TOKYO J. MATH.
VoL. 31, No. 2, 2008

Double Lerch Value Relations and Functional Relations
for Witten Zeta Functions

Takashi NAKAMURA

Nagoya University

(Communicated by M. Kurihara)

Abstract. In this paper, we obtain functional relations for Witten zeta functions by using relations of double
Lerch values. By these functional relations, we obtain new proofs of known results on the Tornheim double zeta
values, the Euler-Zagier double zeta values, and their alternating and character analogues.

1. Introduction

For s1, 52, 53, 54, 55,56 € Cand 0 < «, B, v, 8, 1,0 < 1, we define generalized Witten
zeta functions for s/(2), s/(3) and s/(4) by
0 e2nina

L1y (515 ) = ,

eZnila€2nimﬁ€2ni(l+m)y

Csi3) (51,52, 8330, B, y) = Fmrd e

I,m=1
Csi4) (81, 52, 53, 84, 55, 565 0, B, v, 8,1, 0)

S eZnil(xEZnimﬁeZniny6271[(l+m)6€2m'(m+n)n€2m'(l+m+n)0

ims2ns3 (I + m)ss(m + n)s (L +m + n)se ’

I,m,n=1

in the region of convergence. Originally, Zagier [30] defined Witten zeta functions by
Lg(s) =) (dimp)~*,
0

where s € C and p runs over all finite dimensional irreducible representations of a certain
semisimple Lie algebra g. The values of {4(2k) for k € N had been studied by Witten [27]
before Zagier’s work in order to calculate the volumes of certain moduli spaces. Afterwards,
in [3], Gunnells and Sczech gave explicit formula for {g(;)(2k). As a generalization of {4(s),
Matsumoto [7] defined the Witten zeta function for ¢ = so(5) of several complex variables
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and proved its analytic continuation. Then Matsumoto and Tsumura [11] introduced Witten
zeta function of several variables for g = sl(n) (n > 2).

Inthecasea = B =y =8 =n =6 = 1, we write them as ¢(s1), {u3)(s1, 52, 53)
and g4 (81, 52, 53, 54, S5, S6), respectively, which coincide with the zeta functions introduced
by Matsumoto and Tsumura [11]. Needless to say, ¢(s1) is the Riemann zeta function. The
function g3 (s1, 52, s3) is called the Tornheim double zeta function. The values ¢y 3)(a, b, ¢)
for a, b, c € N were investigated by Tornheim [17] and Mordell [12] in the 1950’s. Recently,
Tsumura [25] discovered a functional relation for the Tornheim double zeta function. Next the
author [13] found a different approach to this problem. The author’s expression of functional
relation looks different from Tsumura’s, but in [8], it is shown that Tsumura’s expression
coincides with the author’s one.

As a triple analogue of &y (3)(s1, 52, 53), the function g4 (s1, 52, 53, 0, 0, s6) is called
the Mordell-Torheim triple zeta function, continued analytically, and a functional relation has
been obtained in [8]. Matsumoto continued g(4)(s1, 52, $3, 54, 55, S¢) analytically in [7, The-
orem 3]. Afterwards Matsumoto and Tsumura determined its singularities more closely in
[11, Theorem 3.5]. Functional relations for s (s1, 52, 53, S4, 5, S6) were proved in Mat-
sumoto and Tsumura [11]. Afterwards, the author [15] showed new proofs of these functional
relations and another type of functional relations for £;(4)(s1, 52, 53, 54, 55, 5¢). In [5], Ko-
mori, Matsumoto and Tsumura discuss these functions as zeta-functions of root systems. In
[6], independently of the present work of the author, they prove functional relations for Witten
zeta functions of other Lie algebras.

On the other hand, Euler-Zagier multiple zeta values, the double case of which is written
by £53)(0, a, b), have been investigated by a lot of mathematicians (see for example Hoff-
man’s web page). These values are related to knot theory, cohomology of motives and so
on. Arakawa and Kaneko defined multiple L-values, the double case of which is written by
£13)(0,a,b; 1, B8,v), B, v € Q. They studied the regularized double shuffle and the deriva-
tion relations of multiple L-values and gave some applications in [2]. Afterwards Terhune
gave some evaluations for double L-values in [16].

In this paper, we obtain functional relations for generalized Witten zeta functions. All
functional relations for Witten zeta functions proved in this paper are derived from the double
Lerch value relation (2.2). We can obtain new functional relations because double Lerch
value relation (2.2) deduces the Bernoulli polynomial formula (5.8), which is a key to the
proof of functional relations showed in [13], [14] and [15]. By multiplying the double Lerch
value relation (2.2) by some functions and integrating the resulting expression, we obtain
all functional relations for generalized Witten zeta functions in this paper (see the proofs of
Lemma 4.1, Theorems 3.1, 5.3, 5.5, 6.2 and 6.3). Hence we may guess that all of functional
relations for Witten zeta functions could be constructed by multiple Lerch value relations. As
an evidence, we will show that a lot of known results on double Lerch values and Witten zeta
functions are induced from (2.2).

This paper is divided into 6 sections. In Section 2, we prove (2.2). We show the func-
tional relation for £y (3)(s1, 52, 83; @, B, ) which is a generalization of [13, Theorem 1.2] and
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[14, Theorem 3.2] in Theorem 3.1. By using Theorem 3.1, we obtain new proofs of Tornheim
[17, Theorem 2] (resp. Tsumura [24, Theorem 2] and [19, Theorem 3.4]), in Proposition 3.2
(resp. Proposition 3.3). In Section 4, we obtain functional relations for g3 (s1, 52, $3) with
characters in Lemmas 4.1, 4.2, 4.3 and Theorem 4.4. By these theorems, we can obtain ex-
plicit expression for double Lerch values and Tornheim double zeta values with characters.
For example, we can obtain new proofs of Terhune [16, Theorem 1] and Tsumura [21, Theo-
rem 3.1], (see Propositions 4.5 and 4.8). In Section 5, we show a functional relation for Witten
zeta functions attached to so(5) in Theorems 5.3 and 5.5. In Section 6, we obtain functional
relations (6.1) and (6.2), which are generalizations of [11, Theorem 5.9 and 5.10] and [15,
Theorems 2.1 and 2.3]. In Theorem 6.3, we obtain the functional relation (6.3).

2. Double Lerch values

We define double Lerch values by

Zntmx Zntn)

@ L@ bix,y)= lim 2:( T @beN. xwyeR.
m n

These and their multiple sum versions have been already defined in Arakawa and Kaneko
[2] for the case x, y € Q as special cases of their multiple L-values. In the case a > 2,
L(a, b; x, y) are absolutely convergent. As for the case a = 1, we have the following crite-
rion.

