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Abstract. A diffusion process with a random potential consisting of two independent self-similar processes
with different indices for the right and the left hand sides of the origin is considered. The limiting behavior of the
process as time goes to infinity is investigated.

1. Introduction

Denote by W the space of real-valued functions w defined on R and satisfying the fol-

lowing:
(i w0 =0,

(i)  w is right-continuous and has left limits on [0, 00),

(iii))  w is left-continuous and has right limits on (—o0, 0] .
Fora, B > 0, let Py g be the probability measure on W such that {w(—x), x > 0, Py g} and
{w(x),x > 0, Py g} are, respectively, o~ !-self-similar and B~ !-self-similar processes with
time parameter x, and these two processes are independent. For w € W and A > 0, define

2P w e Wby

@B A lw(x)  for x <0,
(Tx’ w) (x) =
A lwOPx)  for x > 0.

Then we have
o, B d
{"'—)L vaol,ﬁ}:{ws Pa,ﬂ}s (11)

where = means the equality in distribution. Let £2 be the space of real-valued continuous
functions defined on [0, c0), and for w € £2 write X (t) = X (¢, w) = w(t), where w(¢) is the
value of w at t. For w € W and xo € R, denote by P;° the probability measure on §2 such
that {X (1), t > 0, P; } is a diffusion process with generator

1 d d
o= 2w 4 [ w4
v dx <€ dx
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starting from xg. Define the probability measure 77;‘?/3 on W x §2 by
P,lpldwdw) = Py g(dw) Py (dw) .

We study the limiting behavior of the diffusion process { X (¢), ¢ > 0, Pg, /3} (ast — oo) which
is regarded as one defined on the probability space (W x £2, 7?3’ ﬁ). We set

(log )™ X (1) if X(t) <0,

Yo 5(1) =
£0) {(logt)ﬂX(t) if X(t) >0,

and show the distributions of Y, g(t) are tight (ast — 00).
When P, g is the Wiener measure (in this case « = B = 2), the corresponding diffusion

process was introduced by Brox([1]) and Schumacher([8]). They showed that (log 240
has a nondegenerate limit distribution as t — oo. Their result was extended to the case Py g =
Py.o, 2 > 0, by Kawazu, Tamura and Tanaka([5], [6]). They proved that the distributions of
(log#)~™X () are tight (as t — 00). On the other hand, in [3] and [4] a diffusion process
with a one-sided Brownian potential starting from the origin was studied. They showed that
12X (¢) has a limit distribution as 1 — oo with probability 1/2 and (logt)’2X(t) has a
limit distribution as ¢ — oo with the remaining probability 1/2.
To state our theorem, we introduce some notation. For w € W, we set

wx) =whk-) Vwx+), wix)=wkx-)Awkx+), xeR,

where w(x—) = limg o w(x — &), w(x+) = limg o w(x 4 &). We define a subset W# of W
and some functions of w € W¥, following [6]. Let W¥ be the set of w € W satisfying

limsup{w(x) — inf w(y)} =limsup{w(x) — inf w(y)} =o0.
X—00 O=<y=<x X——00 x=<y=0

For w € W#, we define

&1 = &1 (w) = sup {x <0:wh(x) — infow(y) > 1},
x<y<

& = &(w) = inf {x >0:w*x) — Oinf w(y) > 1} .
<y<x

By the definition of W*, we notice —oco < 1 < 0and 0 < & < oo. We also set, for
w e W¥,

Vi = Vi(w) = inf{w(x) : & < x <0},

Vo = Va(w) = inf{wy(x) : 0 < x < &},

bi =bi(w) = {x € [£1,0] s wi(x) = Vi},

by =ba(w) = {x € [0, £2] : wi(x) = Va},

b, =minb;, b} =maxb;, i =1,2,
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sup{w*(x) :b; <x <0} if by <O,
My = M(w) = { : } b
0 if by =0,

Mz:Mz(w):{sup{w*(x):05x<b;'} ?f bi—:>0,
if by =0,
(x € [b7. 01 w*(x) = My} if wb}) < w(bj+),
a| = al(w) = _ . — -
{x e (b ,0] : w*(x) = M1} if wb])>wb+),
fx €10,b]: w*(x) = Mo} if w(by) <w(by—),
a =aw) = ¥ . + +
{x €[0,b)) : w*(x) = Ma} if w(by) > w(b; —).

We divide W¥ into three subsets A, B and C as follows (ctf. [7D:

A={weW : Miv(Vi+1) <MV (Vh+ 1)},
B={weW : M V(Vi+1)> MV (Vs+ 1)},
C={weW . Miv(Vi+1) =MV (Va+1)}.

For each 1 > 0, we also divide W* into three subsets AZ”, B®# and CF (cf. [3]):

AYP = w e W Py e A},
B’ = (weW*: P e By,
CP =(wewW:tPuwec.

By (1.1), we have
Pop{AYPY = Py plA), PapiBSP) = Py B}, Pup(CP) = Py p(C).

In the following theorem, Py g{- - - |-} denotes the conditional probability.

THEOREM 1.1. Let Pa,ﬂ{W#} = 1. Then for any ¢ > 0 the following (1)—(iii) hold.

() lim PoplPy(Yap(t) € Us(br(tigu))} > 1 =& | AlZ ) = 1.

