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A Diffusion Process with a Random Potential Consisting of
Two Self-Similar Processes with Different Indices
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Abstract. A diffusion process with a random potential consisting of two independent self-similar processes
with different indices for the right and the left hand sides of the origin is considered. The limiting behavior of the
process as time goes to infinity is investigated.

1. Introduction

Denote by W the space of real-valued functions w defined on R and satisfying the fol-
lowing:

(i) w(0) = 0 ,
(ii) w is right-continuous and has left limits on [0,∞) ,

(iii) w is left-continuous and has right limits on (−∞, 0] .

For α, β > 0 , let Pα,β be the probability measure on W such that {w(−x), x ≥ 0, Pα,β} and

{w(x), x ≥ 0, Pα,β} are, respectively, α−1-self-similar and β−1-self-similar processes with
time parameter x, and these two processes are independent. For w ∈ W and λ > 0, define

τ
α,β
λ w ∈ W by

(
τ

α,β
λ w

)
(x) =

{
λ−1w(λαx) for x ≤ 0 ,

λ−1w(λβx) for x > 0 .

Then we have

{τα,β
λ w , Pα,β } d= {w,Pα,β } , (1.1)

where
d= means the equality in distribution. Let Ω be the space of real-valued continuous

functions defined on [0,∞), and for ω ∈ Ω write X(t) = X(t, ω) = ω(t), where ω(t) is the
value of ω at t . For w ∈ W and x0 ∈ R, denote by P

x0
w the probability measure on Ω such

that {X(t), t ≥ 0, P
x0
w } is a diffusion process with generator

Lw = 1

2
ew(x) d

dx

(
e−w(x) d

dx

)
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starting from x0. Define the probability measure Px0
α,β on W × Ω by

Px0
α,β(dwdω) = Pα,β(dw)Px0

w (dω) .

We study the limiting behavior of the diffusion process {X(t), t ≥ 0,P0
α,β} (as t → ∞) which

is regarded as one defined on the probability space (W × Ω,P0
α,β). We set

Yα,β(t) =
{

(log t)−αX(t) if X(t) ≤ 0 ,

(log t)−βX(t) if X(t) > 0 ,

and show the distributions of Yα,β(t) are tight (as t → ∞).
When Pα,β is the Wiener measure (in this case α = β = 2), the corresponding diffusion

process was introduced by Brox([1]) and Schumacher([8]). They showed that (log t)−2X(t)

has a nondegenerate limit distribution as t → ∞. Their result was extended to the case Pα,β =
Pα,α, α > 0, by Kawazu, Tamura and Tanaka([5], [6]). They proved that the distributions of
(log t)−αX(t) are tight (as t → ∞). On the other hand, in [3] and [4] a diffusion process
with a one-sided Brownian potential starting from the origin was studied. They showed that
t−1/2X(t) has a limit distribution as t → ∞ with probability 1/2 and (log t)−2X(t) has a
limit distribution as t → ∞ with the remaining probability 1/2.

To state our theorem, we introduce some notation. For w ∈ W, we set

w∗(x) = w(x−) ∨ w(x+) , w∗(x) = w(x−) ∧ w(x+) , x ∈ R ,

where w(x−) = limε↓0 w(x − ε),w(x+) = limε↓0 w(x + ε). We define a subset W# of W

and some functions of w ∈ W#, following [6]. Let W# be the set of w ∈ W satisfying

lim sup
x→∞

{w(x) − inf
0≤y≤x

w(y)} = lim sup
x→−∞

{w(x) − inf
x≤y≤0

w(y)} = ∞ .

For w ∈ W#, we define

ζ1 = ζ1(w) = sup

{
x < 0 : w∗(x) − inf

x<y≤0
w(y) ≥ 1

}
,

ζ2 = ζ2(w) = inf

{
x > 0 : w∗(x) − inf

0≤y<x
w(y) ≥ 1

}
.

By the definition of W#, we notice −∞ < ζ1 < 0 and 0 < ζ2 < ∞ . We also set , for
w ∈ W#,

V1 = V1(w) = inf {w∗(x) : ζ1 ≤ x ≤ 0} ,

V2 = V2(w) = inf {w∗(x) : 0 ≤ x ≤ ζ2} ,

b1 = b1(w) = {x ∈ [ζ1, 0] : w∗(x) = V1} ,

b2 = b2(w) = {x ∈ [0, ζ2] : w∗(x) = V2} ,

b−
i = min bi , b+

i = max bi , i = 1, 2 ,
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M1 = M1(w) =
{

sup
{
w∗(x) : b−

1 < x ≤ 0
}

if b−
1 < 0 ,

0 if b−
1 = 0 ,

M2 = M2(w) =
{

sup
{
w∗(x) : 0 ≤ x < b+

2

}
if b+

2 > 0 ,

0 if b+
2 = 0 ,

a1 = a1(w) =
{{x ∈ [b−

1 , 0] : w∗(x) = M1} if w(b−
1 ) ≤ w(b−

1 +) ,

{x ∈ (b−
1 , 0] : w∗(x) = M1} if w(b−

1 ) > w(b−
1 +) ,

a2 = a2(w) =
{

{x ∈ [0, b+
2 ] : w∗(x) = M2} if w(b+

2 ) ≤ w(b+
2 −) ,

{x ∈ [0, b+
2 ) : w∗(x) = M2} if w(b+

2 ) > w(b+
2 −) .

We divide W# into three subsets A, B and C as follows (cf. [7]):

A = {w ∈ W# : M1 ∨ (V1 + 1) < M2 ∨ (V2 + 1)} ,

B = {w ∈ W# : M1 ∨ (V1 + 1) > M2 ∨ (V2 + 1)} ,

C = {w ∈ W# : M1 ∨ (V1 + 1) = M2 ∨ (V2 + 1)} .

For each λ > 0, we also divide W# into three subsets Aα,β
λ , Bα,β

λ and Cα,β
λ (cf. [3]):

Aα,β
λ = {w ∈ W# : τ

α,β
λ w ∈ A} ,

Bα,β
λ = {w ∈ W# : τ

α,β
λ w ∈ B} ,

Cα,β
λ = {w ∈ W# : τ

α,β
λ w ∈ C} .

By (1.1), we have

Pα,β{Aα,β
λ } = Pα,β{A} , Pα,β {Bα,β

λ } = Pα,β{B} , Pα,β{Cα,β
λ } = Pα,β{C} .

In the following theorem, Pα,β {· · · |·} denotes the conditional probability.

THEOREM 1.1. Let Pα,β {W#} = 1. Then for any ε > 0 the following (i)–(iii) hold.