PROPOSITION 2.1. Forx € R\ Z, the series L(1, b; x, y) is uniformly convergent in
the wider sense in (0, 1).

PROOF. We can obtain this proposition by modifying the proof of [2, Proposition 1.1],
which is based on Abel’s summation. g

For the sake of simplicity, we say that the index set (a, b; x, y) for which the series
L(a, b; x,y) is convergent is admissible. The next double Lerch values relation plays an
important role in this paper.

THEOREM 2.2. For any admissible index, we have

o2 (@; X)) (bs X — y) + (=)0 Lia, b; x, y) + (=DLD, a; x — y, —y)

S fa+b—j—1 . . i .
= Z < i >§sz(z>(a +b—jix =)0 y) + (=D Cue) (s =)

j=1 -
2.2)

b .
th—j—1 .
+3° (“ b >§sz(2) (a+b— i) s =) + (DI Ly (i 7))

a+b—1 a+b—1
—( 4 >CSZ(2)(a+b:x—y)—( b )CSZ(z)(aer;x).
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We remark that when y — 0 the term corresponding to j = 1 of the first sum on the right-hand
side of (2.2) and the term corresponding to j = 1 of the second sum are cancelled.

PROOF. We use the identity

(_1)b€2m'rx62m'k) Xb: ( a+b— ] _ ) (_1),/62ﬂirx€27riky

ri(k + r)akb+v — pat+b—j+ufj+v

a

a+b—j—1 e2mirx y2miky
+Z a—j ra+bfj+u(k+r)jkv

where k,r € N,u,v € C, R(u) > 1 and H(v) > 1, which follows from Huard, Williams and
Zhang [4, (1.12)]. Summing on k and r, we have

(=D, b+ v, a; x, y,1)

b— .
= Z<a+ >(—1)’§s1(2)(a+b—j+M;X)§s1(2)(j+v; y)
(2.3)

a+b—j—1 . .
+Z< — >§sz(3)(a+b—1+u,v,1;x,y,1).

. a
Jj=1

By analytic continuation ([14, Theorem 2.1]), we find that the above formula is valid in the
case u = v = 0. We may regard that the formula with # = v = 0 is a kind of shuffle product
formula. Next applying the harmonic product formula

2.4 L1 (83 x = Va3 y) = LG, t;x —y,y) + L(>t, 559, X) + S (s + 15 x)

to the case u = v = 01in (2.3), using {yizy(a +b — 7,0, j;x,y, 1) = L(j,a+b—j;y,x)
and changing the order of sum involving the term L(a + b — j, j; x — y, x), we have

(—1)’L(a, b; x, y)
b

a+b—j—1 ; . .
( b j )(—l)fgsz(z)(a +b— i )i (s y)
j=1

Nfa+b—j—1
+Z(a o )(zsl(2)<a+b—j;x—y);m)(j;y>—csl(z><a+b;x>)

—1
Z( +h)£(b+h,a—h;x—y,x).
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By changing variables and parameters as x — x — y and y — —y in the above formula, we
have

(=DLb,a;x —y,—y)

a h—i_1 '
=y (“ T ’ )(—W;m(a +b— i x = D (s )
1

b ,
th—j—1
+> <a b j )(531(2)(61 +b— i 082 —y) = Laela+bix —y))
j=1

b—1

—1+h

_§:<a h+ >aa+hb—h;nx—yy
h=0

By using the shuffle product formula of Arakawa and Kaneko [2, p. 972, (8)] (in [2], this equa-
tion is shown for only x, y € Q. But this formula holds for x, y € R by continuity of double
Lerch values for admissible indices which can be derived from the uniform convergence in
the wider sense in (0,1), and denseness of Q in R), we have

S (b—1+h
Csi)(a: X1 (b x —y) = Z( I )E(b-i-h,a—h;x—y,X)
h=0

b—1
—14+h
+}§)<a h+ )ﬁ(b—{-h,a—h;x,x—y),

?:1 (a+ll;:57]) — (a+sfl
theorem. O

and applying the well-known formula ) we obtain this

We write by K (a, b; x, y) the right hand side of (2.2). In the case (x,y) = (1, 1), the
next proposition has already been proved by Huard, Williams and Zhang [4, Theorem 1].

PROPOSITION 2.3. Suppose a + b € 2N + 1, and (x, y) is equal to one of (1, 1),
1/2,1),,1/2),0r (1/2,1/2). For any admissible index, we have

2L(a, b; x,y) = &u(a; —x)Ei) (b x —y) — Ly(a + by —y)

(2.5) , .
— (=DCay(a; X)) (b; x —y) + (=1)°K(a, b; x, y) .

PROOF. Multiplying (2.2) by (=1, we have
(—1)P¢@ (@ X)) (b x —y) + L(a, b; x, y)

+ (DL azx —y, —y) = (DK (@, bix.y) .
By summing the above formula and the harmonic product formula (2.4) with changing the
variables as s — a and ¢ — b and the parameters asx —y — —x and y — x — y, we can
remove L(b,a; x —y, —y). In these cases, we have L(a, b; x, y) = L(a, b; —x, —y). Hence
we obtain this proposition. O
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REMARK. After completing the present paper, the author noticed that the above Propo-
sition has been also proved by Xia Zhou, Tianxin Cai and D. Bradley [29] independently.

REMARK. By taking a = b in (2.2), we can obtain an explicit evaluation formula for
L(a, a; x, 1). We can also obtain an explicit evaluation formula for L(a, a; y, 2y) by putting
a=>bin(24).

3. sI(3)

Our main result in this section is Theorem 3.1 below. The special case B = y = 1 of
this theorem was first obtained in Tsumura [25, Theorem 4.5] and [13, Theorem 1.2], and
then, the case § = 1 was proved in [14, Theorem 3.2]. Because of (3.2) with the parameter
B, which is proved by (2.2), we can obtain functional relations (4.5), (5.6), (5.9) and (6.3), for
example. This is a novel point of the present paper ; we have only obtained the case 8 = 1,

ta@ (@ b.si 1, 1,y) + (=DPra@ b, s.a; 1y, 1) + (=D (s,a. by, 1, 1)
max{a,b}/2

a+b—-2j—1 a+b—-2j—1

(3.1) -2 ¥ 77+ !

