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Abstract. In this paper, we study submodules of L2(R)2. We will give a Lax-type theorem and a result which
is analogous to Helson’s theory.

1. Introduction

L2(R2) will denote the Hilbert space of square-integrable measurable functions with

respect to the usual Lebesgue measure dx1dx2 on the two dimensional Euclidean space R2.

H 2(R) denotes the usual Hardy space on R, that is, H 2(R) consists of all functions in L2(R)
which can be extended analytically to the upper half plane C+ = {x + it : x ∈ R, t > 0}.
H 2(R)⊗ H 2(R), the Hilbert space tensor product of H 2(R), is the space of all f in L2(R2)

whose Fourier transform

F(f )(λ1, λ2) = f̂ (λ1, λ2) =
∫

R2
f (x1, x2)e

−i(λ1x1+λ2x2)dx1dx2

is 0 whenever at least one component of (λ1, λ2) is negative, where (λ1, λ2) and (x1, x2) are

in R2. In this paper, H 2(R)⊗H 2(R) is denoted by H 2(R2), for short. Note that our H 2(R2)

is different from the usual Hardy space on R2.

DEFINITION 1.1. A closed subspace M of L2(R2) is said to be a submodule of

L2(R2) if eisxjM ⊆ M for any j = 1, 2 and any s ≥ 0. For s ≥ 0, Sj (s) denotes the

restriction on M of the multiplication operator on L2(R2) by eisxj .

Submodules in one variable were completely described by Lax in [4]. In [1], Helson
gave another point of view to the result of Lax. The purpose of our study is to consider Hel-
son’s theory in the multi-variable setting. My interest in considering Helson’s theory in two
variables is motivated by the study of Hardy submodules over the bidisk: Hardy submodules
are invariant subspaces of Hardy space under multiplication operators by bounded analytic
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functions. However, it is easy to see that a straightforward generalization of Helson’s theory
fails in the multi-variable setting. In Section 2 of this paper, we give a Lax-type theorem in
two variables. To prove this we use Masani’s integral (cf. [6]). In Section 3, we consider
Helson’s theory in two variables. We will give a result, analogous to Helson’s result, under
the following condition: S1(s)S2(t)

∗ = S2(t)
∗S1(s) for all s, t ≥ 0.

2. A Lax-type theorem in R2

In [9], the author showed the following Lax-type theorem which is analogous to the
theorem proved by Mandrekar [5] and Nakazi [7] for the bitorus.

THEOREM 2.1. Let M be a submodule of L2(R2), H 2
x1
(R2) = L2(R, dx1) ⊗

H 2(R, dx2) and H 2
x2
(R2) = H 2(R, dx1) ⊗ L2(R, dx2). If S1(s)S2(t)

∗ = S2(t)
∗S1(s) for

all s, t ≥ 0, then one and only one of the following occurs:

(i) M = χEL
2(R2)⊕ χFϕH

2
x1
(R2),

(ii) M = χEL
2(R2)⊕ χGψH

2
x2
(R2),

(iii) M = qH 2(R2),
where ϕ, ψ and q are unimodular functions, χE is the characteristic function of E, χF (resp.
χG) is the characteristic function of F (resp. G) which depends only on the variable x1 (resp.
x2).

We shall give a proof which differs from that given in [9]. To begin with, we briefly
introduce Masani’s integral which can be seen as a continuous Wold decomposition for a
continuous semi-group of isometries, according to [6].

DEFINITION 2.1 (Masani [6]). Let {S(t) : t ≥ 0} be a strongly continuous semi-group
of isometries on a Hilbert space H. We introduce an operator-valued interval-measure. The
measure Tab of the interval [a, b] is defined by as follows:

T[a,b] = T (b)− T (a) , where T (t) = 1√
2

{
S(t) − I −

∫ t

0
S(s) ds

}
, for t ≥ 0 .