(i) lim
t→∞ Pα,β{P 0

w{Yα,β(t) ∈ Uε(b1(τ
α,β

log tw))} > 1 − ε | Aα,β

log t } = 1.

(ii) lim
t→∞ Pα,β {P 0

w{Yα,β(t) ∈ Uε(b2(τ
α,β
log tw))} > 1 − ε | Bα,β

log t } = 1.

(iii) lim
t→∞ Pα,β {P 0

w{Yα,β(t) ∈ Uε(b1(τ
α,β

log tw)) ∪ Uε(b2(τ
α,β

log tw))} > 1 − ε | Cα,β

log t } = 1.

Here Uε(K) denotes the open ε-neighborhood of a set K in R.

EXAMPLE 1. For α, β ∈ (0, 2), let Pα,β be the probability measure on W such that
{w(−x), x ≥ 0, Pα,β} and {w(x), x ≥ 0, Pα,β} are, respectively, symmetric α-stable and
symmetric β-stable Lévy motions with time parameter x, and these two processes are inde-
pendent. Then Pα,β satisfies our assumptions and Pα,β{W#} = 1. In this case Pα,β{C} = 0.
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EXAMPLE 2. For α, β ∈ (0, 1), let Pα,β be the probability measure on W such that
{w(−x), x ≥ 0, Pα,β} and {w(x), x ≥ 0, Pα,β} are, respectively, α-stable and β-stable subor-
dinators with time parameter x, and these two processes are independent. Then Pα,β satisfies

our assumptions and Pα,β{W#} = Pα,β{C} = 1. Since in this case b1(w) = b2(w) = {0} for

any w ∈ W#, Theorem 1.1 (iii) is restated as follows:

lim
t→∞ Pα,β {P 0

w{|Yα,β(t)| < ε} > 1 − ε | Cα,β
log t } = 1 .

2. Preliminaries

We begin by introducing the definition of a valley by Kawazu, Tamura and Tanaka ([6]).
Denote by K the space of nonempty compact subsets of R. For a ∈ K, we write a− = min a
and a+ = max a. Let w ∈ W# and a, b, c ∈ K. A triplet V = (a, b, c) is called a valley of w

if the following (i)–(vi) hold.
(i) −∞ < a− ≤ a+ ≤ b− ≤ b+ ≤ c− ≤ c+ < ∞ and a+ < c−.

(ii) wa > wb and wc > wb,

where

wa = max
a−≤x≤a+ w∗(x), wb = min

b−≤x≤b+ w∗(x), wc = max
c−≤x≤c+ w∗(x) .

(iii)

a = {x ∈ [a−, a+] : w∗(x) = wa} ,

b = {x ∈ [b−, b+] : w∗(x) = wb} ,

c = {x ∈ [c−, c+] : w∗(x) = wc} .

(iv) If a+ < b−, then

wb < w∗(x) ≤ w∗(x) < wa for all x ∈ (a+, b−) ,

w∗(b−) < wa in the case w(b−−) > w(b−+) ,

wb < w∗(a+) in the case w(a+−) > w(a++) .

If b+ < c−, then

wb < w∗(x) ≤ w∗(x) < wc for all x ∈ (b+, c−) ,

w∗(b+) < wc in the case w(b++) > w(b+−) ,

wb < w∗(c−) in the case w(c−+) > w(c−−) .

(v) If a+ = b− , then w(a+−) = wa and w(b−+) = wb .

If b+ = c−, then w(b+−) = wb and w(c−+) = wc .

(vi) H(a−, b+) ∨ H(c+, b−) < (wa − wb) ∧ (wc − wb),
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where

H(x, y) =


sup

x<x ′≤y ′<y

{w(y ′) − w(x ′)} if x < y ,

sup
y<y ′≤x ′<x

{w(y ′) − w(x ′)} if x > y ,

0 if x = y .

For a valley V = (a, b, c), D(V) = (wa − wb) ∧ (wc − wb) is called the depth of V and
A(V) = H(a−, b+) ∨ H(c+, b−) the inner directed ascent of V. Two valleys V = (a, b, c)
and V′ = (a′, b′, c′) are said to be connected at 0 if c = a′ and c− ≤ 0 ≤ c+.

We can show the following proposition in the same way as in [6].

PROPOSITION 2.1. Let Pα,β {W#} = 1. Then there exists a subset W̃# of W# with

Pα,β{W̃#} = 1 such that the following (i)–(iii) hold.

(i) If w ∈ W̃# ∩ A, then for some a, c ∈ K, V = (a, b1, c) is a valley of w with
A(V) < 1 < D(V) and b+

1 < 0 < c−.

(ii) If w ∈ W̃# ∩ B, then for some a, c ∈ K, V = (a, b2, c) is a valley of w with
A(V) < 1 < D(V) and a+ < 0 < b−

2 .

(iii) If w ∈ W̃# ∩ C, then for some a, c ∈ K, either the following (a) or (b) holds:
(a) V = (a, b1 ∪ b2, c) is a valley of w with A(V) < 1 < D(V),

(b) V = (a, b1, a1 ∪ a2) and V′ = (a1 ∪ a2, b2, c) are valleys of w connected
at 0 with A(V) ∨ A(V′) < 1 < D(V) ∧ D(V′).

For w ∈ W and λ > 0, we define wλ,+, wλ,− ∈ W by

wλ,+(x) =
{

w(x) for x ≤ 0 ,

w(λα−βx) for x > 0 ,

wλ,−(x) =
{

w(λβ−αx) for x ≤ 0 ,

w(x) for x > 0 .

Given w ∈ W, λ > 0 and x0 ∈ R, we denote by P
x0
λwλ,+ and P

x0
λwλ,− the probability measures

on Ω such that {X(t), t ≥ 0, P
x0
λwλ,+} and {X(t), t ≥ 0, P

x0
λwλ,−} are diffusion processes with

generators Lλwλ,+ and Lλwλ,− starting from x0, respectively. We can construct such diffusion

processes as follows ([2], see also [4]). Let (Ω̃, P̃ ) be a probability space and {B(t), t ≥ 0}
be a one-dimensional Brownian motion starting from 0 defined on (Ω̃, P̃ ). We set

L(t, x) = lim
ε↓0

1

ε

∫ t

0
1[x,x+ε)(B(s))ds (local time) ,

Sλ,+(x) =
∫ x

0
eλwλ,+(y)dy , x ∈ R ,
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Aλ,+(t) =
∫ t

0
e−2λwλ,+(Sλ,+−1(B(s)))ds

=
∫ ∞

−∞
e−2λwλ,+(Sλ,+−1(x))L(t, x)dx , t ≥ 0 ,

X(t; 0, λwλ,+) = Sλ,+−1(B(Aλ,+−1(t))) , t ≥ 0 , (2.1)

where Sλ,+−1 and Aλ,+−1 denote the inverse functions of Sλ,+ and Aλ,+, respectively. Then

{X(t; 0, λwλ,+), t ≥ 0} defined on (Ω̃, P̃ ) is a diffusion process with generator Lλwλ,+ start-
ing from 0. We also set

X(t; x0, λwλ,+) = x0 + X(t; 0, λ(wλ,+)x0) , t ≥ 0 ,

where (wλ,+)x0(·) = wλ,+(· + x0). Then {X(t; x0, λwλ,+), t ≥ 0} is a diffusion process with
generatorLλwλ,+ starting from x0. We can construct a diffusion process with generator Lλwλ,−
starting from x0 on (Ω̃, P̃ ) in the similar manner.