> a—12j b—12j

j=0

XEQ2)NEipa+b+s—jiy),
in [13, Theorem 1.2] and [14, Theorem 3.2], since these are based on (5.8), which is
weaker than (actually deduced from) (2.2) (see Lemma 5.4). We remark that the function
Csi3) (s, t, u; o, B, y) is continued meromorphically (see [14, Theorem 2.1]).
THEOREM 3.1. Foralla,b € Nands € C except for the singular points, we have
3.2)
{Sl(?))(as bv AN 17 ﬁv V) + (_l)bgsl(?))(bs s, a; _ﬁv Vs 1) + (_l)agsl(?))(ss a, bs Vs 11 ﬁ)

~(atb—i—1 . . o
=y ( aj )Ksl(z)(a +b+s—jiB+Y)Ca Ui —B) + (=D Lu)(j: B))
j=1

b

b—j—1 ‘
+Z(a+ ’ )fsz(Z)(aerJrs—j;V)(Ksl(Z)(J';ﬁ)JF(_l)stl(Z)(j;_ﬁ))
j=1 b

a+b-—1 a+b—1
—( 4 )Esl(z)(a+b+s;ﬁ+7/)—( b )§s1(2)(a+b+s;7/)-

REMARK. When 8 — 0 the term corresponding to j = 1 of the first sum on the right-
hand side of (2.2) and the term corresponding to j = 1 of the second sum are cancelled.
Hence we find that (3.2) coincides with (3.1) when 8 — 0.

PROOF. Firstly, we assume a, b > 2, and fi(s) > 1. Change the parameter as —y — f
in (2.2), multiply by Y >7 e27in(y=X)p=5 and integrate from 0 to 1 with respect to x. Then
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we have
1 eZm'lx S eZm’m(x-i—ﬁ) o eZm’n(y—x) et eZnimﬁEZﬂi(l+m)y
0 Ja mb Z ns dx = Z l“mb(l +m)s ’
=1 m=1 n=1 I,m=1
/1 0 eZm'mxe—Zm'lﬁ S eZnin(y—x)d i e—2m’lﬁ€2m’my
x = _—
0 (m + Dalb ns (I +m)albms
I,m=1 n=1 I,m=1
1 e2mil(x+p) 0 e2nin(yfx)d 0 e2mil(B+y)
0 Ja+b—j ns X = Z Jatbts—j ’

which are {y@3)(a, b, s; 1, B,y) and {u@3)(b,s,a; —pB, v, 1) on the left-hand side of (3.2)
and ¢go)(a + b+ s — j; B + y) on the right-hand side of (3.2). We can also obtain
Ci)(s,a,b; v, 1, 8) and &gy (a + b + s — j; ), similarly. Hence we have (3.2) in this
region.

Next we consider the case a = 1, b > 2. We define K (a, b, s; B, v) by the right-hand
side of (3.2). We modify some basic properties in Huard, Williams and Zhang [4, (1.5)]
proved by easy computations, for «, 8, ¥ € Rand s, ¢, u € C except for the singular points,
which are

3.3)
Cuzy G, t—Lu+ 10,8, y)+ium —1Lt,u+ Lo, B, y)=Caa (s, t,u;a,B8,7),
Cay s, t+ 1L u—1i0,8,y) —Cazy(s— Lt +1Lus 0o, B, y)=Caz) (s, t,u; 0, B,¥),
Cap(s+Ltu—1io,By) —Cady(s+ 1Lt — Liuso, B, y)=Ca@) (s, t,u;a, B, y) .
By (3.3) and the result in the case a, b > 2 which we have already shown, we have
K(Q2,b,5,B,7) = ¢u3 2, b5 1, 8, y) + (=Pt (b, 5,2, =B, v, 1)
+ (=D (5, 2,03 7, 1, B)
= Lua(Lb,s+ 1 1, B y) + (=DP¢u@ (b s + 1, 1; =By, )
+ (=Dé¢uxp(s+1, 1,6y, 1,8+ KQ2,b-1,s+1;8,y),
for b > 2. Therefore we have to show
(3.4) K2,b,s;8,v)=K{1,b,s+1;8,y)+ K2,b—1,s+1;8,y), b=>2.

Especially, we must treat four binomial coefficients on the right-hand side of (3.2). We can

see that the first binomial coefficients appear from the formula (2“2’:-]’:_1) = (1+117 :-]’:_1) +
(2+b; i ;’ _1), which is easily deduced by Pascal’s triangle. The other binomial coefficients on

the right-hand side of (3.2) appear similarly. Hence we obtain (3.4). We can prove (3.2) for
the casesa > 2, b = 1 and @ = b = 1 in the same way. O

By (3.2), we obtain the following proposition, which has already been proved by Torn-
heim.
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PROPOSITION 3.2 ([17, Theorem 2]). For3 < N € N, we have

N+1 =
(3.5 Giy (LN =2, 1) = ——t(N) = 5 2; C(HCN — j),
j=

N—j
(3.6 a1, 1, N =2) =243 1,0, N = 1) = (N = DI(N) = > ()N — j).
j=2

PROOF. The following proof is a simplified version of [17, Theorem 2]. By (3.3), we
have
Cs13(J,0,N = ) + a3 — 1L LN — j) =Cuz(J, LN —j = 1).
Summing on j from 2 to N — 2, we have
N-2
Z 813, 0, N = j) + &a3 (1L, LN =2) = a3 (N =2, 1, D).
j=2

From the harmonic product formula, we have

N-2 N-2
23 a0, N =) =Y C(HEWN = j) = (N =3)(N).
j=2 j=2

Takinga =b =8 =y =1ands = N — 21in (3.2), we obtain
Therefore we have the expilcit evaluation formulae for {3 (N—2, 1, 1) and &g3)(1, 1, N=2)

from the above three formulae. We can also obtain evaluation formula for g3 (1,0, N — 1)
by (3.3). ]

Explicit evaluation formulae for ¢y@3)(a,b,c), &uay(a,b,c;1/2,1,1) and
Csizy(a, b, c;1,1,1/2) fora,b,c € N, a + b 4+ ¢ € 2N + 1, have been already proved
in Huard, Williams and Zhang [4, Theorem 2] (see also the proof of [13, (3.2)]), Tsumura
[24, Theorem 2] and [19, Theorem 3.4], respectively. Afterwards, Xia Zhou, Tianxin Cai
and D. Bradley gave evaluation formulae for ¢y 3)(a, b, ¢; 1/2,1, 1), ¢uiy(a, b, c; 1,1/2,1)
and Zy@3)(a, b, c; 1,1,1/2) by using [29, Corollary 1, Proposition 1, and Equation (5)].
We give new and simple proofs and evaluation formulae for ¢y@3)(a,b,c;1/2,1,1),
Csizy(a, b, c; 1,1/2,1) and &y 3)(a, b, ¢; 1, 1, 1/2) in the next proposition.