) lim Pop(POYap(t) € Ue(ba(tigyw))} > 1 — & | Bl =1,

(i) im Pap{P){Yep() € U (by (rief w) U Up (o (i w))} > 1= | o} = 1.

Here Uy (K) denotes the open e-neighborhood of a set K in R.

EXAMPLE 1. Fora, B € (0,2), let Py g be the probability measure on W such that
{w(=x),x > 0, Py g} and {w(x),x > 0, Py g} are, respectively, symmetric «-stable and
symmetric §-stable Lévy motions with time parameter x, and these two processes are inde-
pendent. Then P, g satisfies our assumptions and Pa,ﬁ{W#} = 1. In this case Py g{C} = 0.



514 YUKI SUZUKI

EXAMPLE 2. Fora, 8 € (0,1), let Py g be the probability measure on W such that
{w(=x),x >0, Py g}and {w(x), x > 0, Py g} are, respectively, a-stable and §-stable subor-
dinators with time parameter x, and these two processes are independent. Then Py g satisfies
our assumptions and Pa,ﬁ{W#} = Py g{C} = 1. Since in this case by (w) = ba(w) = {0} for

any w € W#, Theorem 1.1 (iii) is restated as follows:

. 0 Ol,ﬁ —
lim Py g{Py{|Yap(0)| <&} > 1—e|Cpy}=1.

2. Preliminaries

We begin by introducing the definition of a valley by Kawazu, Tamura and Tanaka ([6]).
Denote by K the space of nonempty compact subsets of R. For a € K, we write ¢~ = mina
andat = maxa.Letw € Wfanda,b,c € K. A triplet V = (a, b, ¢) is called a valley of w
if the following (i)—(vi) hold.

i) —oco<a <at<b <bT<c <ct<oocanda® <c™.
(il)) wa > wp and we > wy,
where

wa = max w*(x), wp = min ws(x), we = max w*(x).
a~<x<a%t b= <x<b* T =x=ct

(iif)
a={xela",a’]:w (x) = wa},

b={xe[b,bT]: wi(x)=wp},

c={xelc,c:wx) = we.
(iv) Ifat < b, then

wp < ws(x) < w*(x) <wy forall x € (a™,b7),

w*(b7) < wa inthecase w(b™ =) > w(b ™ +),

+
)

wp < wyi(a in the case w(a™—) > w(a™+).

If bt < ¢, then
wp < wy(x) < w¥(x) <we forall x e b, ¢7),
w*(b') < we inthecase wbT+) > wbt-),
wp < wx(c™) inthe case w(c™+) > w(c™ —).
v) Ifat=b",thenw(at—) = wagand w(b~+) = wy .

IfbT =c¢~, then w(b™—) = wp and w(c™+) = we .
vi) H(a=,bY)V H(T,b7) < (wa — wp) A (We — wp),
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where
sup  {w(y) —w)} if x <y,

x<x'<y'<y

H(x,y)= sup {w(®) —wkx)} if x>y,

y<y'<x'<x

0 if x=y.

Foravalley V = (a, b, ¢), D(V) = (wa — wp) A (we — wp) is called the depth of V and
A(V) = H(a~,b") v H(ct, b™) the inner directed ascent of V. Two valleys V = (a, b, ¢)
and V' = (a’, b/, ¢’) are said to be connected at 0 ifc =a’ and ¢~ <0 < ¢™.

We can show the following proposition in the same way as in [6].

PROPOSITION 2.1. Let Pa,ﬂ{W#} = 1. Then there exists a subset W* of W* with
Py p {W#} = 1 such that the following (1)—(iii) hold.

G Ifw e W N A, then for some a,¢c € K, V = (a, by, ¢) is a valley of w with
A(V) <1< D(V)andb] <0 <c™.

) Ifw € w# N B, then for some a,c € K, V = (a, by, ¢) is a valley of w with
A(V) <1 <D(V)anda®™ <0 <b;.

(i) Ifw e w# N C, then for some a, ¢ € K, either the following (a) or (b) holds:

(@) V=<(a,b; Uby,c)isavalley of wwith A(V) <1 < D(V),

(b) V=(a,by,a; Uay) and V' = (a; Uay, by, ¢) are valleys of w connected
atOwith A(V) vV A(V) <1 < D(V) ADV).

For w € W and A > 0, we define wj 4, wy,— € W by

w(x) for x <0,

wy +(x) =
ot (1) :w(ka_ﬁx) for x > 0,

wB2x) for x <0,
wy,—(x) =

w(x) for x > 0.

