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Abstract. We study an isometric immersion f : M → M̄ with geodesic normal sections, where M̄ is a semi-
Riemannian space form. In Riemannian geometry, it is known that f is helical, in particular, all geodesics of M have

the same proper order in M̄ . However this does not hold in general, when M̄ is indefinite semi-Riemannian. We give
sufficient conditions for an isometric immersion with geodesic normal sections to be helical.

1. Introduction

Let M be an n-dimensional submanifold in a Euclidean space Rn+q . For any point
p ∈ M and unit tangent vector x in the unit tangent sphere UpM at p, let E(p, x) be the

affine (q + 1)-dimensional subspace of Rn+q through p spanned by x and the normal space
T ⊥

p M . The intersection of M and E(p, x) gives rise to a unit speed curve βx with βx(0) = p

and β ′
x(0) = x defined on an open interval containing 0. This curve βx is called the normal

section at (p, x). In Chen and Verheyen [3], M is said to have geodesic normal sections if, for
any p ∈ M and x ∈ UpM , the normal section βx at (p, x) is geodesic in a neighborhood of
0. Another important concept used in this paper, called helical immersions, originated from
Besse [1]. Let f : M → M̄ be an isometric immersion between Riemannian manifolds. If,
for each unit speed geodesic γ of M , the curve f ◦γ in M̄ is a helix of order d with curvatures
λ1, . . . , λd−1 which are independent of γ , then f is called a helical geodesic immersion of
order d . Chen and Verheyen [3] proved that a helical submanifold in a Euclidean space has
geodesic normal sections using a result for helical geodesic immersions in Sakamoto [10].
Verheyen proved its converse in [11]. Their results were proved in the case where the ambient
space is a Riemannian space form by Hong and Houh [5].

Also in semi-Riemannian geometry, the notions of submanifolds with geodesic nor-
mal sections and helical geodesic immersions can be introduced. Kim [6] classified semi-

Riemannian surfaces in R5 with vanishing mean curvature and geodesic normal sections. His
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classification shows that there exist surfaces with geodesic normal sections which are not he-
lical. The present author [7] studied helical geodesic immersions between semi-Riemannian
manifolds and showed that a helical immersed submanifold in a semi-Riemannian space form
has geodesic normal sections.

In this paper, we study semi-Riemannian isometric immersions with geodesic normal
sections Let f : M → M̄ be a semi-Riemannian isometric immersion into a semi-Riemannian
space form. In contrast to the Riemannian case, there exist space-like, time-like and null
geodesics and normal sections on M . Thus we say that f has space-like (resp. time-like)
geodesic normal sections if any space-like (resp. time-like) unit speed normal section βx is
locally geodesic. We show that f has space-like geodesic normal sections if and only if f has
time-like geodesic normal sections. Furthermore, we prove that if f has space-like geodesic
normal sections, then there exist some d ∈ N, positive constants λ1, . . . , λd−1 ∈ R such that,
for any space-like unit speed geodesic γ of M , f ◦ γ has Frenet curvatures λ1, . . . , λd−1 in

M̄ . In semi-Riemannian geometry, note that f ◦ γ is not necessarily of proper order d . As
a corollary of this result, we can give some sufficient conditions for an isometric immersion
with geodesic normal sections to be helical.

In Section 2 we prepare basic notations and equations that we use later. The definitions
of isometric immersions with geodesic normal sections and helical geodesic immersions in
semi-Riemannian geometry are also given. Section 3 is devoted to the study of such isometric
immersions.

2. Preliminaries

Let f : M → M̄ be an isometric immersion of a connected n-dimensional semi-
Riemannian manifold M into an (n + q)-dimensional semi-Riemannian manifold M̄ of con-
stant sectional curvature. For all local formulas and computations we may regard f as an

embedding and thus we shall often identify p ∈ M with f (p) ∈ M̄ and the tangent space
TpM the subspace f∗(TpM) of TpM̄. We denote the normal space of f at p by T ⊥

p M .

Let ∇̄ (resp. ∇) be the Levi-Civita connection of M̄ (resp. M), B the second fundamen-
tal form, A the shape tensor, and ∇⊥ the normal connection. Clearly A is related to B as

〈AξX, Y 〉 = 〈B(X, Y ), ξ〉, where 〈 , 〉 is the semi-Riemannian metric of M̄ , and X and Y are
vector fields tangent to M , and ξ is a vector field normal to M .