PROPOSITION 3.3 (see [29]). Fora,b,c e N,a+ b+ c € 2N+ 1, we have
(3'7) 2;_;[(3)(61,17, C; 1/27 11 1) = (_l)aK(Cvas b; 1/27 1) + (_l)bK(bs c,a; 17 1/2) 3

(.8) 2Ly (a.b,ci1,1/2,1) = (—=1)*K(c.a, b; 1,1/2) + (=)’ K (b, ¢, a; 1/2,1/2),
(3.9) 2rg@)(a.b,c;1,1,1/2) = (=1)*K(c,a, b; 1/2,1/2) + (=1)’K (b, c,a; 1/2, 1) .
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PROOF. Putting8=1/2,y =1l,andB =1,y =1/2,and 8 =y = 1/2in (3.2), and
changing variables, we have the following six formulae;

451(3)(b7 Cv a; 11 1/21 1) + (_l)cfsl(3)(ca av bs 1/21 17 1) + (_l)bgsl(?))(as bv C; 11 17 1/2)
=K(b,c,a;1/2,1),
Cae)(c,a, by 1,1/2, 1) + (=D)%u@)(a, b, c; 1/2,1, 1) + (=1)¢gz) (b, c,a; 1,1, 1/2)
=K(c,a,b;1/2,1),
Ly (b, e, a; 1,1,1/2) + (1)) (c, a, b; 1,1/2,1) + (=DP¢yz)(a, b, c; 1/2,1,1)
=K(b,c,a;1,1/2),
Cay(eoa,bs 1,1,1/2) + (=D %ge (@, by e 1,172, 1) + (= Dgge by e, a; 1/2, 1, 1)
=K(c,a,b;1,1/2),
Caay (b, c,a; 172, 1,1) + (=1)°Caz)(c, a, by 1,1, 1/2) + (=1DPeamy(a, b, c; 1,172, 1)
=K(b,c,a;1/2,1/2),
Cuy(e,a, by 172, 1, 1) + (=D)%qu@)a, b, c; 1,1,1/2) + (=) ¢y (b, c,a; 1,1/2, 1)
=K(c,a,b;1/2,1/2).
Multiplying the second formula by (—1)¢ and the third formula by (—1)?, and summing
the resulting formulae, we can remove Zy3y(c, a, b; 1,1/2,1) and g3y (b, c,a;1,1,1/2)
since a + b + ¢ € 2N + 1. Hence we obtain (3.7). Similarly, we can also obtain (3.8)
(resp. (3.9)), by multiplying the fourth (resp. sixth) formula by (—1)¢ and fifth (resp. first)
formula by (—1)” and summing the resulting formulae. Needless to say, we can prove (3.7)

by (3.8) and ¢y 3)(a, b, c; 1/2,1,1) = &3y (b, a, c; 1,1/2,1). But we adopt the above proof
intentionally, since we want to show the symmetry in the proof. a

4. 5l(3) with characters

We define L (s; o) and Lfl’é’)'/’ (s1, 52, 83; &, B, y) by

X 2xina
e @(n)
O (e —
LY(s; ) := Z pr ,
n=1
LW*X*W(S 02,530, Boy) e o0 e2nilae2nimﬂe2ni(l+m)y(p(l)x(m)l/f(l+m)
si3) 51,52, 53 & P, Y ._l ] sims2(l 4+ m)% ’
,m=

where ¢, x and i are primitive Dirichlet characters of conductor g, f and h, respectively.
Next we consider analytic continuation for Lfl’é’)'/’ (s1,82,83;,8,7). Inthe case y = 1

(trivial character) and @ = 8 = y = 1, Wu has continued this function analytically in [28,
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Theorem 1]. We denote the Gauss sum by 7(x) := Zlle X(l)ez’f”/f, and recall the well-

known formula
eZm’ np f

)—((l)e2ﬂinl/f ,
1

41 27'[[7!/3 —
4.1) e x(n) [ &

which holds for non-principal and primitive characters. By this formula, Lfl’();’;// (51, 52,
s3; o, B, y) can be written as
" £ fo
— (DX G2)¥(j3)
(@) T(OT(Y) S o
0 2mil(a+1/g) p2wim(B+ja/ ) g2i (4m) (y+ja/ h)

Bims2(l +m)s3

X

I,m=1
in the region of convergence (see [9, Section 2]). Since the existence of the analytic continu-
ation of the infinite series on the right-hand side has been shown in ([14, Theorem 2.1]), we

also obtain the existence of the analytic continuation for Lfl’();’)w (s1, 82, 53; @, B, y). Firstly,
we will show a functional relation with a Dirichlet character .

LEMMA 4.1. Foralla,b € Nands € C except for the singular points, we have
4.2)

1,1, 1,4,1 1,1
Ly @ b.si1,B.y) + (=D L% b s.a: =By ) + (=D)LY5 s.a. biy. 1. B)

a b—i—1 j
=y <a+a_§ >L‘/’(a+b+s —Ji B+ V)G (i =B + (=D Ea (: B))

j=1

b .
+b—j—1 . | -
+;<a b—j )Lw(a"‘b*‘s—ﬁ7/)(§s1(2)(];,3)—1—(—1)1451(2)(];_,3))

b—1 b—1
—(‘”a )L‘”(a+b+s;/3+y)—<a+b )L*”(a+b+s; )

PROOF. Firstly, we assume a, b > 2, and % (s) > 1. Change the parameter as —y +— f
in (2.2), multiply by Y 7, W (n)e?™ Y =) =5 and integrate from O to 1 with respect to x.
Then we have

dx

/l 00 p2milx X 2wim(x+f) 1//(,,1)62711'7;()/—)()
0

la mb ns
n

=1 m=1 =1

I+ m)eZJTimﬁeZni(l+m)y

_ i v
B 19mb( + m)s ’

[,m=1
which is the first term on the left-hand side of (4.2). We obtain the other terms of (4.2),
similarly. Hence we have (4.2) in this region. In the case a, b < 2, we can prove this lemma
similarly to the proof of Theorem 3.1. a
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In the case of Dirichlet characters with conductor 4, the following lemma seems to coin-
cide with Tsumura [23, Proposition 4.3], while in the general cases, it seems to coincide with
Tsumura [26, Theorem 3.1], though we have not checked rigorously (see also [22, Theorem
4.7)).

LEMMA 4.2. Suppose  is a Dirichlet character, yx is a non-principal and primitive
Dirichlet character of conductor f. Foralla,b € N and s € C except for the singular points,
we have

LtV (a.b.si 1 B.y) + (=D x (=DLEY (b.s,ai =B, y. 1)

+ (=D)L s a by, 1 B)

f a+b—
Z)‘((MZ( . )L"’(a+b+s—j;ﬁ+y+l/f)
=1 j=1

t(x a—j

4.3) x (C1 (s =B =1/ ) + (=D taey (s B+1/1))

a+b—j—1 .
+Z< b )L’p(a—l-b—i-s—];y)

j=1

x (LX(j; B) + (=1 x (=D)L (j; —B))

b—1
—("+a )Lw(a+b+s;/3+y).