Let iH be the infinitesimal generator of {S(t) : t ≥ 0} and V be the Cayley transform of H
and R = V (H). For the step-function x = ∑n

k=1 αkχJk on [a, b], where αk in R⊥ and χJk is
the characteristic function of bounded interval Jk , we define

∫ b

a

Tdt(xt ) :=
n∑
k=1

TJk (αk) .

For any x in L2([a, b], R⊥), we define

∫ b

a

Tdt(xt ) := lim
n→∞

∫ b

a

Tdt (x
(n)
t ) ,
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where {x(n)t , n ≥ 1} is any sequence of step-functions which is tending to x in theL2-topology.

We now define a direct integral as a set of vector-valued integrals:

∫ b

a

Tdt(R
⊥) :=

{
ξ : ξ =

∫ b

a

Tdt (xt ), x ∈ L2([a, b], R⊥)
}
.

THEOREM 2.2 (Masani [6]). Let {S(t) : t ≥ 0} be a strongly continuous semi-group
of isometries on a Hilbert space H, iH be its infinitesimal generator and let V be the Cayley
transform of H . Then, for a ≥ 0,

S(a)(H) =
∫ ∞

a

Tdt (R
⊥)⊕ H∞ ,

where R = V (H) and H∞ = ⋂
t≥0 S(t)(H).

This theorem can be seen as a continuous Wold decomposition.

EXAMPLE 2.1. Let T (k)ds be the operator-valued measures defined by Sk(s) for k =
1, 2. Identifying bounded functions with multiplication operators, T (k)(s) can be computed
formally as follows:

T (k)(s) = 1√
2

{
Sk(s)− IM −

∫ s

0
Sk(t) dt

}

= 1√
2

{
eisxk − 1 −

∫ s

0
eitxk dt

}

= 1√
2

{
eisxk − 1 −

[
1

ixk
eitxk

]s
0

}

= 1√
2

{
eisxk − 1 − 1

ixk
(eisxk − 1)

}

= 1√
2
(eisxk − 1)

(
1 − 1

ixk

)

= 1√
2 xk

(eisxk − 1)(xk + i) .

Thus the operator valued measure T (k)ds can be computed as follows:

T
(k)
ds = d

ds

(
1√
2 xk

(eisxk − 1)(xk + i)

)
ds

= 1√
2
ieisxk(xk + i)ds .
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We are now in a position to prove Theorem 2.1.

PROOF (A proof of Theorem 2.1). Some parts of this proof are similar to those in the
proof by Mandrekar [5] and Nakazi [7] for the bitorus (cf. Seto [9]).

Suppose that S1(s)S2(t)
∗ = S2(t)

∗S1(s) for all s, t ≥ 0. Let Vxk be the isometry induced
by {Sk(s) : s ≥ 0} as in Theorem 2.2 for k = 1, 2. Since Vxk is in the von Neumann algebra
generated by {Sk(s) : s ≥ 0}, we have V ∗

x1
Vx2 = Vx2V

∗
x1

. It suffices to consider the following
two cases:

• Vx1 and Vx2 are completely non-unitary,
• Vx1 is completely non-unitary and Vx2 is unitary.

First, we suppose that Vx1 and Vx2 are completely non-unitary. Then

M =
∫ ∞

0
T
(1)
ds

{∫ ∞

0
T
(2)
dt

(M � (Vx1M + Vx2M)
) }
,

by Theorem 2.2. Let f be in M � (Vx1M + Vx2M) such that ‖f ‖ = 1. Then

∫
R2

|f (x1, x2)|2 (x1 − i)k

(x + i)k

(x2 − i)l

(x2 + i)l
dx1dx2 = 0 ,

for all (k, l) 
= (0, 0). Changing variables x1 and x2 to θ1 and θ2, we have

∫ 2π

0

∫ 2π

0
|f (θ1, θ2)|2eikθ1eilθ2

1(
cos2 θ1

2

)(
cos2 θ2

2

) dθ1dθ2 = 0 .

Hence |f (θ1, θ2)|2(cos2 θ1
2 )

−1(cos2 θ2
2 )

−1 = 1, equivalently (x2
1 +1)(x2

2 +1)|f (x1, x2)|2 = 1.
Therefore, there exists a unimodular function q such that

f = q

(x1 + i)(x2 + i)
.