Given w € W, A > 0 and xg9 € R, we denote by Pfng and kaﬁu,_ the probability measures
on §2 such that {X(¢),¢ > 0, PfBJH} and {X (1), > 0, PAXS%_} are diffusion processes with
generators L, , and L;,, _ starting from x, respectively. We can construct such diffusion
processes as follows ([2], see also [4]). Let (5, ﬁ) be a probability space and {B(z),t > 0}

be a one-dimensional Brownian motion starting from 0 defined on ([5 , 13). We set
1 t
L(t,x) =1lim —/ 1ix x+6)(B(s))ds (local time),
el0 € Jo

X
S+ (x) :/ S0y x eR,
0



516 YUKI SUZUKI
! 1
Ay 4 (1) =/ o~V 4 (ST BEN) g
’ 0

- foo e P ST O L xydx, 120,
—00
X(t;0,Awp 1) = Su+ " (B(Ay+ T @), 20, (2.1)

where SA,+_1 and A;_, ~! denote the inverse functions of S, 1 and A, ., respectively. Then
{X(; 0, A\wy 4+), t > 0} defined on (.(5, ﬁ) is a diffusion process with generator ﬂkwu start-
ing from 0. We also set

X (#; x0, Awp +) =x0+ X (0, AM(wyp )0, >0,

where (wy,+)(-) = wy +(- + x0). Then {X (¢; xo, Aw;,_ 4), t > 0} is a diffusion process with
generator £, | starting from xo. We can construct a diffusion process with generator £ Awy,

starting from xp on (.(3, ﬁ) in the similar manner.

LEMMA 2.2. Foranyw € Wand A > 0,

{X(@0),t>0,P°

ATy, ﬂw)x,+

d _
} = (ATYX (W), 1 >0, PV,

d ., - 2 0
(X(@),t>0,P° V= (A PX(0Pr), 0 >0, PO

AP wy;

PROOF. Forw € W, A > 0 and ¢ > 0, we define rf‘w € Wby

(tfw)(x) = A lw(¥x), xeR.

Then we have
o, o,
€ ﬁw)k,Jr =nw, (7, ﬁw)kg, = tfw.

Since it was shown in [6] that

(X(0).1>0, P, } L (X220, 1 >0, PO},

ATy W
we obtain the lemma. O
In preparation for the proof of Theorem 1.1, we present the following theorem.

THEOREM 2.3. Let w € W* and let r be a real-valued function of » > 0 such that
r(A) > lasi — oo.

(i) IfV = (a,b,c)isavalley of w with A(V) < 1 < D(V) and b™ < 0 < c~, then
foranye >0

lim PO, {X(e“(”) c Ug(b)} 1. 2.2)
A—>00 At
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(i) IfV = (a,b, ¢) is a valley of w with A(V) < 1 < D(V)anda™ < 0 < b™, then
foranye >0

lim PY, {X(e“()‘)) c Ug(b)} 1.
A—00 A

(iii) IfV = (a, b, ¢) is a valley of w with A(V) <1 < D(V)and b~ < 0 < b*, then
forany e > 0

. 0 Ar(X) _
Jlim PY,, [x(®) € (—o0,01nUm)} =0, 2.3)
lim PY, {X(e”m) € [0, 00) N U, (b)”} —0. (2.4)
A—>00 A

(iv) IfV=(a,b,¢)and V' = (2, b, ¢') are valleys of w connected at 0 with A(V) v
A(V) <1 < D(V) A D(V), then forany e > 0

tim PP, [X(@®) e (—o0,01nUm)} =0, 2.5)
A—>00 o+

lim P2, {X("™) e [0,00) N U (b)) =0.

A—00 A

In Section 3 we prepare lemmas needed for the proof of Theorem 2.3. In Section 4 we
prove Theorem 2.3 (i). We can prove Theorem 2.3 (ii) in the same way as (i). In Section 5 we
prove Theorem 2.3 (iii), (iv), and in Section 6 we prove Theorem 1.1.

3. Lemmas on hitting times

In this section we present some lemmas on hitting times of the diffusion process
{X@),t >0, Py

kwx,+}' We prove them by employing the method of [1] (see also [4, Lemma
5.1]).

LEMMA 3.1. Letw € Wand p < xo < 0. Assume w(p+) > w*(x) for all x €
(p, x0), and assume q = inf{x > x¢ : w(x) > w(p+)} < co. Then for any e > 0

Jim P, {7(1’) < eMm} =1, G.1)
where
t(p) = t(p,w) =inf{r > 0: X(1) = p},
Ji=w(p+) — p<ir;f<qw(x).
PROOF. Let

T(a; xo, Awj, 4+) = inf{t > 0: X (t; xo, Awr 4+) =a}, aecR,

which is defined on the probability space (£2, P). The assertion (3.1) is equivalent to

lim P |(p; x0, Awy4) < eWI+€>} —1. (3.2)
A—00
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We prove (3.2) just in the case xo = 0. Choose ¢’ > ¢ satisfying inf, ., w(x) >

inf), <x <4 w(x), and set

E; = {t(p; 0, w; 1) < t(A7%"; 0, awy ).

We have
4wy g
~ e
lim P{E,} = lim - Jy Y =1,
A—00 r—>00 ya—p fp e)‘w(y)dy +f0q ekw(y)dy
since
1 0
lim — log X“iﬂ/ MVdy | = w(p+),
A—00 A »
. 7 e
)\hm 5 log e dy= sup w(y) > w(p+).
— 00 0 q<y<q/
Setting

T(a)=inf{t >0: B(t) =a}, a€R,
we get, from (2.1),

T(p: 0, Aw; 1) = A +(T(S5.+(P)))

_ / e LT (S5 4 (). Sht (D)) .
P

On E,, the right-hand side of (3.4) is equal to

)\ﬂfocq/
/ et OV LT (S +(P)), S+ (Wdy = I, .
p

Since
{L(T(S5,+(P)), S5 +(»)), y € R}
LS L (PILT(=1), Si+ )10+ (). y € R},
we have
d ! S+ ()
L= 1S +(p)l f e—WHU‘)L(T(—l), ;>d
» 1S5+ ()l