LEMMA 2.2. For any w ∈ W and λ > 0 ,

{X(t), t ≥ 0, P 0
λ(τ

α,β
λ w)λ,+

} d= {λ−αX(λ2αt), t ≥ 0, P 0
w} ,

{X(t), t ≥ 0, P 0
λ(τ

α,β
λ w)λ,−

} d= {λ−βX(λ2βt), t ≥ 0, P 0
w} .

PROOF. For w ∈ W, λ > 0 and α > 0, we define τα
λ w ∈ W by

(τα
λ w)(x) = λ−1w(λαx) , x ∈ R .

Then we have

(τ
α,β
λ w)λ,+ = τα

λ w , (τ
α,β
λ w)λ,− = τ

β
λ w .

Since it was shown in [6] that

{X(t), t ≥ 0, P 0
λτα

λ w} d= {λ−αX(λ2αt), t ≥ 0, P 0
w} ,

we obtain the lemma. �

In preparation for the proof of Theorem 1.1, we present the following theorem.

THEOREM 2.3. Let w ∈ W# and let r be a real-valued function of λ > 0 such that
r(λ) → 1 as λ → ∞.

(i) If V = (a, b, c) is a valley of w with A(V) < 1 < D(V) and b+ < 0 < c−, then
for any ε > 0

lim
λ→∞ P 0

λwλ,+

{
X(eλr(λ)) ∈ Uε(b)

}
= 1 . (2.2)
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(ii) If V = (a, b, c) is a valley of w with A(V) < 1 < D(V) and a+ < 0 < b−, then
for any ε > 0

lim
λ→∞ P 0

λwλ,−

{
X(eλr(λ)) ∈ Uε(b)

}
= 1 .

(iii) If V = (a, b, c) is a valley of w with A(V) < 1 < D(V) and b− ≤ 0 ≤ b+, then
for any ε > 0

lim
λ→∞ P 0

λwλ,+

{
X(eλr(λ)) ∈ (−∞, 0] ∩ Uε(b)c

}
= 0 , (2.3)

lim
λ→∞ P 0

λwλ,−

{
X(eλr(λ)) ∈ [0,∞) ∩ Uε(b)c

}
= 0 . (2.4)

(iv) If V = (a, b, c) and V′ = (a′, b′, c′) are valleys of w connected at 0 with A(V) ∨
A(V′) < 1 < D(V) ∧ D(V′), then for any ε > 0

lim
λ→∞ P 0

λwλ,+

{
X(eλr(λ)) ∈ (−∞, 0] ∩ Uε(b)c

}
= 0 , (2.5)

lim
λ→∞ P 0

λwλ,−{X(eλr(λ)) ∈ [0,∞) ∩ Uε(b′)c} = 0 .

In Section 3 we prepare lemmas needed for the proof of Theorem 2.3. In Section 4 we
prove Theorem 2.3 (i). We can prove Theorem 2.3 (ii) in the same way as (i). In Section 5 we
prove Theorem 2.3 (iii), (iv), and in Section 6 we prove Theorem 1.1.

3. Lemmas on hitting times

In this section we present some lemmas on hitting times of the diffusion process
{X(t), t ≥ 0, P

x0
λwλ,+}. We prove them by employing the method of [1] (see also [4, Lemma

5.1]).

LEMMA 3.1. Let w ∈ W and p < x0 ≤ 0. Assume w(p+) ≥ w∗(x) for all x ∈
(p, x0), and assume q ≡ inf{x > x0 : w(x) > w(p+)} < ∞. Then for any ε > 0

lim
λ→∞ P

x0
λwλ,+

{
τ (p) < eλ(J1+ε)

}
= 1 , (3.1)

where

τ (p) = τ (p, ω) = inf{t > 0 : X(t) = p} ,

J1 = w(p+) − inf
p<x<q

w(x) .

PROOF. Let

τ (a; x0, λwλ,+) = inf{t > 0 : X(t; x0, λwλ,+) = a} , a ∈ R ,

which is defined on the probability space (Ω̃, P̃ ). The assertion (3.1) is equivalent to

lim
λ→∞ P̃

{
τ (p; x0, λwλ,+) < eλ(J1+ε)

}
= 1 . (3.2)
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We prove (3.2) just in the case x0 = 0. Choose q ′ > q satisfying infq<x<q ′ w(x) >

infp<x<q w(x), and set

Eλ = {τ (p; 0, λwλ,+) < τ(λβ−αq ′; 0, λwλ,+)}.
We have

lim
λ→∞ P̃ {Eλ} = lim

λ→∞

∫ q ′
0 eλw(y)dy

λα−β
∫ 0
p eλw(y)dy + ∫ q ′

0 eλw(y)dy
= 1 , (3.3)

since

lim
λ→∞

1

λ
log

(
λα−β

∫ 0

p

eλw(y)dy

)
= w(p+) ,

lim
λ→∞

1

λ
log

∫ q ′

0
eλw(y)dy = sup

q<y<q ′
w(y) > w(p+) .

Setting

T (a) = inf{t > 0 : B(t) = a} , a ∈ R ,

we get, from (2.1),

τ (p; 0, λwλ,+) = Aλ,+(T (Sλ,+(p)))

=
∫ ∞

p

e−λwλ,+(y)L(T (Sλ,+(p)), Sλ,+(y))dy . (3.4)

On Eλ, the right-hand side of (3.4) is equal to∫ λβ−αq ′

p

e−λwλ,+(y)L(T (Sλ,+(p)), Sλ,+(y))dy ≡ Iλ .