PROOF. Change the parameter as 8 — [/f + B in (4.2) and multiply these formulae by
x(1)/t(x) for each /. Summing the resulting formulae on / from 1 to f, and using

f f
eZm’nﬁ Z )—((l)e2ni(fl)n/f — ez’”"ﬂx(—n)r(x) — eZm’nﬁX(_l) Z X (l)eZJTiln/f ,
=1 =1
we obtain this lemma. a

Hereafter we also use simplied symbols
LGEY (s1.52,53) 1= LG (1.s2. 530 1,1, 1), LX(s) 1= LX(s3 1)

Taking parameters —8 = y = m/g in (4.2) and multiplying these formulae by ¢(m)/t ()
for each m, and summing the resulting formulae on m from 1 to g, we obtain the next lemma.

LEMMA 4.3. Suppose  is a Dirichlet character, ¢ is a non-principal and primitive
Dirichlet character of conductor g. Foralla,b € N and s € C except for the singular points,
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we have
.1, 1,v, 0,1
L4570 @ b.s) + (=DPLGE (b5 a) + (=) (DL % (5. a. b)

a—J

a b_ ;o 1 j
=2 (a o )Lw(a +b+s— DELLG) + (=D p(=DLE()))
j=1

(44 - ng‘(k)ibj(”b_j_l)w( Fbts—jim/g)
—_— a —jim
@ == b S

x (L1 (Js —m/g) + (=1) ¢y (js m/ g))

b—1
—<a+b >Lw(a+b+s).

Take parameters —8 = y = m/g in (4.3) and multiply these formulae by ¢(m)/t (@)
for each m. Summing the resulting formulae on m from 1 to g for each m, we obtain the
following theorem.

THEOREM 4.4. Suppose  is a Dirichlet character, x and ¢ are non-principal and
primitive Dirichlet characters of conductor f and g, respectively. Foralla,b € Nand s € C
except for the singular points, we have

LG8 (@ b, 9) + (D x (= DLEL (b, s, @) + (=1 @(=DLYE (5,0, b)
f a .
_ _ atb—j—-1Y 4 s
= Zx(l);< L >L (@+b+s—jil/f)
(.5) X (L9 (s =1/ ) + (=1 (=) L? (j; 1/ )
1< b latb—j—1
_ 7 LY b -
+T(@n;<p(m);< b i ) @+b+s—j;m/g)
X (LX(j; =m/g) + (=) x (=1)LX (j;s m/g)).

Next we will show explicit evaluation formulae for double Lerch values with characters,
similarly to Proposition 2.3. We define Di(a, b, s; 1, 1, ) by the right-hand side of (4.2)
with 8 = y = 1, Da(a, b, s; 1, x, ) by the right-hand side of (4.3) with 8 = y = 1,
Ds(a, b, s; ¢, 1,%) and D4(a, b, s; ¢, x, ¥) by the right-hand side of (4.4) and (4.5), respec-
tively.

PROPOSITION 4.5. If x is non-principal and primitive and x (—1) = (—=1)4*?=1 then
for any admissible index, we have

2L 5350, a,b) = (1 — (=) (@) L* (b) — L* (a + b)
+ (_l)aD2(a1 bvos 11 Xs 1)

(4.6)
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2L 510, b.a) = (14 (—=1)*)¢(@)LX(b) — L (a + b)
— (=1)*Da(a,b,0; 1, x, 1).

4.7)

If ¢ and yx are non-principal and primitive and x(—1)¢(—=1) = (=D)**t?=1 then for any
admissible index, we have

2L;;§"3’)X 0,a,b) = (1 — (=% (=1))LY(a)LX(b) — L¥*(a + b)
+ (=D (=1)D4(a, b, 0; ¢, x, 1).

(4.8)

PROOF. We recall the harmonic product formula
(4.9) Ly (0. a,b) + Ly 5% (0. b, a) + L (@ + b) = LY (a)L* (b).

By putting s = 0 in (4.3), multiplying it by (—1)¢, adding the resulting expression and (4.9),
We can remove L;l’(x3’)1 (0, b, a). Hence we have (4.6). By (4.9) and (4.6), we obtain (4.7). By
putting s = 0 in (4.5), multiplying it by (—1)%@(—1), and summing the resulting expression
and (4.9), we obtain (4.8). a

For [ and m, we let R; ,, be the set of all polynomials in convergent series of the form
> | e*Tinsin=J (where &’s are [th roots of unit and j € N) with Q(e?™/™) coefficients. By
(4.1) and Proposition 4.5, we can immediately obtain the following proposition, which has
already proved by Terhune.

PROPOSITION 4.6 ([16, Theorem 1]). Let x and ¢ be Dirichlet characters of conduc-
tor f and h, respectively. Set m = lem(f, h) and M = lem(f, h, ¢ (f), ¢ (h)), where lcm
means the least common multiple and ¢ is the Euler totient function. For any admissible

index, if x(—1)@(—1) = (=1)a*+°HL then L;;;‘;’)X 0,a,b) € Ry

Next we will show explicit evaluation formulae for the Tornheim double zeta function
with characters similarly to Proposition 3.3.

PROPOSITION 4.7. If ¢, x and W are non-principal and primitive character and
P(=Dx (=D (=1) = (=1)4TP+* then we have

21455 (@, b, ) = (=)’ x(=1)Dy(b. c.a; x. V. ¢)
+ (=D*@(=1)D4(c,a, b; ¥, ¢, x) .

(4.10)

PROOF. By changing parameters and characters in (4.5), we have
LE5Y (b e.a) + (=D Y (=DLYEX (e a.b) + (=1 x (=DLEE (@, b, o)
= D4(b,c,a; x, ¥, 9),
L& (e a.b) + (=D (=DLGE @.b. ) + (=D Y (=DLEE (b c.a)
= D4(c,a,b; ¥, ¢, x) -
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In the case of (=) x (=D (—1) = (=1)4*tb+etl we can remove L;(l’(‘g)’(ﬂ(b, c,a) and

st/l)((gix (c, a, b) by multiplying the former formula by (—=D)?x(=1) and the latter formula
by (—1)%@(—1). Hence we obtain (4.10). O

We can obtain the following proposition, which should be compared with Tsumura [21,
Theorem 3.1], similarly to the above.