Hence we have

M � (Vx1M + Vx2M) = C
q

(x1 + i)(x2 + i)
.

By the Paley-Wiener theorem,

M =
∫ ∞

0
T
(1)
ds

{∫ ∞

0
T
(2)
dt

(
C

q

(x1 + i)(x2 + i)

)}

=
{
ξ : ξ = q

∫ ∞

0
eisx1 ds

∫ ∞

0
eitx2f (s, t) dt ; f ∈ L2((0,∞)× (0,∞))

}

= q(H 2(R)⊗H 2(R))

= qH 2(R2) .
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Next, we suppose that Vx1 is completely non-unitary and Vx2 is unitary. Then

M =
∫ ∞

0
T
(1)
ds (M � Vx1M) ,

by Theorem 2.2. Let f be in M � Vx1M. Then

∫
R2

|f (x1, x2)|2 (x1 − i)k

(x1 + i)k

(x2 − i)l

(x2 + l)l
dx2dx1 = 0 ,

for all k 
= 0 and l. By the same calculations as in the first case, we have

f (x1, x2) = g(x1, x2)/(x1 + i)

for some g such that the function |g| depends only on the variable x2.
The following argument is known (cf. [3]). Let χE(g) be the support function of g , that

is, χE(g) is the characteristic function of the set E(g) = {(x1, x2) ∈ R2 : g(x1, x2) 
= 0}, and
φg be a unimodular function defined as follows:

φg =
{
g/|g| (g 
= 0)

1 (g = 0) .

Then ∨
t∈R

eitx2
g

x1 + i
= φg

x1 + i
χE(g)L

2(R, dx2) ,

where ∨ denotes the closed vector span. Since there exists a function F in M�Vx1M which
has the maximal support in M� Vx1M, that is, E(g) ⊆ E(F), for any g in M� Vx1M, we
have

M � Vx1M = φF

x1 + i
χE(F )L

2(R, dx2) .

Let χG = χE(F) and ψ = φF . By the Paley-Wiener theorem, we have the following:

M =
∫ ∞

0
T
(1)
ds

(
1

x1 + i
χGψL

2(R, dx2)

)

=
{
ξ : ξ = χGψ

∫ ∞

0
eisx1f (s, x2) ds ; f ∈ L2 ((0,∞)× R)

}

= χGψH
2(R, dx1)⊗ L2(R, dx2)

= χGψH
2
x2
(R2) .

The converse is easy to verify.

A function q is said to be inner if q is in H 2(R2) and |q(x1, x2)| = 1 a.e.
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COROLLARY 2.1. Let M be a submodule of H 2(R2). Then S1(s)S2(t)
∗ =

S2(t)
∗S1(s) for all s, t ≥ 0 if and only if M = qH 2(R2) for some inner function q .

3. Helson’s theory under the double commuting condition in L2(R2)

In this section, we discuss Helson’s theory in L2(R2) under the double commuting con-
dition: S1(s)S2(t)

∗ = S2(t)
∗S1(s) for all s, t ≥ 0. Then, it is parallel to Helson’s argument

for the one-variable case in [1].

DEFINITION 3.1. LetM be a submodule ofL2(R2). For any λ,µ in R, we define one-

parameter unitary groups {αλ}, {βµ} and projections {Pλ}, {Qµ} on L2(R2) as follows: for

any f in L2(R2), αλf = eiλxf, βµf = eiµyf , and Pλ = α∗
λPMαλ, Qµ = β∗

µPMβµ, that

is, Pλ andQµ are the orthogonal projections of L2(R2) onto α∗
λM and β∗

µM, respectively.

LEMMA 3.1. Let M be a submodule of L2(R2). S1(s)S2(t)
∗ = S2(t)

∗S1(s) for all
s, t ≥ 0 if and only if PMαλPMβµPM = PMβµPMαλPM for all λ,µ in R.