Since

{L(T (Sλ,+(p)), Sλ,+(y)), y ∈ R}
d= {|Sλ,+(p)|L(T (−1), Sλ,+(y)/|Sλ,+(p)|), y ∈ R} ,

we have

Iλ
d= |Sλ,+(p)|

∫ λβ−αq ′

p

e−λwλ,+(y)L

(
T (−1),

Sλ,+(y)

|Sλ,+(p)|
)

dy

=
∫ 0

p

eλw(x)dx

∫ 0

p

e−λw(y)L

(
T (−1),

Sλ(y)

|Sλ(p)|
)

dy

+
∫ 0

p

eλw(x)dx

∫ q ′

0
e−λw(z)L

(
T (−1),

λβ−αSλ(z)

|Sλ(p)|
)

λβ−αdz
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≡ IIλ + IIIλ , (3.5)

where Sλ(x) = ∫ x

0 eλw(y)dy. Observing that IIλ ≤ p2eλJ1T (−1) (P̃ -a.s.) and IIIλ ≤
|p|q ′eλJ1T (−1)λβ−α (P̃ -a.s.), we get

lim sup
λ→∞

1

λ
log IIλ ≤ J1 , P̃ -a.s. , (3.6)

lim sup
λ→∞

1

λ
log IIIλ ≤ J1 , P̃ -a.s. (3.7)

By (3.5), (3.6) and (3.7), we obtain for any ε > 0

lim
λ→∞ P̃

{
Iλ < eλ(J1+ε)

}
= 1 . (3.8)

Since τ (p; 0, λwλ,+) is equal to Iλ on Eλ, it follows that

P̃ {τ (p; 0, λwλ,+) < eλ(J1+ε)} ≥ P̃ {Iλ < eλ(J1+ε), Eλ}
≥ P̃ {Iλ < eλ(J1+ε)} − P̃ {Eλ

c} . (3.9)

The right-hand side of (3.9) converges to 1 as λ → ∞ by (3.3) and (3.8). Therefore we obtain
(3.2) in the case x0 = 0. �

The following lemma can be proved in the same way as above.

LEMMA 3.2. Let w ∈ W and q > 0. Assume w(q−) ≥ w∗(x) for all x ∈ (0, q), and
assume p ≡ sup{x < 0 : w(x) > w(q−)} > −∞. Then for any ε > 0

lim
λ→∞ P 0

λwλ,+

{
τ (λβ−αq) < eλ(J2+ε)

}
= 1 ,

where

J2 = w(q−) − inf
p<x<q

w(x) .

LEMMA 3.3. Let w ∈ W, p < x0 ≤ 0 and x0 ≤ q.

(i) Assume w(p) > w∗(x) for all x ∈ (p, q) and w(p) > w(x0) (in the case q = x0).

Then for any ε > 0 and ε′ > 0

lim
λ→∞ P

x0
λwλ,+

{
τ (p − ε′) > eλ(J3−ε)

}
= 1 , (3.10)

where

J3 = sup
p−ε′<x<p

w(x) − inf
p<x<q

w(x) .

(ii) Assume w(p+) > w∗(x) for all x ∈ (p, q) and w(p+) > w(x0) (in the case
q = x0). Then for any ε > 0

lim
λ→∞ P

x0
λwλ,+

{
τ (p) > eλ(J4−ε)

}
= 1 ,
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where

J4 = w(p+) − inf
p<x<q

w(x) .

PROOF. We just prove (i) in the case x0 = 0. In this case the assertion (3.10) is equiva-
lent to

lim
λ→∞ P̃

{
τ (p − ε′; 0, λwλ,+) > eλ(J3−ε)

}
= 1 . (3.11)

By the same argument as in the proof of Lemma 3.1, we have

τ (p − ε′; 0, λwλ,+)

d= |Sλ,+(p − ε′)|
∫ ∞

p−ε′
e−λwλ,+(y)L

(
T (−1),

Sλ,+(y)

|Sλ,+(p − ε′)|
)

dy

≥
∫ 0

p−ε′
eλw(x)dx

∫ λβ−αq

p

e−λwλ,+(y)L

(
T (−1),

Sλ,+(y)

|Sλ(p − ε′)|
)

dy

=
∫ 0

p−ε′
eλw(x)dx

∫ 0

p

e−λw(y)L

(
T (−1),

Sλ(y)

|Sλ(p − ε′)|
)

dy

+
∫ 0

p−ε′
eλw(x)dx

∫ q

0
e−λw(z)L

(
T (−1),

λβ−αSλ(z)

|Sλ(p − ε′)|
)

λβ−αdz

≡ IVλ + Vλ . (3.12)

Let us estimate IVλ first. We notice that Sλ(y)/|Sλ(p − ε′)| in IVλ tends to 0 as λ → ∞
uniformly on any closed interval contained in (p, 0]. This implies

L

(
T (−1),

Sλ(y)

|Sλ(p − ε′)|
)

→ L(T (−1), 0) > 0 (P̃ -a.s.)

as λ → ∞ uniformly on any closed interval contained in (p, 0]. Therefore, by the classical
Laplace method, we get

lim
λ→∞

1

λ
log IVλ = sup

p−ε′<x<0, p<y<0
{w(x) − w(y)}

= sup
p−ε′<x<p

w(x) − inf
p<y<0

w(y) ≡ JIV , P̃ -a.s. (3.13)

As for Vλ, we observe that λβ−αSλ(z)/|Sλ(p − ε′)| tends to 0 as λ → ∞ uniformly on any
closed interval contained in (0, q). Therefore, in the same way as above, we get

lim
λ→∞

1

λ
log Vλ = sup

p−ε′<x<p

w(x) − inf
0<z<q

w(z) ≡ JV , P̃ -a.s. (3.14)
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By (3.13) and (3.14), we obtain

lim
λ→∞

1

λ
log(IVλ + Vλ) = max{JIV , JV } = J3 (3.15)

in probability with respect to P̃ . Combining (3.12) and (3.15), we arrive at (3.11). �

The following three lemmas can be shown in the same way as Lemma 3.3.

LEMMA 3.4. Let w ∈ W and p ≤ 0 < q.

(i) Assume w(q) > w∗(x) for all x ∈ (p, q) and w(q) > 0 (in the case p = 0). Then
for any ε > 0 and ε′ > 0

lim
λ→∞ P 0

λwλ,+

{
τ (λβ−α(q + ε′)) > eλ(J5−ε)

}
= 1 ,

where

J5 = sup
q<x<q+ε′

w(x) − inf
p<x<q

w(x) .

(ii) Assume w(q−) > w∗(x) for all x ∈ (p, q) and w(q−) > 0 (in the case p = 0).