The k-th (k ≥ 1) covariant derivative DkB of B with respect to ∇ and ∇⊥ is defined by

(DkB)(X1, . . . , Xk+2) : = ∇⊥
X1

((Dk−1B)(X2, . . . , Xk+2))

−
k+2∑
i=2

(Dk−1B)(X2, . . . ,∇X1Xi, . . . , Xk+2) ,

where D0B = B. Then the Ricci identity for (Dk−2B)(X1, . . . , Xk) is

(DkB)(X, Y,X1, . . . , Xk) − (DkB)(Y,X,X1, . . . , Xk)
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= R⊥(X, Y )(Dk−2B)(X1, . . . , Xk) −
k∑

i=1

(Dk−2B)(X1, . . . , R(X, Y )Xi, . . . , Xk) ,

where R (resp. R⊥) is the curvature tensor of ∇ (resp. ∇⊥). We denote (DkB)(X, . . . , X) by

(DkB)(Xk+2) for short.
The equations of Gauss, Codazzi and Ricci are given by

R(X, Y )Z = c̄ (〈Y,Z〉X − 〈X,Z〉Y ) + AB(Y,Z)X − AB(X,Z)Y ,

(DB)(X, Y,Z) = (DB)(Y,X,Z) ,

R⊥(X, Y )ξ = B(X,AξY ) − B(AξX, Y ) ,

respectively, where c̄ is the constant sectional curvature of M̄ .

Let L be a submanifold of M̄ . Hereafter, we say that L is totally geodesic in M̄ , if ∇̄XY

is tangent to L for any tangent vector fields X and Y of L. We note that the induced tensor
field on L from the semi-Riemannian metric on M̄ is not necessarily non-degenerate. Since

M̄ has constant sectional curvature, if, for any p ∈ M̄ and subspace V of TpM̄ , there exists a
totally geodesic submanifold L containing p such that TpL = V .

For any p ∈ M and v ∈ TpM (v �= 0), let E(p, v) be the vector subspace of TpM̄

spanned by v and T ⊥
p M . E(p, v) determines a (q + 1)-dimensional totally geodesic subman-

ifold Ê(p, v) of M̄ such that p ∈ Ê(p, v) and TpÊ(p, v) = E(p, v). The intersection of M

and Ê(p, v) gives rise to a regular curve βv such that βv(0) = p and β ′
v(0) = v in a neighbor-

hood of p in M̄, which is called a normal section of f at (p, v). An isometric immersion f

has geodesic normal sections if βv is pregeodesic on M in a neighborhood at 0 for any p ∈ M

and v ∈ TpM (v �= 0) (or, equivalently, each geodesic of M is locally a normal section of f ).
For example, semi-Riemannian spheres and their Veronese immersions ([2, Examples 1.1 and
1.2]) have geodesic normal sections.

EXAMPLE 2.1. (cf. [2], [6]) For real-valued smooth functions f1, . . . , fl ∈ C∞(Rn),

Rn
t 
 p �→ (f1(p), . . . , fl(p), p, f1(p), . . . , fl(p)) ∈ Rn+2l

t+l = Rl
l × Rn

t × Rl
0

is an isometric immersion with geodesic normal sections, where Rn
t is the n-dimensional

semi-Euclidean space with index t .

In this paper, we say that a curve in M̄ is of proper order e if the image is contained in

some e-dimensional totally geodesic submanifold of M̄ and is not contained in any (e − 1)-
dimensional ones. We recall the notion of Frenet curves in semi-Riemannian geometry. Let

c : I → M̄ a unit speed curve on M̄, that is, |〈c′, c′〉| ≡ 1. We put for k ∈ N and s ∈ I ,

(Gkc)(s) := det(〈c(i)(s), c(j)(s)〉)1≤i,j≤k .

