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Abstract. In this paper, we study submodules of L2(R)2. We will give a Lax-type theorem and a result which
is analogous to Helson’s theory.

1. Introduction

L%(R?) will denote the Hilbert space of square-integrable measurable functions with
respect to the usual Lebesgue measure dxjdx; on the two dimensional Euclidean space R2,
HZ(R) denotes the usual Hardy space on R, thatis, H 2(R) consists of all functions in L2(R)
which can be extended analytically to the upper half plane C; = {x +ir : x € R, > 0}.

H2%(R) ® H2(R), the Hilbert space tensor product of H 2(R), is the space of all f in L2(R?)
whose Fourier transform

SO, A2) = fOu, k) = /R i fxy, xp)e "R gy dxy

is 0 whenever at least one component of (A, A2) is negative, where (A1, A2) and (x1, x2) are
in R%. In this paper, H 2(R) ® H2(R) is denoted by H 2(R?), for short. Note that our H2(R?)
is different from the usual Hardy space on R

DEFINITION 1.1. A closed subspace M of L%(R?) is said to be a submodule of
L2(R?) if i M < M for any j = 1,2 and any s > 0. Fors > 0, S;(s) denotes the

restriction on M of the multiplication operator on L?(R?) by e/$%/.

Submodules in one variable were completely described by Lax in [4]. In [1], Helson
gave another point of view to the result of Lax. The purpose of our study is to consider Hel-
son’s theory in the multi-variable setting. My interest in considering Helson’s theory in two
variables is motivated by the study of Hardy submodules over the bidisk: Hardy submodules
are invariant subspaces of Hardy space under multiplication operators by bounded analytic
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functions. However, it is easy to see that a straightforward generalization of Helson’s theory
fails in the multi-variable setting. In Section 2 of this paper, we give a Lax-type theorem in
two variables. To prove this we use Masani’s integral (cf. [6]). In Section 3, we consider
Helson’s theory in two variables. We will give a result, analogous to Helson’s result, under
the following condition: S1(s)S2(£)* = S»()*S1(s) forall s, ¢ > 0.

2. A Lax-type theorem in R?

In [9], the author showed the following Lax-type theorem which is analogous to the
theorem proved by Mandrekar [5] and Nakazi [7] for the bitorus.

THEOREM 2.1. Let M be a submodule of L*>(R*), HZ(R*) = L*(R,dx|) ®
H*(R,dx;) and H:(R*) = H*(R,dx)) ® L*(R,dx). If Si1(s)S2()* = S2(t)*S1(s) for
all s,t > 0, then one and only one of the following occurs:

(i) M=xeL*R*) ® xroH(R?),

(i) M= xeL*R) @ xg¥HZR?),

(i) M =qH*R?),

where ¢, Y and q are unimodular functions, x g is the characteristic function of E, xr (resp.

XG) is the characteristic function of F (resp. G) which depends only on the variable x| (resp.
Xx2).
We shall give a proof which differs from that given in [9]. To begin with, we briefly

introduce Masani’s integral which can be seen as a continuous Wold decomposition for a
continuous semi-group of isometries, according to [6].

DEFINITION 2.1 (Masani [6]). Let{S(¢) : t > 0} be a strongly continuous semi-group
of isometries on a Hilbert space . We introduce an operator-valued interval-measure. The
measure Ty, of the interval [a, b] is defined by as follows:

t
Tiapy =T () —T(a), where T(t) = %{S(t) -1 —/ S(s) ds} , fort>0.
0

Let i H be the infinitesimal generator of {S(¢) : + > 0} and V be the Cayley transform of H
and R = V(H). For the step-function x = Zzzl akxJ, on [a, b], where oy in R+ and XJ, 18
the characteristic function of bounded interval Ji, we define

b n
/ Tar(xo) =Y Tr(en).

k=1

For any x in L*([a, b], R1), we define

b b
f Tur(x) = lim f Tar ™),
a n—oo a
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where {x,("), n > 1}is any sequence of step-functions which is tending to x in the L2-topology.

We now define a direct integral as a set of vector-valued integrals:

b b
/ Tar(RY) = {E 3 =/ Tai(x1). x € L*([a, b], RL)}.