Then for any ε > 0

lim
λ→∞ P 0

λwλ,+

{
τ (λβ−αq) > eλ(J6−ε)

}
= 1 ,

where

J6 = w(q−) − inf
p<x<q

w(x) .

LEMMA 3.5. (i) Let w ∈ W and p < x0 ≤ q < 0. Assume w(q+) > w∗(x) for
all x ∈ (p, q) and w(q+) > w(x0) (in the case q = x0). Then for any ε > 0 and ε′ > 0
satisfying q + ε′ < 0

lim
λ→∞ P

x0
λwλ,+

{
τ (q + ε′) > eλ(J7−ε)

}
= 1 ,

where

J7 = sup
q<x<q+ε′

w(x) − inf
p<x<q

w(x) .

(ii) Let w ∈ W and p < x0 < q ≤ 0. Assume w(q) > w∗(x) for all x ∈ (p, q). Then
for any ε > 0

lim
λ→∞ P

x0
λwλ,+

{
τ (q) > eλ(J8−ε)

}
= 1 ,

where

J8 = w(q) − inf
p<x<q

w(x) .
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LEMMA 3.6. (i) Let w ∈ W and 0 < p ≤ x0 < q. Assume w(p−) > w∗(x) for
all x ∈ (p, q) and w(p−) > w(x0) (in the case p = x0). Then for any ε > 0 and ε′ > 0
satisfying p − ε′ > 0

lim
λ→∞ P

λβ−αx0
λwλ,+

{
τ (λβ−α(p − ε′)) > eλ(J9−ε)

}
= 1 ,

where

J9 = sup
p−ε′<x<p

w(x) − inf
p<x<q

w(x) .

(ii) Let w ∈ W and 0 ≤ p < x0 < q. Assume w(p) > w∗(x) for all x ∈ (p, q). Then
for any ε > 0

lim
λ→∞ P

λβ−αx0
λwλ,+

{
τ (λβ−αp) > eλ(J10−ε)

}
= 1 ,

where

J10 = w(p) − inf
p<x<q

w(x) .

4. Proof of Theorem 2.3 (i)

We prepare three lemmas for the proof of Theorem 2.3 (i).

LEMMA 4.1. Under the hypotheses of Theorem 2.3 (i), for any sufficiently small ε > 0
there exists θ ∈ (0, 1) such that

lim
λ→∞ P 0

λwλ,+

{
τ (b−(ε)) < eλθ

}
= 1 , (4.1)

where

b−(ε) =
{

b− if w(b−) > w(b−+) ,

b− − ε if w(b−) ≤ w(b−+) .
(4.2)

PROOF. We set

M = sup{w∗(x) : b− < x ≤ 0} . (4.3)

First we show (4.1) in the case M < wb + 1. We define w0 ∈ W# by

w0(x) =


w(x) for x > b−(ε) ,

w(b−(ε)+) for x = b−(ε) ,

−x + w(b−(ε)+) + b−(ε) for x < b−(ε) ,

where ε > 0 is chosen to be sufficiently small (cf. [4]). We choose p < b−(ε) satisfying
M < w0(p) < wb + 1. Then w0(p) > (w0)

∗(x) for all x ∈ (p, 0). Setting q = inf{x > 0 :



A DIFFUSION PROCESS WITH A RANDOM POTENTIAL 523

w0(x) > w0(p)}, we have q ≤ c− and therefore infp<x<q w0(x) = wb. By virtue of Lemma
3.1, we get, for any ε′ > 0

lim
λ→∞ P 0

λ(w0)λ,+

{
τ (p) < eλ(J ′

1+ε′)
}

= 1 , (4.4)

where J ′
1 = w0(p) − wb < 1. Since

P 0
λ(w0)λ,+{τ (p) < eλ(J ′

1+ε′)} ≤ P 0
λ(w0)λ,+{τ (b−(ε)) < eλ(J ′

1+ε′)}
= P 0

λwλ,+{τ (b−(ε)) < eλ(J ′
1+ε′)} ,

we obtain (4.1) from (4.4) in this case.
Next we prove (4.1) in the case M ≥ wb + 1. Since H(c+, b−) < 1, we can choose ck ∈

R, k = 0, 1, . . . , n for some n ∈ N satisfying 0 = c0 > c1 > c2 > · · · > cn−1 > cn = b−(ε)

and the following: for any k ∈ {1, 2, . . . , n} there exists pk ∈ R such that
pk < ck ,

wc > wk(pk) ≥ (wk)
∗(x) for all x ∈ (pk, ck−1) ,

Hk ≡ wk(pk) − infck<x<qk w(x) < 1 ,

qk = inf{x > ck−1 : w(x) > wk(pk)} .

(4.5)

Here wk ∈ W# is defined by

wk(x) =


w(x) for x > ck,

w(ck+) for x = ck,

−x + w(ck+) + ck for x < ck.

For any k ∈ {1, 2, . . . , n} and εk > 0, we have, by (4.5) and Lemma 3.1,

lim
λ→∞ P

ck−1
λ(wk)λ,+

{
τ (pk) < eλ(Hk+εk)

}
= 1 . (4.6)

In the same way as obtaining (4.1) from (4.4), we get from (4.6)

lim
λ→∞ P

ck−1
λwλ,+

{
τ (ck) < eλ(Hk+εk)

}
= 1 .

Therefore, by using the strong Markov property of {X(t), t ≥ 0, P ·
λwλ,+}, we obtain (4.1) in

this case, too. �

LEMMA 4.2. Under the hypotheses of Theorem 2.3 (i), for any ε > 0 there exists
δ > 0 such that

lim
λ→∞ P 0

λwλ,+

{
τ (a+(ε)) > eλ(1+δ)

}
= 1 , (4.7)

where

a+(ε) =
{

a+ − ε if w(a+) > w(a++) ,

a+ if w(a+) ≤ w(a++) .
(4.8)
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PROOF. First we prove (4.7) in the case M < wb + 1, where M is defined in (4.3). In
this case wa > w∗(x) for all x ∈ (a+, 0), wa > 0 and infa+<x<0 w(x) = wb. Therefore, by
Lemma 3.3, we get, for any ε > 0 and ε′ > 0

lim
λ→∞ P 0

λwλ,+

{
τ (a+(ε)) > eλ(J−ε′)

}
= 1 ,

where

J =
{

supa+−ε<x<a+ w(x) − wb if w(a+) > w(a++) ,

w(a++) − wb if w(a+) ≤ w(a++) .
(4.9)

Since J ≥ wa − wb > 1, we obtain (4.7) in this case.
Next we show (4.7) in the case M ≥ wb + 1. We use the same notation as in the proof

of Lemma 4.1. We notice that

lim
λ→∞ P 0

λwλ,+

{
τ (cn−1) < eλθ

}
= 1 for some θ ∈ (0, 1) . (4.10)

