno, Homogeneous hypersurfaces in Kähler C-spaces with $b_{2}=1$, J. Math. Soc. Japan 40 (1988), 687-703.
[11] Y. Miyata, On an upper bound for the first eigenvalue of Kähler submanifolds of $\mathbf{C} P^{n}$, Bulletin of the Liberal Arts \& Science Course, Nihon University School of Medicine 21 (1993), 13-23.
[12] M. Obata, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. U.S.-Japan Sem. in Differential Geom., Kyoto, Japan (1965), 101-114.
[13] A. Ros, On spectral geometry of Kaehler submanifolds, J. Math. Soc. Japan 36 (1984), 433-448.
[14] I. SATAKE, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math. 87 (1965), 425-461.
[15] T. TAKAHASHI, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.
[16] M. TAKEUCHI, Homogeneous Kähler submanifolds in complex projective spaces, Japan. J. Math. 4 (1978), 171-219.
[17] M. Takeuchi, Modern Spherical Functions, Translations of Mathematical Monographs, vol. 135, Amer. Math. Soc. (1994).

Present Address:
Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji-Shi, Tokyo, 192-0397 Japan
e-mail: miyata@comp.metro-u.ac.jp


[^0]:    Received March 2, 2004