PROPOSITION 4.8. If ¥ is non-principal and primitive and ¥ (—1) = (—1)@tb+etl,
then we have
@1 2L @ boo) = (=)PDyb.c.a 1,y 1) + (=D Di(c.a, by 1, 1,9),

@12) 2LY55 @ b, ) = (=P (=D D3 (b, c,a; . 1, 1) + (1) Dife,a, b 1, 1, ).
If x and ¥ are non-principal and primitive and x (—1)y(—1) = (=1)4Tb+e+] then we have

@13) 215" @.b.c) = (~1)’x (=) Da(b. c.a: x. . 1) + (~1)*Da(c.a. b ¥, 1, x) |

L1
2055 @ b.e) = (D)"Y (=D)D3(b. c.a: ¥, 1. x)

(4.14)
+ (=Dx(=1)Da(c,a,b; 1, x,¥).
5. so0(5)
Fors,t,u € C,N(s) > 1, R(t) > 1, R(u) > 1, we define four functions;
o o0
1 1
T, Jtou) = _— T Jtou) = -
E1(s b= ) Qi @l syt B2 0 2. 152m) (I + 2m)"
[,m=1 [,m=1
> 1
T Jtou) = ,
0o(s.1,u) lél Q1 = 1) 2m — 1)/ (2 + 2m — 2)*
> 1
Tap(scto) = Y s =27 Gy (5. ) + 2 Too (5. 1.1
l,m,n=1
2n=I+m

PROPOSITION 5.1. For R(s) > 1, R(t) = 1, and R(u) > 1, we have

(5.1) Tei(s,tou) =27 Ca@ (s, t,u) + 27 a@ (s, tu; 1/2,1, 1),

(5.2) Tea(s, t,u) =27 gy (s, £, u) + 27 ¢ (s, tus 1,1/2, 1),

(5.3) Too(s,t,u) = (271 = 27577 gy (s, t,u) + 27 ¢ua (s, us 1,1, 1/2)
(5.4) Tap(s,t,u) = 2""1egay (s, t,u) + 2" 1o (s, tus 1,1, 1/2).

The functions Tg1(s, t,u), Te2(s, t,u), Too (s, t,u) and Tog (s, t, u) are continued meromor-
phically, and the above formulae hold for all s, t,u € C except for the singularities. More-
over, in the case a,b,c € N,a+b+c € 2N+ 1, Tgi(a, b, c), Tgz(a, b, c), Too(a, b, ¢)
and Tog(a, b, ¢) are polynomials in {¢ (k) |2 < k < a + b + ¢} with rational coefficients.
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PROOF. Assume that 9i(s) > 1, R(¢r) > 1 and R(u) > 1. The first, second and fourth
formulae are obvious. By the definition of &3 (s, t, u; o, B, v) and Too (s, t, u), we imme-
diately obtain

L@ (s, tou) + Sy (s, tou; 1/2, 1, 1) + Sy (s, 1, u5 1, 1/2, 1) 4+ iy (s, t,us 1,1, 1/2)
=227 gy (s )

iy (s, t,u) — (s, tus 1/2,1,1) — Sy (s, t,us 1,172, 1) + Sy (s, t,u; 1,1, 1/2)
=4Too(s, t,u).

By summing the above formulae, we obtain the third formula of this proposition. All the right-
hand side of the above formulae in this proposition are continued meromorphically by analytic
continuation of £ 3)(s, t, u; o, B, ¥) (see [14, Theorem 2.1]). Therefore by these formulae
we can define Tgi(s, t,u), Tea(s,t,u), Too(s,t,u) and Tag(s,t,u) fors,t,u € C except
for singularities. By using the formulae in this proposition and Proposition 3.3, we obtain the
last assertion of this proposition. a

For s, t,u, v € C, we define the Witten zeta function attached to so(5) by

o0

Lso(5) (s, t, u, v) = Z

I,m=1

1
Bmt(l +m)“(d +2m)Y’

in the region of convergence. We recall that Matsumoto defined this function and contin-
ued analytically in [7, Theorem 3]. The following proposition has already been shown by
Tsumura. We can show this proposition in a simpler way, since the evaluation formulae of
Tei(a, b, c), Tea(a, b, c) and Ly 3)(a, b, ¢) fora+b+c € 2N+ 1 are obtained much simpler.

PROPOSITION 5.2 ([20, Theorem]). Suppose thata,b,c,d e Nanda+b+c+d €
2N + 1. Then &so5)(a, b, ¢, d) can be expressed as a rational linear combination of products
of Riemann’s zeta values at positive integers.

PROOF. We quote [20, (10)],

(5.5)
c
. c+d—j—1 . o
;SO(S)(avbscsd):(_l)CZ( _J >(_1)]€S0(5)(a1b+c+d_.]1]10)
j=1
4 /e +d—j—1 :
+ (—1)”; ( Pl )(—1>f;w(s>(a, b+c+d—j,0,)).

Hence we obtain this proposition by Propositions 3.3 and 5.1. a

Next we will prove a functional relation for two complex variables.
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THEOREM 5.3. Fora,b € Nands,t € C except for singular points, we have

{SO(S)(as bv Sv t) + (_l)bé‘so(s) (tv bs S, a) + (_l)agso(S)(as S, bv t)
a .
+b—j—1
=§:C ’ yDEUma+b+s—n
=1~ 4

+ 2a+b+sfj(_1)jTEl(a +b+s—j,j,1)

b a+b—j—1 o
+ b Csizy(a+b+s—j,j. 1)
=1

(5.6)

J

+ (=D ¢umGit,a+b+s—j))

_<a+2—024“a+b+5+0_(a+2—v§w+b+s+”.

PROOF. Put 8 =y = x in(3.2), multiply by >/, e~ 2inx =t and integrate from 0 to
1 with respect to x. For fi(s) > 1 and 9 (¢) > 1, we have

1 eZnilerrrim(bc) 0 672ninx x 1
b Z dx = Z b
0,5~ 19m°(l + m)s n! ~ 1mP(l +m)*(l + 2m)’
,m=1 n=1 I,m=1
/1 S eZm’l(Zx) o e—Zﬂimx et e—Zninxd 0 1
a+b+s—j j t Z a+b+s—jpjint ’
0 =1 ! m=1 m n=1 n I,m,n=1 ! nn
2l=m+n
1 > eZm’l(Zx) 0 eZm'mx 0 672m'nxd 0 1
0 jatbts—] mJ n! [atb+s—imi 2l + m)!
=1 m=1 n=1 l,m,n=1
/1 x eZm'l(Zx) x e—Zninxd 0 1
X = _—
a+b+s t Z a+b+s (Nt ’
05! =t = ! @D

which are {yo5)(a, b, s, 1), Tap(j,t,a+b+s—j), Tei(a+b+s—j,j,t)and 27'¢(a +
b + s + 1) in (5.6). The other terms of (5.6) are obtained similarly. By analytic continuation

for sy 3)(s, t, u; o, B, y) and Lso(5) (S, t, u, v) (see [14, Theorem 2.1] and [7, Theorem 3]), we
have (5.6) except for the singular points. a
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LEMMA 5.4. For any admissible index, we have
(&s12) (5 x) + (=D (c; —x)) (Lo 2 (d; x) + (—1)d531(2) (d; —x))
+ (=D + (DD + d)
o [fct+d=2j—-1 ,
= 2;( 2] )4(2])

X (L) (e +d —2j;x) + (=DTeg0)(c +d — 2j; —x))
d
c+d—-2j—1 .
+2§0< d—2j )4(2])

X (si(c+d —2j;x) + (—1)C+d€sl(2)(c +d—2j;—x)).