Moreover, we observe that wa > w∗(x) for all x ∈ (cn, cn−1). Combining this with the
definition of a valley, we get wa > w∗(x) for all x ∈ (a+, cn−1). We also have wa > w(cn−1)

and infa+<x<cn−1
w(x) = wb. Therefore, by Lemma 3.3, we get, for any ε > 0 and ε′ > 0

lim
λ→∞ P

cn−1
λwλ,+

{
τ (a+(ε)) > eλ(J−ε′)

}
= 1 , (4.11)

where J (> 1) is defined in (4.9). By (4.10), (4.11) and the strong Markov property of
{X(t), t ≥ 0, P ·

λwλ,+}, we obtain (4.7) in this case, too. �

LEMMA 4.3. Under the hypotheses of Theorem 2.3 (i), for any ε > 0 there exists
δ > 0 such that

lim
λ→∞ P 0

λwλ,+

{
τ (λβ−αc−(ε)) > eλ(1+δ)

}
= 1 , (4.12)

where

c−(ε) =
{

c− + ε if w(c−) > w(c−−) ,

c− if w(c−) ≤ w(c−−) .

PROOF. We set

p =
{

b+ if w(b+) > w(b++) ,

b+ − ε0 if w(b+) ≤ w(b++) ,

where ε0 > 0 is chosen to be sufficiently small. Then wc > w∗(x) for all x ∈ (p, c−) and
infp<x<c− w(x) = wb. By virtue of Lemma 3.4, we get, for any ε > 0 and ε′ > 0

lim
λ→∞ P 0

λwλ,+

{
τ (λβ−αc−(ε)) > eλ(J ′−ε′)

}
= 1 ,
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where

J ′ =
{

supc−<x<c−+ε w(x) − wb if w(c−) > w(c−−) ,

w(c−−) − wb if w(c−) ≤ w(c−−) .

Since J ′ ≥ wc − wb > 1, we obtain (4.12). �

Let us now prove Theorem 2.3 (i) by using the coupling method in [6].

PROOF OF THEOREM 2.3 (i). Consider the interval Kλ = [a+(ε1), λ
β−αc−(ε2)],

where ε1 > 0 and ε2 > 0 are chosen to be small enough that infa+(ε1)<x<a+ w(x) > wb

in the case w(a+) > w(a++) and infc−<x<c−(ε2) w(x) > wb in the case w(c−) > w(c−−).

Define mλwλ,+, a probability measure on Kλ, by

mλwλ,+{E} =
∫
E e−λwλ,+(x)dx∫ λβ−αc−(ε2)

a+(ε1)
e−λwλ,+(x)dx

for any Borel set E in Kλ. This is the invariant probability measure for the reflecting
Lλwλ,+ -diffusion process on Kλ. We notice, for any ε > 0 satisfying Uε(b) ∩ [b−(ε), 0) ⊂
(a+(ε1), 0),

lim
λ→∞ mλwλ,+{Uε(b) ∩ [b−(ε), 0)}

= lim
λ→∞

∫
Uε(b)∩[b−(ε),0) e

−λw(x)dx∫ 0
a+(ε1)

e−λw(x)dx + λβ−α
∫ c−(ε2)

0 e−λw(x)dx

= 1 , (4.13)

since

lim
λ→∞

1

λ
log

∫
Uε(b)∩[b−(ε),0)

e−λw(x)dx = −wb ,

lim
λ→∞

1

λ
log

∫
(a+(ε1),0)\(Uε(b)∩[b−(ε),0))

e−λw(x)dx < −wb ,

lim
λ→∞

1

λ
log

(
λβ−α

∫ c−(ε2)

0
e−λw(x)dx

)
< −wb .

Let {X(R)
λ (t), t ≥ 0} be the reflecting Lλwλ,+ -diffusion process on Kλ with initial dis-

tribution mλwλ,+ defined on the probability space (Ω̃, P̃ ). This is a stationary process. By
(4.13), we have, for any t ≥ 0

lim
λ→∞ P̃

{
X

(R)
λ (t) ∈ Uε(b) ∩ [b−(ε), 0)

}
= 1 . (4.14)

We couple the processes {X(t; 0, λwλ,+), t ≥ 0} and {X(R)
λ (t), t ≥ 0} as follows: Two

processes move independently until they meet each other for the first time; then they move
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together until they go out from the open interval (a+(ε1), λ
β−αc−(ε2)); after that they again

move independently. We set

σλ = inf {t ≥ 0 : X(t; 0, λwλ,+) = X
(R)
λ (t)},

Tλ = inf {t ≥ σλ : X(t; 0, λwλ,+) �∈ (a+(ε1), λ
β−αc−(ε2))} .

By (4.14), we notice

lim
λ→∞ P̃

{
σλ ≤ τ (b−(ε); 0, λwλ,+)

}
= 1 . (4.15)

Therefore, by Lemma 4.1, we have

lim
λ→∞ P̃

{
σλ < eλθ0

}
= 1 for some θ0 ∈ (0, 1) . (4.16)

Moreover, by Lemmas 4.2 and 4.3, we have

lim
λ→∞ P̃

{
Tλ > eλ(1+δ0)

}
= 1 for some δ0 > 0 . (4.17)

Choose any δ ∈ (0, (1 − θ0) ∧ δ0) and any r1 and r2 satisfying 1 − δ < r1 < r2 < 1 + δ.

For any sufficiently small ε > 0 and any r ∈ [r1, r2], we observe that

P̃ {X(eλr; 0, λwλ,+) ∈ Uε(b)}
≥ P̃ {σλ ≤ eλr1,X(eλr; 0, λwλ,+) ∈ Uε(b), eλr2 ≤ Tλ}
= P̃ {σλ ≤ eλr1,X

(R)
λ (eλr) ∈ Uε(b), eλr2 ≤ Tλ}

≥ P̃ {σλ ≤ eλr1} + P̃ {X(R)
λ (eλr) ∈ Uε(b)} + P̃

{
eλr2 ≤ Tλ

}− 2

= P̃ {σλ ≤ eλr1} + mλwλ,+{Uε(b)} + P̃ {eλr2 ≤ Tλ} − 2 .

Therefore, by (4.13), (4.16) and (4.17), we get

lim
λ→∞ inf

r∈[r1,r2]
P̃
{
X(eλr; 0, λwλ,+) ∈ Uε(b)

}
= 1 . (4.18)

Hence we obtain (2.2). �

5. Proof of Theorem 2.3 (iii), (iv)

We first present a lemma for the proof of Theorem 2.3 (iii).