THEOREM 2.2 (Masani [6]). Let {S(t) : t > 0} be a strongly continuous semi-group
of isometries on a Hilbert space H, i H be its infinitesimal generator and let V be the Cayley
transform of H. Then, fora > 0,

S(a)(H) = / Tar(RH) ® Heo

where R = V(H) and Hoo = ﬂrzo S)(H).
This theorem can be seen as a continuous Wold decomposition.

EXAMPLE 2.1. Let T;f) be the operator-valued measures defined by Sk (s) for k =

1, 2. Identifying bounded functions with multiplication operators, T (s) can be computed
formally as follows:

1 s
T®(s) = — 1 Sk(s) — I —/ Sk (1) dt}
V2 0
1 , S
= — e’”k—l—/e’x"dt}
V2 0
1 (; 1 .7
- ezsxk — 1= I:-_e”mi| }
V2 i Xg 0
1 . 1 .
- ezsxk_l_._(ezsxk_l)}
V2 X
1 . 1
= (e - 1)<1 - .—)
V2 i Xk
1

— isxp _ 1 M)
N (e ) (ke + 1)

Thus the operator valued measure Téif) can be computed as follows:

(k) d ( 1 isxy : )
T, = —| ——\(e — D(xp+1i) ) ds
ds ds ﬁxk

= Lie"”"()ck +i)ds.

/2



334 MICHIO SETO

We are now in a position to prove Theorem 2.1.

PROOF (A proof of Theorem 2.1). Some parts of this proof are similar to those in the
proof by Mandrekar [5] and Nakazi [7] for the bitorus (cf. Seto [9]).

Suppose that S (s)S2()* = S2(t)*S1(s) forall s, 7 > 0. Let V,, be the isometry induced
by {Sk(s) : s > 0} as in Theorem 2.2 for k = 1, 2. Since V), is in the von Neumann algebra
generated by {Si(s) : s > 0}, we have Vx*] Vi, = Vy, V;“] . It suffices to consider the following
two cases:

e V,, and V,, are completely non-unitary,
e V,, is completely non-unitary and V,, is unitary.

First, we suppose that V,, and V,, are completely non-unitary. Then
(1) 2
M= / T, {/ T, (M S (Ve M + Vi, M) }
by Theorem 2.2. Let f be in M & (Vy; M + V,, M) such that || f|| = 1. Then

2O —DF (o — i) B
/Rzlf(m,xz)l GIOf et ) dxidxy =0,

for all (k, 1) # (0, 0). Changing variables x; and x> to 61 and 6>, we have

o 2 ,ik6y ,il0 !
| f(61,02)[ "1™ dodo, =0.
/0 /0 (cos2 %)(cosz 072)

Hence | f (61, 62)]%(cos> 2)~! (cos® %)~! = 1, equivalently (x?+1)(x3+1)| f(x1, x2)|* = 1
Therefore, there exists a unimodular function ¢ such that

-9
(14D +10)

Hence we have

q

M VeM+V M) =C——7M———.
© Vo M4 VM) =Co 1D

By the Paley-Wiener theorem,

G
M= / di C<x1+i)(x2+i)

= {‘; D& :q/ e ds / ei’xzf(s,t) dt; f € L*((0, 00) x (0, oo))}
0 0

= q(H*(R) ® H*(R))
=gH*(R?).
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Next, we suppose that V,, is completely non-unitary and V, is unitary. Then
=
M =/ T,/ Mo VM),
0

by Theorem 2.2. Let f be in M © Vi, M. Then

2 (1 = D)F (xp — i) B
A2 | f(x1, x2)| Gt DF (o £ 1) dxrdx; =0,

for all k # 0 and /. By the same calculations as in the first case, we have

fGxr,x2) = g(xi, x2)/(x1 + 1)
for some g such that the function |g| depends only on the variable x;.
The following argument is known (cf. [3]). Let xg(4) be the support function of g, that

is, XE(g) is the characteristic function of the set E(g) = {(x1, x2) € R’ : g(x1, x2) # 0}, and
¢4 be a unimodular function defined as follows:

g/lgl (g #0)
¢g =
Then
itxy 9 — ¢g L2 R. 4
\/6’ i xl+l.XE(g) (R, dxy),

teR

where V denotes the closed vector span. Since there exists a function ' in M © Vy, M which
has the maximal support in M & Vy M, thatis, E(g) € E(F), for any g in M & Vy, M, we
have

F
MOV M= ¢+ i xe(rL*(R, dx2) .