0 0
:/ ekw(x)dx/ e—)»w(y)L<T(_1), Si(y) )dy
P P [51(p)]

0 / _
+/ I /q g_kw(Z)L(T(—l), 2P aSA(Z)))»ﬂ_adz
p 0

[Sx(p)]

(3.3)

(3.4)
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=1, + m,, 3.5)

where S3(x) = [y ¢**0)dy. Observing that I; < p*¢*!1T(-1) (P-as.) and I <
|plg’e ' T (=)A= (P-as.), we get

1 ~
limsup —logfl, < J;, P-as., 3.6)
A—00 A
1 ~
limsup —loglll;, <J;, P-as. (3.7
A—00 A
By (3.5), (3.6) and (3.7), we obtain for any ¢ > 0
lim P11, < e*“lﬂ)} —1. (3.8)
A—00

Since t(p; 0, Awy +) is equal to [, on Ej, it follows that
Pl{t(p; 0, Awy ) < 1Ty > PUIL < 19 Ejy
> Pl < M1ty — PLE; ). (3.9)

The right-hand side of (3.9) converges to 1 as A — oo by (3.3) and (3.8). Therefore we obtain
(3.2) in the case xg = 0. O

The following lemma can be proved in the same way as above.

LEMMA 3.2. Letw € Wand q > 0. Assume w(g—) > w*(x) forall x € (0, q), and
assume p = sup{x < 0: w(x) > w(g—)} > —oo. Then for any ¢ > 0

. 0 B—a r(ate) | _
Jlim PY,, {r(}\ q) < & } =1,
where
Jr=w(g—)— inf w(x).
p<x<q
LEMMA 3.3. Letw e W, p <xo<0andxy <gq.

(i) Assume w(p) > w*(x) forallx € (p, q) and w(p) > w(xg) (in the case ¢ = xp).
Then forany e > 0and &’ > 0

. X0 o A3—e)|
A1er;opmy+{r(p ) > s }_1, (3.10)
where
J3= sup wkx)— inf wx).
p—e'<x<p <¥<q

(i) Assume w(p+) > w*(x) for all x € (p,q) and w(p+) > w(xg) (in the case
q = x0). Then for any ¢ > 0

m P,° {r(p) > ek(J“’e)} =1,

Ali>oo Ay 4
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where

Js=w(p+)— inf wx).
p<x<q

PROOF. We just prove (i) in the case xo = 0. In this case the assertion (3.10) is equiva-
lent to

Jlim P {r(p — €50, Awps) > eWﬁ—”} =1. G.11)
— 00

By the same argument as in the proof of Lemma 3.1, we have

t(p—&;0, Awy 4)

o0
4 S5, +(P—g/)|/ kw1,+(y)L<T(_1),L(y),>d
|Sx,+(p — &)l
Z/ Aw(x)dx/ —wa,+(y)L<T(_1)7 M)dy
P [S,.(p — &)l

_ / Aw(x)d /O ekw(y)L<T( 1, Sv(y) )dy
p [Si(p — &)l

0 —
+/ AW gy /‘1 EAW(Z)L(T(_l), A2 s (2) ))»ﬁadz
p—¢’ 0 ISi(p — &)l

=1V, + V. (3.12)

Let us estimate IV}, first. We notice that Sy (y)/|Sx(p — €')| in IVj, tends to 0 as A — o0
uniformly on any closed interval contained in (p, 0]. This implies

L<T(—1), &—@)) — L(T(=1),0) >0 (P-as.)
[S5.(p — &)

as A — oo uniformly on any closed interval contained in (p, 0]. Therefore, by the classical
Laplace method, we get

1
lim —log IV, = sup {fwx) —w)}
A—00 A p—e'<x<0, p<y<0
= sup wx)— inf w(y) = Jy, ﬁ—a.s. (3.13)
p—g'<x<p p=<y=<0

As for Vj, we observe that A#~%S; (z)/|S;(p — €’)| tends to 0 as A — oo uniformly on any
closed interval contained in (0, ¢). Therefore, in the same way as above, we get

1 ~
lim —logV, = sup w(x)— inf w()=Jy, P-as. (3.14)
A—00 A O<z<gq

p—e'<x<p
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By (3.13) and (3.14), we obtain

1
lim —log(IVy 4+ V,) = max{Jy, Jyv} = J3 (3.15)
A—00 A
in probability with respect to P. Combining (3.12) and (3.15), we arrive at (3.11). O

The following three lemmas can be shown in the same way as Lemma 3.3.