LEMMA 5.1. Under the hypotheses of Theorem 2.3 (iii), for any sufficiently small ε >

0 there exists θ ∈ (0, 1) such that

lim
λ→∞ P 0

λwλ,+

{
τ (b−(ε)) < eλθ

}
= 1 , (5.1)

lim
λ→∞ P 0

λwλ,+

{
τ (λβ−αb+(ε)) < eλθ

}
= 1 , (5.2)
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where b−(ε) is defined in (4.2) and

b+(ε) =
{

b+ if w(b+) > w(b+−) ,

b+ + ε if w(b+) ≤ w(b+−) .

PROOF. We can prove (5.1) in the same way as (4.1). Thus we just show (5.2). Setting

M ′ =
{

0 if b− = b+ = 0 ,

sup{w∗(x) : b− < x < b+} otherwise ,

we have M ′ < wb + 1. We define w0 ∈ W# by

w0(x) =


w(x) for x < b+(ε) ,

w(b+(ε)−) for x = b+(ε) ,

x + w(b+(ε)−) − b+(ε) for x > b+(ε) ,

where ε > 0 is chosen to be sufficiently small. We can choose q > b+(ε) satisfying M ′ <

w0(q) < wb + 1. Setting p = sup{x < 0 : w0(x) > w0(q)}, we have p ≥ a− and therefore
infp<x<q w0(x) = wb. By virtue of Lemma 3.2, we get, for any ε′ > 0

lim
λ→∞ P 0

λ(w0)λ,+

{
τ (λβ−αq) < eλ(J ′

2+ε′)
}

= 1 , (5.3)

where J ′
2 = w0(q) − wb < 1. Since

P 0
λ(w0)λ,+{τ (λβ−αq) < eλ(J ′

2+ε′)} ≤ P 0
λ(w0)λ,+{τ (λβ−αb+(ε)) < eλ(J ′

2+ε′)}
= P 0

λwλ,+{τ (λβ−αb+(ε)) < eλ(J ′
2+ε′)} ,

we obtain (5.2) from (5.3). �

PROOF OF THEOREM 2.3 (iii). We use the same notation as in the proof of Theorem

2.3 (i). We couple the processes {X(t; 0, λwλ,+), t ≥ 0} and {X(R)
λ (t), t ≥ 0} in the same

way as there. In this case, instead of (4.15), we have

lim
λ→∞ P̃

{
σλ ≤ τ (b−(ε); 0, λwλ,+) ∨ τ (λβ−αb+(ε); 0, λwλ,+)

}
= 1 .

Therefore, by Lemma 5.1, we get (4.16) in this case, too. Hence we obtain (2.3) in the same
way as obtaining (2.2). We can prove (2.4) in the same manner. �

Next we prepare lemmas for the proof of Theorem 2.3 (iv). Under the hypotheses of
Theorem 2.3 (iv), we set

x1 =
{

c− if w(c−) < w(c−+) ,

c− − ε1 if w(c−) ≥ w(c−+) ,
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x2 =
{

c+ if w(c+) < w(c+−) ,

c+ + ε2 if w(c+) ≥ w(c+−) ,

where ε1 > 0 and ε2 > 0 are chosen to be small enough that wc − infx1<x<x2 w(x) < 1. We
note x1 < 0 < x2.

LEMMA 5.2. Under the hypotheses of Theorem 2.3 (iv), for any ε > 0

lim
λ→∞ P 0

λwλ,+

{
τ (x1, λ

β−αx2) < eλ(J11+ε)
}

= 1 ,

where

τ (x1, λ
β−αx2) = inf{t > 0 : X(t) /∈ (x1, λ

β−αx2)} ,

J11 = wc − inf
x1<x<x2

w(x)(< 1) .

PROOF. We set

Fλ = {τ (x1; 0, λwλ,+) < τ(λβ−αx2; 0, λwλ,+)} .

As in the proof of Lemma 3.1, we have, on Fλ

τ(x1; 0, λwλ,+) =
∫ λβ−αx2

x1

e−λwλ,+(y)L(T (Sλ,+(x1)), Sλ,+(y))dy

≡ VIλ ,

and for any ε > 0

lim
λ→∞ P̃

{
VIλ < eλ(J11+ε)

}
= 1 . (5.4)

On the other hand, we have, on Fλ
c

τ (λβ−αx2; 0, λwλ,+) =
∫ λβ−αx2

x1

e−λwλ,+(y)L(T (Sλ,+(λβ−αx2)), Sλ,+(y))dy

≡ VIIλ ,

and for any ε > 0

lim
λ→∞ P̃

{
VIIλ < eλ(J11+ε)

}
= 1 . (5.5)

Setting

T 0
λ (x1, λ

β−αx2) = inf{t > 0 : X(t; 0, λwλ,+) /∈ (x1, λ
β−αx2)} ,

we observe that, for any ε > 0

P̃ {T 0
λ (x1, λ

β−αx2) < eλ(J11+ε)}
= P̃ {VIλ < eλ(J11+ε), Fλ} + P̃ {VIIλ < eλ(J11+ε), Fλ

c}
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≥ 1 − P̃ {VIλ ≥ eλ(J11+ε)} − P̃ {VIIλ ≥ eλ(J11+ε)} . (5.6)

Since the right-hand side of (5.6) converges to 1 as λ → ∞ by (5.4) and (5.5), we obtain the
lemma. �

LEMMA 5.3. Under the hypotheses of Theorem 2.3 (iv), the following (i)–(iii) hold.
(i) For any sufficiently small ε > 0 there exists θ ∈ (0, 1) such that

lim
λ→∞ P

x1
λwλ,+

{
τ (b−(ε)) < eλθ

}
= 1 ,

where b−(ε) is defined in (4.2).
(ii) For any ε > 0 there exists δ > 0 such that

lim
λ→∞ P

x1
λwλ,+

{
τ (a+(ε)) > eλ(1+δ)

}
= 1 ,

where a+(ε) is defined in (4.8).
(iii) For any ε > 0 satisfying c− + ε < 0 in the case w(c−) < w(c−+) there exists

δ > 0 such that

lim
λ→∞ P

x1
λwλ,+

{
τ (c−(ε)′) > eλ(1+δ)

}
= 1 ,

where

c−(ε)′ =
{

c− + ε if w(c−) < w(c−+) ,

c− if w(c−) ≥ w(c−+) .