PROOF. It is easy to verify.

DEFINITION 3.2. A submodule M of L2(R2) is said to be simple if S1(s)S2(t)
∗ =

S2(t)
∗S1(s) for all s, t ≥ 0 and

(⋂
λ αλM + ⋂

µ βµM
) = {o} (this is equivalent to that

P−∞ = limλ→−∞ Pλ = O and Q−∞ = limµ→−∞Qµ = O).

Note that a submodule M is simple if and only if M = qH 2(R2) for some unimodular
function q by Theorem 2.2.

Next, we define two sequences of projections, and show that these are the spectral mea-

sures of L2(R2). Let Eλ and Fµ be projections defined as follows:

Eλ = α∗
λQ+∞αλ and Fµ = β∗

µP+∞βµ .

LEMMA 3.2. Let M be a submodule of L2(R2). If M is simple, then {Eλ} and {Fµ}
are spectral families. Moreover EλFµ = FµEλ = α∗

λβ
∗
µPMαλβµ for all λ,µ in R.

PROOF. Since, for γ ≥ λ,µ,

EλFµ = α∗
λQ+∞αλβ∗

µP+∞βµ
= lim
γ→+∞(α

∗
λβ

∗
γ PMβγ αλβ

∗
µα

∗
γ PMαγ βµ)

= lim
γ→+∞(α

∗
λβ

∗
γ PMα∗

γ−αPMβγ−µPMαγ βµ)

= lim
γ→+∞(α

∗
λβ

∗
γ PMβγ−µPMα∗

γ−λPMαγ βµ)

= lim
γ→+∞(α

∗
λβ

∗
µβ

∗
γ−µPMβγ−µPMα∗

γ−λPMαγ−λαλβµ)

= α∗
λβ

∗
µPMαλβµ ,
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we have EλFµ = α∗
λβ

∗
µPMαλβµ = FµEλ for all λ, µ in R.

Next, suppose that

χGL
2(R2) =

⋃
λ,µ

αλβµM �
⋂
λ

αλ
⋃
µ

βµM +
⋂
µ

βµ
⋃
λ

αλM ,

where the bar denotes the closure. We shall show χG = 1. The following argument is the

same as in [1]. Let Us,0 = ∫
R e

itλ dEλ. Then, since αλ0βµ0Eλα
∗
λ0
β∗
µ0

= Eλ−λ0 , we have

αλ0βµ0Us,0 = αλ0βµ0

∫
eisλ dEλ

=
∫
eisλ dEλ−λ0αλ0βµ0

= eisλ0

∫
eis(λ−λ0) dEλ−λ0αλ0βµ0

= eisλ0Us,0αλ0βµ0 .

Therefore

Us,0T−s,0αλβµ = Us,0e
isλαλβµT−s,0

= αλβµUs,0T(−s,0) ,

where Ts,t is the translation operator such that (Ts,tf )(x, y) = f (x − s, y − t). Hence

Us,0T−s,0 is a multiplication operator on L2(R2). Since Us,0T−s,0 maps Ts,0χGL2(R2) to

χGL
2(R2), we have Ts,0χGL2(R2) = χGL

2(R2). By the same argument for βµ, we have

T0,tχGL
2(R2) = χGL

2(R2), that is, Ts,tχGL2(R2) = L2(R2) for all s, t in R. Hence G is a

null set or G = R2, and we have

ran

(
lim

λ→+∞Eλ
)

= ran

(
lim

µ→+∞Fµ

)
=

⋃
λ,µ

αλβµM = L2(R2) ,

ran

(
lim

λ→−∞Eλ
)

=
⋂
λ

αλ
⋃
µ

βµM = {o} ,

ran

(
lim

µ→−∞Fµ

)
=

⋂
µ

βµ
⋃
λ

αλM = {o} .

Therefore {Eλ} and {Fµ} are the spectral families.