(5.7)

PROOF. By the harmonic product formula, we have
(Lsi2)(c5 %) + (=1 L) (¢; =) s (d; x) + (=D ¢ (d; —x))
= Ls12)(c; X)Es12)(d; x) + (=D L(c,d; x,0)+ L(d, ¢; —x,0) + ¢ (c + d))
+ (—D(L(c,d; —x,0) + L(d, c; x,0) + ¢ (c + d))
+ (=DM (e —0) 5 d: —x) -
Using (2.2) and ¢(0) = —1/2, we obtain this lemma. O

REMARK. We denote by Bj(x) the Bernoulli polynomial of order j defined by

te

xt o i
= ZBj(x)ﬁ, It] <27 .
o
By (5.7), we can immediately prove Carlitz’s formula [1, p. 276, 19.(b)], for p+¢g > 2, which
is

max(p,q)/2
p BokBpyg—2k(x)
By(n)Byr) = ) {P(zqk)ﬂ(zk)}ﬁ

(5.8) k=0
s

L2 B
(p+q)!

This formula is the key to the proof of [13, Theorem 1.2], which means that a product of
Bernoulli polynomials is a linear combination of Bernoulli polynomials. We may regard that
this is a special case of a well-known fact, that is, the set of multiple zeta or L-values are
closed with respect to the operations of the harmonic product and the shuffle product.

At the end of this section, we show the following functional relations for one complex
variable.

rtq -
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THEOREM 5.5. Fora,b,c € Nands € C except for singular points, we have
5.9
Lso(s)(a, b, s, ¢) + (= 1)PLso(s)(c, b, s, a)

+ (=D)%0)(@, 5, b, ¢) + (=1 ¢ 05 (c, 5, b, @)

_22“: at+b—d—1 ma"g’)/z ctd=2j—1\  (c+d=2j-1
N = a—d prd c—2j d—2j
x 22~ jyc(a+b+c+s—2))
+22”:(_1)d<a+b—j—1>ma"§”/2{<c+d—2j—1>+<c+d—2j—1)}
= b—d = c—2j d—2j
xCQ2j)ga+b+c+s—2j).
PROOF. Firstly, we assume H(s) > 1. Taking parameters § = y = —x in (3.2),

multiplying by the series (350 | e>"¥n=¢ 4 (—1) Y% | =27 =¢) and integrating from
0 to 1 with respect to x, we obtain

1 ef2nilxe72ni(2m)x o eZm'nx e 1
/ dx = E ,
0 19mb( 4+ m)s n¢ 1amb(l 4+ m)S(l + 2m)°¢
I,m=1 n=1 I,m=1

1 672nim(2x) 0 e2ninx 4 0 672ninx
et I
[ i (X sy + UMY ey )
m=1 n=1 n=1

]

1
= Z - +d—2j
— ma s (zm)c J
which are £so(s)(a, b, s, ¢) and 22 =¢"4¢(2j)¢(a + b + ¢ + s — 2j) in (5.9). Changing the
order of summation and integration is justified as follows. We can change the order by the
absolute convergence in the case of ¢ > 2. We recall the well-known formula

00 .
eZmnx

(5.10)

= —log(2sinmtx) —inBi(x), O<x<1.
n=1
We define f(x) by the right-hand side of (5.10). By (5.10), for a sufficiently large integer N,
there exists an M > 0 such that
ﬁ: eZm’nx

n=1

<|f)|+M, O<x<l.

From this fact and the well-known formula

1
/ log(2sinwx)dx =log2 —log2 =0,
0
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we see that we can use Lebegsue’s bounded convergence theorem. The other terms of (5.9) are
obtained similarly. By (5.7), ¢£(0) = —1/2 and the argument similar to the proof of Theorem
5.3, we obtain this theorem. d

6. sl4)

‘We define the function

. 0 eZnimﬂeZninyleriszeZni(l+m)n
Z@.bs.tupoy.domi= ), 1 mP skt (1 + m)"

I,m,n,k=1
l+m=n+k

LEMMA 6.1. Fora,beN,s,t,u € C,0H(s) > 1,N@7) > 1, R(u) > 1, we have

Z(a,b,s, t,uso,y,8,m) = Lazya+s,b+t,u;y, f+68,1)
+§Sl(4)(a701tvsvbsu; 17 1151 V!ﬁs n)
+ @ (®,0,s,t,a,u; 8,1,y,8,1,1n).

PROOF. In this region, we have

S 0 2rimB X 2rwiny ,2miks ,2mwihn
e e e e
Z(@,b,s,t,uza,y,8,m) ZZ Z lamb Z nSkt h

h=1 [,m=1 n,k=1
l+m=h n+k=h
i 1 eQni(hfl)ﬁeerinye271i(h7n)5€2nihn
N lans h — Db (h — n)'ht
l,n=1 h>max{l,n} ( )7 ( )

We separate the right-hand side of the above formulaas > ,_, +>",_, + > ;. ,. In the case
| = n, we have

>->y%

n=1h>n

eZninyeeri(hfn) (ﬂ+8)e2nihn

nats (h — n)b+thu

=Cluxa+s,b+tu;y,B+68,1).

By puttingn =1+ jand h =1 + j + k, we have
00 27i(jHK)B p2mi 4y p2mikS p2mi (I j+K)n
g CLA UG RK A+ R
=C4(a,0,t,5,b,u;1,1,8,y,8,1).
By putting!/ =n + j and h = n + j + k, we have

0 e2nikﬁ62ninyeZni(j+k)562ni(n+j+k)n

2= (kG B (4

I>n n,j

= ;Sl(4)(b701s1t7asu;ﬁs 17 yv(sv 11 n)'

Therefore by these formulae, we obtain this lemma. O
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In the case B = 1, the next theorem coincides with [15, Theorem 2.1 and Theo-
rem 2.3]. Therefore it also contains [15, Theorem 3.4] which is a functional relation for
Csi(a, b, c,0,0,5).