PROOF. We can prove (i) and (ii) in the same way as Lemmas 4.1 and 4.2, respec-
tively. We just show (iii). We observe that wc > w∗(x) for all x ∈ (b−(ε0), c

−) and
infb−(ε0)<x<c− w(x) = wb, where ε0 > 0 is chosen to be sufficiently small. By virtue of

Lemma 3.5, we get, for any ε > 0 satisfying the assumption of (iii) and ε′ > 0

lim
λ→∞ P

x1
λwλ,+

{
τ (c−(ε)′) > eλ(J ′′−ε′)

}
= 1 ,

where J ′′ = wc − wb > 1. Therefore we obtain (iii). �

Let us now prove Theorem 2.3 (iv) by employing the method of [6].

PROOF OF THEOREM 2.3 (iv). We just prove (2.5). By Lemma 5.2,

lim
λ→∞ P̃

{
T 0

λ (x1, λ
β−αx2) < eλθ0

}
= 1 for some θ0 ∈ (0, 1) . (5.7)

Using Lemma 5.3, we can show that there exists δ0 > 0 such that for any r1 and r2 satisfying
1 − δ0 < r1 < r2 < 1 + δ0 and any ε > 0

lim
λ→∞ sup

r∈[r1,r2]
P̃
{
X(eλr; x1, λwλ,+) ∈ (−∞, 0] ∩ Uε(b)c

}
= 0 (5.8)
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in the same way as proving (4.18). Moreover, by using Lemma 3.6, we can show that for any
ε0 > 0 satisfying a′+ − ε0 > 0 in the case w(a′+) < w(a′+−) there exists δ1 > 0 such that

lim
λ→∞ P̃

{
τ (λβ−αa′+(ε0); λβ−αx2, λwλ,+) > eλ(1+δ1)

}
= 1 , (5.9)

where

a′+(ε0) =
{

a′+ − ε0 if w(a′+) < w(a′+−) ,

a′+ if w(a′+) ≥ w(a′+−) .

Choose any δ ∈ (0, (1−θ0)∧δ0∧δ1) and any r1 and r2 satisfying 1−δ < r1 < r2 < 1+δ.

For any r ∈ [r1, r2] and ε > 0, we get, by the strong Markov property of {X(t; ·, λwλ,+), t ≥
0},

P̃ {X(eλr; 0, λwλ,+) ∈ (−∞, 0] ∩ Uε(b)c}

≤
∫ eλθ0

0
P̃ {T 0

λ (x1, λ
β−αx2) = τ (x1; 0, λwλ,+) ∈ du}

× P̃ {X(eλr − u; x1, λwλ,+) ∈ (−∞, 0] ∩ Uε(b)c}

+
∫ eλθ0

0
P̃ {T 0

λ (x1, λ
β−αx2) = τ (λβ−αx2; 0, λwλ,+) ∈ du}

× P̃ {X(eλr − u; λβ−αx2, λwλ,+) ∈ (−∞, 0] ∩ Uε(b)c}
+ P̃ {T 0

λ (x1, λ
β−αx2) ≥ eλθ0} . (5.10)

As for the second term in the right-hand side of (5.10), we observe that

P̃ {X(eλr − u; λβ−αx2, λwλ,+) ∈ (−∞, 0] ∩ Uε(b)c}
≤ P̃ {τ (λβ−αa′+(ε0); λβ−αx2, λwλ,+) ≤ eλ(1+δ1)}

because of a′+(ε0) ≥ 0 and r < 1 + δ1. Therefore, for sufficiently large λ, we get

sup
r∈[r1,r2]

P̃ {X(eλr; 0, λwλ,+) ∈ (−∞, 0] ∩ Uε(b)c}

≤ P̃ {T 0
λ (x1, λ

β−αx2) = τ (x1; 0, λwλ,+) < eλθ0}
× sup

r ′∈[1−δ,1+δ]
P̃ {X(eλr ′ ; x1, λwλ,+) ∈ (−∞, 0] ∩ Uε(b)c}

+ P̃ {T 0
λ (x1, λ

β−αx2) = τ (λβ−αx2; 0, λwλ,+) < eλθ0}
× P̃ {τ (λβ−αa′+(ε0); λβ−αx2, λwλ,+) ≤ eλ(1+δ1)}

+ P̃ {T 0
λ (x1, λ

β−αx2) ≥ eλθ0} . (5.11)

By (5.7), (5.8) and (5.9), the right-hand side of (5.11) converges to 0 as λ → ∞. Hence we
obtain (2.5). �
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6. Proof of Theorem 1.1

Let us now prove Theorem 1.1.

PROOF OF THEOREM 1.1. First we prove (i). By Lemma 2.2, we have

Pα,β{P 0
w{λ−αX(eλ) ∈ Uε(b1(τ

α,β
λ w))} > 1 − ε, Aα,β

λ }
= Pα,β{P 0

λ(τ
α,β
λ w)λ,+

{X(eλr(λ)) ∈ Uε(b1(τ
α,β
λ w))} > 1 − ε, Aα,β

λ } , (6.1)

where r(λ) = 1 − 2αλ−1 log λ. By (1.1), the right-hand side of (6.1) is equal to

Pα,β{P 0
λwλ,+{X(eλr(λ)) ∈ Uε(b1)} > 1 − ε, A} ,

which converges to Pα,β{A} as λ → ∞ by Proposition 2.1 (i) and Theorem 2.3 (i). Therefore
we obtain (i). We can prove (ii) in the same manner by using Proposition 2.1 (ii) and Theorem
2.3 (ii).

Next we show (iii). In the same way as above, we observe that

Pα,β {P 0
w{Yα,β(eλ) ∈ Uε(b1(τ

α,β
λ w)) ∪ Uε(b2(τ

α,β
λ w))} > 1 − ε, Cα,β

λ }
= Pα,β {P 0

w{λ−αX(eλ) ∈ (−∞, 0] ∩ Uε(b1(τ
α,β
λ w))c}

+ P 0
w{λ−βX(eλ) ∈ [0,∞) ∩ Uε(b2(τ

α,β
λ w))c} < ε, Cα,β

λ }
= Pα,β {P 0

λwλ,+{X(eλr1(λ)) ∈ (−∞, 0] ∩ Uε(b1)
c}

+ P 0
λwλ,−{X(eλr2(λ)) ∈ [0,∞) ∩ Uε(b2)

c} < ε, C} , (6.2)

where r1(λ) = 1 − 2αλ−1 log λ, r2(λ) = 1 − 2βλ−1 log λ. The right-hand side of (6.2)
converges to Pα,β{C} as λ → ∞ by Proposition 2.1 (iii) and Theorem 2.3 (iii), (iv). Hence
we obtain (iii). �
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