In contrast to the Riemannian case, we note that the equations Gkc �= 0 (1 ≤ k ≤ d),

Gd+1c ≡ 0 on I do not necessarily mean that c(d+1) is linearly dependent on c′, c′′, . . . , c(d).
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We assume that Gkc �= 0 on I for any 1 ≤ k ≤ d . So we have d ≤ e in general, where e

is the proper order of c. Then, we can apply the Gram-Schmidt orthonormalization process

to c′(s), c′′(s), . . . , c(d)(s) at each point c(s). Consequently we have the Frenet d-frame field
c1, c2, . . . , cd of c, which satisfies

c′
i = −εi−1εiλi−1ci−1 + λici+1 for 1 ≤ i ≤ d − 1 ,(1)

where ε0 = λ0 = 0, c0 = 0, εi = 〈ci, ci〉 ∈ {−1,+1} (1 ≤ i ≤ d) and λi (1 ≤ i ≤ d − 1) are
functions on I satisfying the following formulas:

εi = sgn Gic

sgn Gi−1c
, λi = |Gi−1c|1/2|Gi+1c|1/2

|Gic| ,(2)

where G0c = 1. (See [4] for a computational algorithm, the d-Frenet frame, and the curva-

tures of a Euclidean curve.) Conversely if a curve c : I → M̄ satisfies Equation (1), then
Gkc �= 0 on I holds for any 1 ≤ k ≤ d . For such a curve c, we say that c has the Frenet

curvatures λ1, . . . , λd−1 and signatures ε1, . . . , εd . Furthermore, when c(d+1) is linearly de-

pendent on c′, c′′, . . . , c(d) (hence the proper order is equal to d), the curve c satisfies the
Frenet formula: Equation (1) and

c′
d = −εd−1εdλd−1cd−1 .

Then we call the curve c a Frenet curve of order d , curvatures λ1, . . . , λd−1 and signatures
ε1, . . . , εd . If all curvatures are constant, the curve c is called a helix of order d .

An isometric immersion f is called a helical space-like geodesic immersion of order d ,
for any unit speed space-like geodesic γ of M , the curve f ◦ γ in M̄ is a helix of order d ,
curvatures λ1, . . . , λd−1 and signatures ε1 = +1, ε2, . . . , εd , which are independent of the
choice of γ . We define a helical time-like geodesic immersion in a similar way.

In [7], we obtained that f is a helical space-like geodesic immersion of order d if and
only if f is a helical time-like geodesic immersion of order d . Hence we may call these helical
geodesic immersions. We also showed that, in semi-Riemannian geometry, a helical geodesic
immersion has geodesic normal sections.

In Riemannian geometry, an isometric immersion f : M → M̄ with geodesic normal
sections is helical ([5], [11]), in particular, every geodesic of M has the same proper order

in M̄ . Also in the case where M̄ is indefinite, semi-Riemannian spheres and their Veronese
immersions have this properties for non-null geodesics. However, for an isometric immersion

in Example 2.1, the proper order in Rn+2l
t+l of a non-null geodesic γ of Rn

t depends on the

initial velocity γ ′(0) in general.

3. Isometric immersions with geodesic normal sections

Let f : M → M̄ be an isometric immersion of a connected semi-Riemannian manifold
M into a semi-Riemannian manifold M̄ of constant sectional curvature and dim M ≥ 2. We
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denote by U+M (resp. U−M) the space-like (resp. time-like) unit tangent bundle of M .
Whenever x ∈ UpM := U+

p M ∪ U−
p M (p ∈ M), we give the normal section βx of f at

(p, x) the arc-length parameter with βx(0) = p and β ′
x(0) = x. Then we temporarily say that

f has space-like or (+1)- (resp. time-like or (−1)-) geodesic normal sections if βx is geodesic
in M for any p ∈ M and x ∈ U+

p M (resp. U−
p M). For p ∈ M and v ∈ TpM , we let γv stand

for a geodesic of M such that γv(0) = p and γ ′
v(0) = v. We put σv = f ◦ γv and V = σ ′

v .
The uniqueness theorem for geodesics implies the following lemma ([3, Lemma 1]).

LEMMA 3.1. If f has ε-geodesic normal sections (ε ∈ {−1,+1}), then, for any
x ∈ UεM , after a suitable reparametrization, σx locally remains a normal section of f at

(γx(s), γ
′
x(s)) for all s ∈ dom γx . In particular, the component of σ

(k)
x (s) tangent to M is

proportional to σ ′
x(s) for any s ∈ dom γx and k ∈ N.