LEMMA 3.4. LetweWandp <0 <gq.
(i) Assume w(q) > w*(x) forall x € (p,q) and w(q) > 0 (in the case p = 0). Then
foranye > 0and &’ > 0

lim PY, {r(,\ﬂ—“ G+¢)) > e)‘(15_8)} -1,
A—00 At

where

Js= sup w)— inf wkx).
g<x<q+e' p<x<q

(i) Assume w(g—) > w*(x) forall x € (p,q) and w(g—) > 0 (in the case p = 0).
Then for any € > 0

. 0 B—a AMJIg—e) | _
Allﬁrr;o P)ka,+ {t(k q) >e } =1,

where
Jo =w(g—) — inf w(x).
p<x<q
LEMMA 3.5. (i) Letw € Wand p < xg < q < 0. Assume w(g+) > w*(x) for

all x € (p,q) and w(g+) > w(xg) (in the case ¢ = xo). Then for any ¢ > 0 and &' > 0
satisfying g +¢& <0

: X0 / AJr—e) | _
Jdm Pl (et €)= 0 =1,
where
Jr= sup w)— inf wk).
qg<x<q+e p=<x<q

(i) Letw e Wand p < xo < g < 0. Assume w(q) > w*(x) forall x € (p, q). Then
foranye >0

; X0 AJg—e) | —
)Llimoo P)\wM_ {r(q) > e } =1,
where

Js=w(g) — inf w(x).
p<x<q
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LEMMA 3.6. (i) Letw € Wand0 < p < xo < q.Assume w(p—) > w*(x) for
all x € (p,q) and w(p—) > w(xg) (in the case p = xo). Then for any ¢ > 0 and &’ > 0

satisfying p —&' > 0
. Ay B—a / MJo—e) | _
Jlim P, " {r(,\ (p—e))>e =1,
where

Jo= sup w(x)— inf wx).
p—e'<x<p p<x<q

(i) Letw e Wand0 < p < xg9 < q. Assume w(p) > w*(x) forall x € (p, q). Then

foranye >0

B—a
Ali)n;o P)fwk’fo{t()»ﬂ*o‘p) > ek(ho*e)} =1,

where

Jio=w(p) — inf wx).
p<x<q

4. Proof of Theorem 2.3 (i)

We prepare three lemmas for the proof of Theorem 2.3 (i).

LEMMA 4.1. Under the hypotheses of Theorem 2.3 (i), for any sufficiently small ¢ > 0

there exists 6 € (0, 1) such that
. 0 - x|l _
Ah_gr;o Pkwx,+{t(b (&) <e } =1,

where

B :b— if wb™) > wb +),
b~ (¢e) =
b= —¢ ifwbh ) <wbh +).

PROOF. We set
M =sup{w*(x) : b~ < x <0}.
First we show (4.1) in the case M < wp, + 1. We define wg € W¥ by

w(x) for x > b~ (e),
wo(x) = Jwb (e)+) for x = b~ (e),
—x+wbh (e)+)+b(e) for x <b (),

4.1)

4.2)

(4.3)

where ¢ > 0 is chosen to be sufficiently small (cf. [4]). We choose p < b~ (e) satisfying
M < wo(p) < wp + 1. Then wo(p) > (wo)*(x) for all x € (p, 0). Setting ¢ = inf{x > 0 :
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wo(x) > wo(p)}, we have g < ¢~ and therefore inf, -y <4y wo(x) = wy. By virtue of Lemma
3.1, we get, forany &’ > 0

P}

(U’O)k,+

lim [r(m < evit) =1, 4.4)
A—00

where J{ = wo(p) — wp < 1. Since

PO

)L(wo))hy_*_{l’(p) < e)»(JH-S)} < P)?(wo)u{f(b_(s)) < ek(ll-l-s)}

=p?

Awy,

{z(b™(e)) < St}

we obtain (4.1) from (4.4) in this case.

Next we prove (4.1) in the case M > wy + 1. Since H(cT,b™) < 1, we can choose ¢ €
R, k=0,1,...,nforsomen € Nsatisfying0 =co >cy >c2 > -+ >cp_1 >cp =b"(¢)
and the following: for any k € {1, 2, ..., n} there exists px € R such that

we > wi(pr) = (wp)*(x) forall x e (pi, ck—1),
) 4.5)
Hy = wi(pr) — lnfck<x<qk w(x) <1,

qr = inf{x > ¢x—1 : wx) > wr(pr)}.
Here wy; € W¥ is defined by
w(x) for x > ¢,
wr(x) = § w(cp+) for x = ¢y,
—x +w(ck+) + ¢ for x < c.

Forany k € {1,2,...,n} and ¢ > 0, we have, by (4.5) and Lemma 3.1,

lim P! {r(pk) < e)‘(Hk"'Sk)} 1. (4.6)

By

In the same way as obtaining (4.1) from (4.4), we get from (4.6)

; Ck—1 A(Hp+er) | —
All)rréo P/\wH {r(ck) <e } =1.

Therefore, by using the strong Markov property of {X (), = 0, P; N }, we obtain (4.1) in
this case, too. O

LEMMA 4.2. Under the hypotheses of Theorem 2.3 (i), for any ¢ > 0 there exists
6 > 0 such that

lim P)E)w {r(aJr(s)) > ex(1+5)} =1, 4.7)
A—> 00 At

where
at —e if w@t) >w@t+),

at if wiat) <w(at+). (*8)

at(e) = {
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PROOF. First we prove (4.7) in the case M < wyp, + 1, where M is defined in (4.3). In
this case wy > w*(x) forall x € (a™,0), wa > 0 and inf,+ _, .o w(x) = wy. Therefore, by
Lemma 3.3, we get, forany ¢ > Oand ¢’ > 0

. 0 + rJI—=e)| _
Jlim PY, {r(a (&) > e }_ .
where

_ {supd+€<x<a+ wx) —wp if wat) > wat+), 4.9)

w(at+) — wp if wat) <w(@t+).