By virtue of Lemma 3.2, for any simple submodule of L2(R2), there exists a spectral

measure dEλ,µ = dEλdFµ on R2 and we have a two-parameter continuous unitary group

{Us,t} on L2(R2) as follows:

Us,t =
∫ ∞

−∞

∫ ∞

−∞
ei(sλ+tµ) dEλdFµ =

∫ ∞

−∞

∫ ∞

−∞
ei(sλ+tµ) dEλ,µ .
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DEFINITION 3.3. A family {As,t} of functions on R2 which are individually measur-

able is said to be a cocycle of R2 if
(i) |As,t (x, y)| = 1 almost everywhere in x, y, for each s, t ,

(ii) As,tf moves continuously in L2(R2) as s and t varies, for each f in L2(R2),
(iii) As+u,t+v = As,tTs,tAu,v almost everywhere, for each s, t , u and v.

EXAMPLE 3.1 (cf. [1]). In Lemma 5.3, we showed the following commutation rela-
tion:

Us,0T−s,0αλβµ = αλβµUs,0T−s,0 .

Using the same argument with respect to the variable x2, we have

Us,tT−s,−tαλβµ = αλβµUs,tT−s,−t .

Therefore Us,tT−s,−t is the multiplication operator by some unimodular function As,t. We

shall show {As,t} is a cocycle of R2. Identifying bounded functions with multiplication oper-
ators, we have

As+u,t+v = Us+u,t+vT−s−u,−t−v
= Us,tUu,vT−u,−vT−s,−t
= Us,tAu,vT−s,−t
= As,tTs,tAu,vT−s,−t .

Hence

As+u,t+v(x, y) = As,t (x, y)Au,v(x − s, y − t) .

PROPOSITION 3.1. There exists a one-to-one correspondence between simple sub-

modules of L2(R2) and cocycles of R2.

PROOF. Suppose that {As,t} is a cocycle of R2. Let Us,t = As,tTs,t . Then {Us,t} is

a two-parameter unitary group on L2(R2). By Stone’s theorem for R2, there exists a unique

spectral measure of L2(R2) such that

Us,t =
∫ ∞

−∞

∫ ∞

−∞
ei(sλ+tµ) dEλ,µ .

Let M = ran E0,0. Then∫
R2
ei(sλ+tµ) dEλ+τ1,µ+τ2 = e−i(sτ1+tτ2)

∫
R2
ei(s(λ+τ1)+t (µ+τ2)) dEλ+τ1,µ+τ2

= e−i(sτ1+tτ2)

∫
R2
ei(sλ+tµ) dEλ,µ

= α∗
τ1
β∗
τ2
Us,tατ1βτ2
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=
∫

R2
ei(sλ+tµ) d(α∗

τ1
β∗
τ2
Eλ,µατ1βτ2)

Hence we have

Eλ+τ1,µ+τ2 = α∗
τ1
β∗
τ2
Eλ,µατ1βτ2 .

Therefore M is a submodule of L2(R2).
Next, we shall show that M satisfies the double commuting condition. It suffices to

consider the case where λ ≥ 0 and µ ≤ 0.

PMαλPMβµPM = E0,0αλE0,0βµE0,0

= αλEλ,0E0,0E0,−µβµ
= αλE0,0βµ ,

and

PMβµPMαλPM = E0,0βµE0,0αλE0,0

= E0,0E0,−µβµαλE0,0

= E0,0αλβµE0,0

= αλEλ,0E0,−µβµ
= αλE0,0βµ .

Therefore PMαλPMβµPM = PMβµPMαλPM. This concludes the proof by Lemma 3.1.

EXAMPLE 3.2 (cf. [1]). Suppose that M = qH 2(R2) for some unimodular function

q . Then its cocycle is {qTs,tq−1}.
A cocycle of the form As,t = qTs,tq

−1, for some unimodular function, is called a

coboundary of R2.

COROLLARY 3.1. Every cocycle of R2 is a coboundary of R2.

PROOF. By Theorem 2.1, for any simple submodule M of L2(R2), there is a unimod-

ular function q such that M = qH 2(R2). Hence the cocycle of M is a coboundary.
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