THEOREM 6.2. Fora,b e N,s,t,u € C,N(s) > 1, R() > 1, R(u) > 1, we have
Caa(@,b.t,s,0,u3 1, 8.8, v, Ln) + (—DPrayb.s.t,a,u,0; =B, y.8, 1,7, 1)
+ (D% a, s, t,b,u,0;1,y,8,8,n,1)
a .
a+b—j—1 )
=Z< a >§sz(3)(fl+b+s—J,t,u;ﬂ-l-%&n)
j=1

X (&1 (G —B) + (=1 a2y (s B))

b la+b—j—1
+;< b >§sz(3)(a+b+s—j,t,u;7/,5,77)

X (L1203 B) + (=1 22y (s —B))

6.1)

a+b—1
—( ; >§sz(3)(a+b+s,t,u;ﬂ+%5, n)

a+b—1
—( b >Qz<3>(a+b+s,t,u;J/,&n),

and
Z(a,b,s,t,u; By, 8, M) + (=), t,u,0,s,a;—6,8,1,1,y,1)

+ (—D%g@(a,u,t,0,5,b;1,1,8,1,y, )

L fa+b—j—1 .
=Z 2 L)t u,a+b+s—jié.nB+y)
j=1

x (1) (G —B) + (=17 a2y (s B))

b a+b—j—1
+;< b >§sz(3)(t,u,a+b+s—j;ﬁ,im/)

(6.2)
X (L1203 B) + (=1 22y (s —B))
a+b—1
—( ; >§sz(3)(t,u,a+b+5;5,77,/34-7/)

a+b—1
—( b >§sz(3)(t,u,a+b+s;3,n, Y).

PROOF. Change the parameter as x — x + y in (3.2), multiply by two functions
3 2Tint A=t and Y20 | &P K—¥ k=" and integrate from 0 to 1 with respect to x.
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We have
fl x eZﬂimﬁeZni(Z+m)(x+y) S eZm’n(x—i—S) 0 eZm’k(n—x)
0

19mb (I + m)’ nt kv dx
I,m=1 n=1 k=1

eZm’m,BEZJTinB€27ri(l+m)y62ﬂi(l+m+n)77

e¢]

ambnt (I + m)S(l + m + n)* ’
I,m,n=1

/1 o 672nilﬂe2nim(x+y) o0 eZm’n(erzS) o eZm’k(nfx)
0

1’ms(l + m)@
I,m=1

dx
t u
n k
k=1

672711'1;‘3eZnimyEZJTinSEZJTi(m+n)n
Pmsnt (1 +m)*(m +n)4
I,m,n=1

1 eZnil(x—i—ﬁ-i—y) S eZnin(x+6) o eZm’k(n—x)
/O Jatbt+s—]

9]

dx
n! k
n=1 k=1

eZnil(ﬂ+y)e2nin5 eZm’(l+n)n

la+b+s—jnt(l + n)*
l,n=1

=1

oo

which are &y@4)(a,b,t,s,0,u;1,8,8,v,1,n), Cuwb,s, t,a,u,0;—8,v,8,1,n,1) and
Ciya+b+s—j,t,u; B4y, 8, n)in (6.1). The other terms of (6.1) are obtained in the same
way. Next change the parameter as x — x + y in (3.2), multiply by >, 2 in@—x)p =t

and
3% e2Tin=X) =4 and integrate from O to 1 with respect to x. We obtain

/1 x e2nimﬂ62ni(l+m)(x+y) 0 eZm’n(Sfx) S eZm’k(nfx)
0

dx
amb(l + m)s n! k*
I,m=1 (+ ) n=1 k=1
i eZnimﬁeZninyeZm'k(SeZm'(l+m)77
B 1ambnsk! (I + m)"
I,m,n,k=1
I+m=n+k
/1 S 672nilﬂe2nim(x+y) o0 eZm’n(Sfx) o eZm’k(nfx)d
X
1’ms(l + m)@ n! k*
0 I,m=1 ( + ) n=1 k=1
00

672711'1/36,2771'(n+k)y62nin862nikn

P+ kS +n+ k)antk
l,k,n=1

1 eZnil(x—i—ﬁ-i—y) S eZnin(S—x) 0 eZm’k(n—x)
/O Jatb+s—]

dx

t u
P n k

n=1 k=1
eZﬂil(n+k)(ﬁ+y)€27rin5 eZm’kn

R P T

o0
=

n
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which are Z(a, b,s,t,u; B,y,8,1), {uw(b,t,u,0,s,a;—B,6,n,1,y,1) and Ly3)(t, u,
a+b+s—j;8n,y)in (6.2). The other terms of (6.2) are obtained similarly. Hence

we obtain (6.1) and (6.2). O

The following functional relation holds for three complex variables. In [3, Proposi-
tion 8.5], Gunnells and Sczech gave explicit formula for &y 4) (2, 2k, 2k, 2k, 2k, 2k). In [5,
Theorem 4.4], Komori, Matsumoto and Tsumura proved this functional relation in the case
a,b,c € 2N and y = § = n = 1. These results should be compared with the next theorem.

THEOREM 6.3. Fora,b,c e N,s,t,u € C,N(s) > 1, R() > 1, R(u) > 1, we have
Caw(a, bty s cous 1L, 1,8,y L)+ (=DPeuw (s, boc,a tusy, 1,1,1,8, 1)
+ (—D%g@(a, s, t,b,u,c;1,y,8, 1,1, 1)
+ (=D w1, e, u,boas v, 8, 1,0, 1, 1)
=2i(a+b—d—1>maxg)/2{<c+d—2]:— 1)+(C+d—2j.—l>}
= a—d s c—2j d—2j

(6.3) X CQ2)taza+b+s—d,t,u+c+d—2j;y,8,1n)
b
a+b—d—-1
23 (=1)¢
+ dX:(:)( )( b4 )

max(c,d)/2 c+d—2j—1 c+d-2j-1
Y )
' c—2j d—2j
Jj=0
x L2z a+b+s—d,t+c+d—2j,u;y,8,n).

PROOF. Change parameters as § +— —x and § — § — x in (6.1), multiply by
Qo e¥imip=e 4 (=1)° Y 52, e 2 p=¢), and integrate from O to 1 with respect to x.

We have

/1 i e—2m'mx62m'n(5—x)€27ri(l+m)yeZm’(l+m+n)n S eZm’hxd
X
0 1mbnt (Il + m)S( + m + n)H h¢
l,m,n=1 h=1
B i e2ninée2ni(l+m)ye2ni(l+m+n)n
B L= 19“mbnt (I + m)s(m +n)( +m +n)*’

dx

/1 x eZm'lerm'myeZnin(&—x)EZﬂi(m+n)n 0 eZm’hx
0 Pmsnt (I + m)4(m + n)* h¢

I,m,n=1 h=1

o eZm’myeZni(h—i—l)BeZni(m-i-l-i—h)n

= 2 s (L + ) (L + m)e(m + 1 + h)y“he
l,m,h=1

’
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which are ywy(a,b,t,s,c,u;1,1,68,y,1,n) and Cyw(s,b,c,a,t,u;y,1,1,1,8,n) in
(6.3). By (5.7) and the manner similar to the proof of Theorem 5.5, we can obtain this theo-

rem.
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