Since J > wy — wp > 1, we obtain (4.7) in this case.
Next we show (4.7) in the case M > wy, + 1. We use the same notation as in the proof
of Lemma 4.1. We notice that

lim PO, {t(c,,_l) < ew} — 1 forsome 6 € (0,1). (4.10)
A—>00 At

Moreover, we observe that wa > w*(x) for all x € (c¢y, cy,—1). Combining this with the
definition of a valley, we get w, > w*(x) forall x € (@™, c,_1). We also have wa > w(c,_1)
and inf,+ _y .., w(x) = wy. Therefore, by Lemma 3.3, we get, forany ¢ > O and ¢’ > 0

: Cn—1 + A= | _
lim PAwH{z(a &) > e } =1, 4.11)
where J(> 1) is defined in (4.9). By (4.10), (4.11) and the strong Markov property of
{X(@®),t >0, Piwk +}, we obtain (4.7) in this case, too. O

LEMMA 4.3. Under the hypotheses of Theorem 2.3 (i), for any ¢ > 0 there exists
8 > 0 such that

tim PP, fr0f e @) > ) =1, 4.12)
A—>00 At

where

c” if wic™) <w(c —).

_ {c +¢e if wic) > w( —),
c (e) =

PROOF. We set
bt if wt) >wbht+),
P=Nbr —eo if wrt) < wt+).

where g9 > 0 is chosen to be sufficiently small. Then w, > w*(x) forall x € (p,c¢™) and
inf, ;.- w(x) = wp. By virtue of Lemma 3.4, we get, forany ¢ > O and &’ > 0

lim PY, {r(xﬁ*"‘c*(s)) > eW*e/)} -1,
A—>00 At
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where
r_ SUPe <cx <ot wx) —wp if wic™) > wlc™ —),
w(c™—) — wp if wic™) <w(e —).
Since J' > we — wp, > 1, we obtain (4.12). ]

Let us now prove Theorem 2.3 (i) by using the coupling method in [6].

PROOF OF THEOREM 2.3 (i). Consider the interval K, = [aT(g1), M2 (e2)],
where &1 > 0 and &2 > 0 are chosen to be small enough that inf,+ )<y <q+ W(x) > wp
in the case w(a™) > w(a™+) and inf- _, (e, W(x) > wy in the case w(c™) > w(c™ —).
Define m;.y, , , a probability measure on K, by

fE e M+ () gy

AB—ao— _

m)»wkd,{E} =

for any Borel set £ in K. This is the invariant probability measure for the reflecting
L w, . -diffusion process on K. We notice, for any ¢ > 0 satisfying Us(b) N [b™ (¢), 0) C
(a™(e1),0),

Ali)rrgo My, {Ue(b) N [b7(¢), 0)}

.Y
— lim Ju.nip-e .0 €M dx
A—>00 40-%-(51) e W@ gy 4 )B—a /007(82) e— (X gy

=1, (4.13)

since

1
lim —log e MWy = —wy,

r—00 A /Ug(b)ﬂ[b(s),())

1
lim —lo e Mgy < —wy,

r=00 A /(a+(81),0)\(Ue(b)ﬂ[b(8)-,0))

1 ¢ (e2)
lim — log kﬁ_“/ e MOy | < —wy.
r—o00 A 0

Let {X)(\R)(t), t > 0} be the reflecting L., . -diffusion process on K with initial dis-

tribution m,, | defined on the probability space (£, P). This is a stationary process. By
(4.13), we have, for any t > 0

lim P [xPwev.mnp@e.0]=1. (4.14)

We couple the processes {X(¢; 0, Aw; 4+),t > 0} and {XiR)(t),t > 0} as follows: Two
processes move independently until they meet each other for the first time; then they move
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together until they go out from the open interval (a*(e1), A ~%c ™ (g2)); after that they again
move independently. We set

o =inf {t > 0: X(1;0, awy 1) = X X (1)),
T =inf {t > oy : X(t; 0, Awy 1) & (at(e1), VP~ %c ™ (62))} .
By (4.14), we notice
Jlim Ploy <1720, )\wH)} —1. (4.15)
— 00
Therefore, by Lemma 4.1, we have

lim Plo, < e*%} =1 forsome 6 € (0, 1). (4.16)

A—00

Moreover, by Lemmas 4.2 and 4.3, we have

lim ﬁ{TA > eMlMO)} =1 forsome &y > 0. “4.17)

A— 00

Choose any é € (0, (1 —8p) A dp) and any ry and r, satisfying 1 — 6 <r; <rp < 1438.
For any sufficiently small ¢ > 0 and any r € [ry, r2], we observe that

P(X("; 0, \wy 1) € Ug(b)}
> Ploy < e, X ("5 0, awy 1) € Ue(b), €2 < T3}

= Ploy <, X () € Ucb), &2 < Ty}

v

Plon <y + PIXP(e™) e U b)) + P [ < T3} -2
= Ploy < &M} + myu,  (Ue ()} + P{e*” < T} — 2.
Therefore, by (4.13), (4.16) and (4.17), we get

lim  inf ﬁ{X(e“;o,)\wx,Jr)eUg(b)}=1. (4.18)

r—oorelr,r]

Hence we obtain (2.2). O

5. Proof of Theorem 2.3 (iii), (iv)

We first present a lemma for the proof of Theorem 2.3 (iii).