X1

Let xg = xEe(r) and ¥ = ¢r. By the Paley-Wiener theorem, we have the following:

o 1 2
M= fo Tds( XGUL (R,dxz))

x1+i
0 .
= {E 3 =XG1/// ¢ f(s.x2) ds ; f € L* (0, 00) XR)}
0
= X6V H> R, dx1) ® L*(R, dx2)
= XV H},(R).
The converse is easy to verify.

A function ¢ is said to be inner if g is in H2(R?) and lg(x1,x2)] = 1ae.
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COROLLARY 2.1. Let M be a submodule of HX(R?). Then Si(s)$(1)* =
SH(1)*S1(s) forall s, t > 0 if and only if M = qH2(R2)f0r some inner function q.

3. Helson’s theory under the double commuting condition in L%(R?)

In this section, we discuss Helson’s theory in L%(R?) under the double commuting con-
dition: S1(s)S2(1)* = Sa(¢)*S1(s) for all s,¢ > 0. Then, it is parallel to Helson’s argument
for the one-variable case in [1].

DEFINITION 3.1. Let M be a submodule of LZ(RZ). For any X, 1 in R, we define one-
parameter unitary groups {c;}, {f,} and projections { Py}, {Q} on L2(R2) as follows: for

any f in LZ(RZ), a,f = ei)‘xf, Buf = elﬂ)‘f’ and P, = O[;tPMO[)L, Oy = IBZPM:BM’ that
is, Py and Q,, are the orthogonal projections of L%(R?) onto oy M and B M, respectively.

LEMMA 3.1. Let M be a submodule of L2(R2). S1()S2(0)* = S2(t)*S1(s) for all
s,t = 0ifand only if Paqct;, PaBuPr = PpaBuPras Pag forall k., win R
PROOF. Itis easy to verify.

DEFINITION 3.2. A submodule M of L%(R?) is said to be simple if S;(s)S>(1)* =
S>(1)*S1(s) for all s, > 0 and (ﬂk a M + ﬂﬂ ,BMM) = {o} (this is equivalent to that
P_oo=1limy oo Pr=0and Q_oo =limy_o Q) = 0).

Note that a submodule M is simple if and only if M = g H2(R?) for some unimodular
function ¢ by Theorem 2.2.

Next, we define two sequences of projections, and show that these are the spectral mea-
sures of L2(R?). Let Ej, and F,, be projections defined as follows:

E, = Ol;jQ+ooOl)\ and Fll = ,BZP+OQ,3M .

LEMMA 3.2. Let M be a submodule of L(R?). If M is simple, then {E;} and {F.}
are spectral families. Moreover E; F,, = F, E; = a;f,B; Paqa By for all &, win R.

PROOF. Since, for y > A, u,
EAF;L = a;jQ-{-OOa)uB;P-i-OO:BM

- VEToo(a;ﬁ;PMﬂya*ﬂ;“;PM“VIBM)

- yEToo(aI'B;PM“;faPMIBVfMPMO‘y,BM)

= lim (@8] PrtBy—nPrmes_, Pacty B)

- },ETOO(“I'B;'B;—MPM'BWM Prory 5 Pagoy 2o Bu)

= a; B Prmas B,
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we have Ey Fy, = o B Prmas By = FuEp forall A, pin R.
Next, suppose that

XGLZ(R2) = UakﬁuM S ﬂak U,BMM + mﬁu UWAM ,
I3 I3 A

A A

where the bar denotes the closure. We shall show xg = 1. The following argument is the
same as in [1]. Let Uy 0 = [g €''* d E;. Then, since W Buo E1t By = Ein—ig» We have

ish
By Us,0 ZO‘AU,BMO/EZS dE,
_ isA dE
=l e =200 Bpo

zetsAO/ets(A—Ao) dEA—AOOlAO,BuO

= eiS)‘UUs,oaAO,BMO .
Therefore
Us,0T—s,00. B = Us,OeiS)LOl)uB/LTfs,O
= a3 BuUs,0T(=s,0) »

where Ty ; is the translation operator such that (7;f)(x,y) = f(x —s,y —t). Hence
Us,0T—s,0 is a multiplication operator on L2(R2). Since Us,0T—5,0 maps Ts,ongz(R2) to
xGL*(R?), we have T; oxgL*(R?) = xGL?*(R?). By the same argument for f,, we have
To.ixcL*(R?) = xGL*(R?), that is, Ty ; x6 L*(R?) = L*(R?) for all 5, ¢ in R. Hence G is a
null setor G = R2, and we have

ran( lim E;L> _ran( 11moo FM) = Uakﬁﬂ/\/l = L°(RY),

A—~+00 n—>+
Ao

ran <k lim EA> = maAU,BMM = {o},
o0 A 1

ran <MgmOo Fu) = mﬁu UOIAM = {o0}.
n 2

Therefore {E,} and {F),} are the spectral families.
By virtue of Lemma 3.2, for any simple submodule of L2(R?), there exists a spectral

measure dE; , = dE,dF, on R? and we have a two-parameter continuous unitary group
{Us,+} on L2(R2) as follows:

o (e.¢] X (e.¢] (e.¢] X
Us,t — / / el(S}m-‘rl}L) dEAdF — / / el(S)m-'rTM) dEA,M~
—00 J —00 —00 J —00
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DEFINITION 3.3. A family {A; } of functions on R? which are individually measur-

able is said to be a cocycle of R if
(1) [|As.s(x,y)| = 1 almost everywhere in x, y, for each s, 7,

(i1) Ay, f moves continuously in L2(R?) as s and 7 varies, for each fin L2(R?),
(i)  Asqu.r+v = As.1Ts1 Ay v almost everywhere, for each s, ¢, u and v.

EXAMPLE 3.1 (cf.[1]). In Lemma 5.3, we showed the following commutation rela-
tion:

US,OTfs,OOlA,Bp. = a)ug,uUs,OTfs,O .

Using the same argument with respect to the variable x», we have
Us,tTfs,fta)\,Bu = a)ug,uUs,tTfs,ft .

Therefore U ;T_s,—; is the multiplication operator by some unimodular function A, We

shall show {A; ;} is a cocycle of R?. Identifying bounded functions with multiplication oper-
ators, we have

As+u,t+v - Us+u,t+vT7s7u,7tfv
= Us,tUu,vau,fvas,ft
- Us,tAu,vT—s,—t
- As,th,tAu,vT—s,—t .

Hence

As+u,t+v(x’ y) = As,t(xa y)Au,v(x —s5,y—1).

PROPOSITION 3.1. There exists a one-to-one correspondence between simple sub-
modules of L%(R?) and cocycles of R>.

PROOF. Suppose that {A; ;} is a cocycle of R2. Let Us., = AsiTs. Then {Us,} is
a two-parameter unitary group on L%(R?). By Stone’s theorem for R?, there exists a unique
spectral measure of LZ(RZ) such that

0o po0
Us, = / / A GE; .
—00 J —00

i (sh+t —i t i (s (A t
/Rz ol (sA+t10) dEj v, i, = € i(sTi+iT2) /1;2 ol SOAT)+ (14712)) dE) 4z, s

Let M =ran Eg . Then

_ pilsmitim) / SO g,
R2

= a;kl :3:‘2 Us 10y, B,
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_ i(sA+t * %
= f L& d(af, B, Ex oy )
R
Hence we have
E = ok B Ej .o, B
At utty = Qo P, Ea,u%t Py -

Therefore M is a submodule of L2(R?).
Next, we shall show that M satisfies the double commuting condition. It suffices to
consider the case where A > 0 and u < 0.

Prar PamBuPa = Eo oo Eo,081 Eo.0
= o E5,0E0,0E0,—Bu
= E0,0Bp »
and
PrmBuPionPag = Eo,0BuEo,00 Eo,0
= Eo,0E0,—pBuati Eo0
= Eo,00.8.E0,0
=, Ex0E0,—uBu
= Eo,0Bu -
Therefore Paqoty, PatBuPrt = PaBu Paa Paq. This concludes the proof by Lemma 3.1.

EXAMPLE 3.2 (cf.[1]). Suppose that M = gH 2(R?) for some unimodular function
g. Then its cocycle is {gTy.;q~'}.

A cocycle of the form A;; = qTS,tq’l, for some unimodular function, is called a
coboundary of R?.

COROLLARY 3.1. Every cocycle of R? is a coboundary ofRz.

PROOF. By Theorem 2.1, for any simple submodule M of L2(R?), there is a unimod-
ular function ¢ such that M = g H%(R?). Hence the cocycle of M is a coboundary.
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