LEMMA 5.1. Under the hypotheses of Theorem 2.3 (iii), for any sufficiently small ¢ >
0 there exists 6 € (0, 1) such that

lim PY, [ty <) =1, G.1)

lim PO, {r(}\ﬁ*"‘w(s)) < ew} —1, (5.2)
A—>00 At
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where b~ (¢) is defined in (4.2) and

bt if wb™) > wbht-),

+ —
bTe) = {zﬁ +e if wbh) <wbmt-).

PROOF. We can prove (5.1) in the same way as (4.1). Thus we just show (5.2). Setting

/

0 if bW =b"=0,
sup{w*(x) : b~ < x < bT} otherwise,

we have M’ < wy, + 1. We define wy € W¥ by

w(x) for x < bt (e),
wo(x) = {wbdt(e)—) forx = b1 (e),

x+wbt(e)=)—bT(e) forx > bt(e),

where ¢ > 0 is chosen to be sufficiently small. We can choose ¢ > b (¢) satisfying M’ <
wo(q) < wp + 1. Setting p = sup{x < 0 : wo(x) > wp(q)}, we have p > a™~ and therefore
inf, <x <4 wo(x) = wy. By virtue of Lemma 3.2, we get, for any e >0

m PO {r(xﬂ—“q) < eWz’+8’>} =1, (5.3)

Ali>oo A(wo)x +

where J; = wo(q) — wp < 1. Since

P)?(wo)x#{f()”ﬁiaq) < eA(J2’+s/)} = P)?(wo)x#{f()tﬁiabJr(@)) < e)h(Jz/Jrg/)}
=P, TGP bt (e)) < VD)
we obtain (5.2) from (5.3). O

PROOF OF THEOREM 2.3 (iii). We use the same notation as in the proof of Theorem

2.3 (). We couple the processes {X(¢; 0, Awy +),t > 0} and {XE\R)(t),t > 0} in the same
way as there. In this case, instead of (4.15), we have

Jim ﬁ{ok < (b (e); 0, awy+) Vv T(WB4bH(e); 0, )\wH)} —1.
—00

Therefore, by Lemma 5.1, we get (4.16) in this case, too. Hence we obtain (2.3) in the same
way as obtaining (2.2). We can prove (2.4) in the same manner. O

Next we prepare lemmas for the proof of Theorem 2.3 (iv). Under the hypotheses of

Theorem 2.3 (iv), we set

{c_ if we™) <wc™+),
X1 =

c”—¢g if wic)=wle +),
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ct if wiet) <w(ct-),
Xy =
T et e if wie) = wict-),

where ¢1 > 0 and &> > 0 are chosen to be small enough that we — infy, <y <x, w(x) < 1. We
note x; < 0 < xj.

LEMMA 5.2. Under the hypotheses of Theorem 2.3 (iv), for any ¢ > 0
lim P, {t(xl, M) < e’\(J”"’s)} =1,
A—00 At

where

T(x1, M%) = inf{t > 0: X (1) ¢ (x1, AP 7%x2)},

Jitl =we— inf wk)(<1).
X1 <Xx<X2

PROOF. We set
Fy = {t(x1: 0, Awy, ) < (W 7%x2: 0, Awy 1)} .

As in the proof of Lemma 3.1, we have, on F),

)Lﬁ_axz
T(x1; 0, Awy 1) = / e Mt OV L(T (S) 4(x1)), Si+(0))dy
X1

=V,

and for any ¢ > 0
lim F{VIA < erl+€>} 1. (5.4)
A—00

On the other hand, we have, on Fj°¢

(W% 0, Aw;, ) = / o e MO L(T (S, + (WP 7%x2)), Sp 4 (0))dy
X
_ .
and for any ¢ > 0
lim F{VII,\ < e)‘(J'H'S)} —1. (5.5)

Setting
T (x1, WP ~%x)) = inf{t > 0: X (1; 0, awy_4) & (x1, AP 7%x2)),
we observe that, for any ¢ > 0
P(T2(x1, AP ~%xp) < Un1F9))

= PV < U0 By 4 PV, < 000 B
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> 1 — P(VI, = 09} — v, > Uty (5.6)
Since the right-hand side of (5.6) convergesto 1 as A — oo by (5.4) and (5.5), we obtain the

lemma. O

LEMMA 5.3. Under the hypotheses of Theorem 2.3 (iv), the following (i)—(iii) hold.
(i) For any sufficiently small ¢ > O there exists 6 € (0, 1) such that

: X1 - A0l
A131301)m,+{r(b () < e }_1,

where b~ (¢) is defined in (4.2).
(i) Forany e > O there exists 6 > 0 such that

: X1 + AM1+8) |
lim P, {t(a &) > e }_ 1,

where a™ (¢) is defined in (4.8).
(iii) For any ¢ > 0 satisfying ¢~ + ¢ < 0 in the case w(c™) < w(c™+) there exists
6 > 0 such that

m P} {r(cf(s)’) > ek(1+5)} =1,

Ii
A Awy, 4
where

o :c_ +e if w(c) <wl(c+),
c (&) =
c” if wic™)=>w( +).

PROOF. We can prove (i) and (ii) in the same way as Lemmas 4.1 and 4.2, respec-
tively. We just show (iii). We observe that w, > w*(x) for all x € (b~ (g9), ™) and
infy- (gp)<x<c— W(x) = wp, where g9 > 0 is chosen to be sufficiently small. By virtue of
Lemma 3.5, we get, for any & > 0 satisfying the assumption of (iii) and &’ > 0

P

lim
A—>oo AWt

{r(c_(s)') > e)‘(ﬂ_s/)} =1,

where J” = we — wyp, > 1. Therefore we obtain (iii). ]
Let us now prove Theorem 2.3 (iv) by employing the method of [6].

PROOF OF THEOREM 2.3 (iv). We just prove (2.5). By Lemma 5.2,
- ) B—a Aol _
lim P{Tk (1, M %xy) < e } — 1 forsome 6o € (0, 1). (5.7)
A—00

Using Lemma 5.3, we can show that there exists §o > 0 such that for any r; and r; satisfying
1-6<ri<rmn<l+dpandanye > 0

lim  sup ﬁ{X(e’\r;xl,kwk,Jr)e(—oo,O]ﬂUg(b)C}zO (5.8)

A=>00 re[ry,r]
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in the same way as proving (4.18). Moreover, by using Lemma 3.6, we can show that for any
g0 > 0 satisfying a’T — g9 > 0 in the case w(a’") < w(a’t—) there exists §; > 0 such that

gim Pl f a0 2P, dw ) > ek<1+51>} —1, (5.9)
—00
where
(e0) at —gy if wat) <w@t-),
at(eo) =
a't if w@™t)>w@t-).

Choose any § € (0, (1—6p) ASpAS1) and any r1 and r; satisfying 1 —6 < r; < ry < 146.
For any r € [r1, r2] and € > 0, we get, by the strong Markov property of { X (¢; -, Aw;_4), t >
0},

P{X ("0, hw;, 1) € (—00, 0] N U (b)‘}
00

e
5/ P(TY (x1, M™% x0) = t(x1; 0, hwy +) € du)
0

x P{X (" —u; x1, Awy4) € (—00, 0] N Us(b)°}
eM?O
+ / P{T{(x1, AP %x2) = T(WP%x2; 0, Aw;. 4) € du}
0
x P{X (" —u; M %xp, Awy_4) € (—00, 0] N Uy (b)°}
+ P{TY (x1, P %x) = M0} (5.10)
As for the second term in the right-hand side of (5.10), we observe that
P{X (" —u; M %xy, Awy 4) € (—00, 0] N Ug (b)°}
< P{r(P7aF (e0); AP xp, dwy 4) < POV}
because of a’*(gg) > 0 and r < 1 + 8. Therefore, for sufficiently large A, we get

sup P{X(e"; 0, w;_4) € (—00, 0] N Us(b)}

relry,rn]

< f;{T)?(xl,)»ﬁfo‘xz) =1t(x1;0, 2wy ) < My

x sup  P{X(';x1, Awy 1) € (=00, 0] N Us (b))
r'e[1-8,14+6]

+ P{T2(x1, AP 7%x0) = 1P 7%x2: 0, Awy_y) < &%)
x PLtOP~%a" T (0); M xp, Awy 4) < H1HD)
+ P{T(x1, AP ~9xy) = 20} (5.11)

By (5.7), (5.8) and (5.9), the right-hand side of (5.11) converges to 0 as A — oo. Hence we
obtain (2.5). O
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6. Proof of Theorem 1.1

Let us now prove Theorem 1.1.

PROOF OF THEOREM 1.1. First we prove (i). By Lemma 2.2, we have
Pap{POAX (") € Ue(by (r P w))} > 1 — e, AYP)

= a,,B{PO

AP w4

XMy e Usbi(zPw))} > 1 — 6, AVFY, 6.1)

where r(1) = 1 — 2ar~!log 1. By (1.1), the right-hand side of (6.1) is equal to
Pap{Pl,, (X" ™) € Usb)} > 1—e A},

which converges to Py g{A} as A — oo by Proposition 2.1 (i) and Theorem 2.3 (i). Therefore
we obtain (i). We can prove (ii) in the same manner by using Proposition 2.1 (ii) and Theorem
2.3 (ii).

Next we show (iii). In the same way as above, we observe that

Pa p{PO{Yap(e") € Ue(b1 (1P w)) U Us (o (5 P w))) > 1 — ¢, CF)
= Pap{PO{ X (e") € (—00, 01N Us (by (z" w))°)
+ PO X () € 10, 00) N U: by (P w))¢} < &, C2P)
= Pog(P},, X (™) € (—00,0]N Ue(b1)}

+ waky_{X(e)‘rz()‘)) € [0, 00) N Us(b2)} < €, C}, (6.2)

where r1(A) = 1 — 2ar""logi, m(A) = 1 — 281" 'logA. The right-hand side of (6.2)
converges to Py g{C} as A — oo by Proposition 2.1 (iii) and Theorem 2.3 (iii), (iv). Hence
we obtain (iii). O
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