From now on, for convenience, we write (D−1B)(v) instead of v ∈ T M . The following
arguments are analogous to those of Verheyen [11].

LEMMA 3.2. If f has ε-geodesic normal sections (ε ∈ {−1,+1}), then the following
property (Fk) holds for any x ∈ UεM and k ∈ N:
(F1) σ ′

x = X, (F2) σ ′′
x = B(X2), and for k ≥ 3,

(Fk) there exist smooth functions Ck,l (1 ≤ l ≤ k) on dom γx such that Ck,k = 1, Ck,k−1 = 0
and

σ (k)
x =

k∑
l=1

Ck,l (Dl−2B)(Xl) ,(3)

and A(Dk−3B)(xk−1)x = ε〈(Dk−3B)(xk−1), B(x2)〉x holds.

PROOF. We have σ ′
x = X, σ ′′

x = B(X2) and σ
(3)
x = −AB(X2)X + (DB)(X3). Accord-

ing to Lemma 3.1, we get AB(x2)x = ε〈B(x2), B(x2)〉x for any x ∈ UεM . Hence (F1), (F2)

and (F3) hold, where C3,3 = 1, C3,2 = 0 and C3,1 = −ε〈B(X2), B(X2)〉. By induction on k,
we shall show that the property (Fk) holds for any k ≥ 3. We already have (F3). We verify
that (Fk+1) holds when (Fl) is true for any 3 ≤ l ≤ k. From the induction hypothesis, it
follows that

σ (k+1)
x =

(
(XCk,1) −

k−1∑
l=2

Ck,l ε〈(Dl−2B)(Xl), B(X2)〉
)

X − A(Dk−2B)(Xk)X

+
k∑

l=2

(
(XCk,l + Ck,l−1)

)
(Dl−2B)(Xl) + (Dk−1B)(Xk+1) .

According to Lemma 3.1 again, we have for any x ∈ UεM ,

A(Dk−2B)(xk)x = ε〈(Dk−2B)(xk), B(x2)〉x .
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Therefore we put{
Ck+1,k+1 := 1 , Ck+1,l := (XCk,l) + Ck,l−1 for 2 ≤ l ≤ k ,

Ck+1,1 := (XCk,1) − ∑k
l=2 Ck,l ε〈(Dl−2B)(Xl), B(X2)〉 .

(4)

Since we obtain (Fk+1), the proof is complete. �

LEMMA 3.3. Let ε be (−1) or (+1). The following conditions are equivalent:
(i) f has ε-geodesic normal sections,

(ii) f has geodesic normal sections,
(iii) For any x ∈ UεM and k ≥ 2,

A(Dk−2B)(xk)x = ε〈(Dk−2B)(xk), B(x2)〉x ,

(iv) For any v ∈ T M and k ≥ 2,

〈v, v〉A(Dk−2B)(vk)v = 〈(Dk−2B)(vk), B(v2)〉v .

PROOF. On account of Lemma 3.2, (i) implies (iii). It is obvious that (iii) and (iv) are
equivalent. Suppose that (iv) holds. Then we have A(Dk−2B)(vk)v ∧ v = 0 for any non-null
vector v. Moreover because of the continuity of the map T M 
 v �→ A(Dk−2B)(vk)v ∧ v ∈∧2

T M , A(Dk−2B)(vk)v∧v is identically vanishing on T M for any k ∈ N. So, for p ∈ M,v ∈
TpM(v �= 0), we can see that Sp{σ (k)

v (s) | k ∈ N} ⊂ E(γv(s), γ
′
v(s)) (s ∈ dom γv) is locally

parallel along σv with respect to ∇̄, where Sp denotes the linear span. Therefore the image
of σv is locally contained in Ê(p, v), which is a totally geodesic submanifold in M̄ such
that TpÊ(p, v) = E(p, v). Thus f has geodesic normal sections. It is trivial that (ii) implies
(i). �

Since we see that f has space-like geodesic normal sections if and only if f has time-
like geodesic normal sections, hereafter, we assume that f has space-like geodesic normal
sections, hence ind M < dim M . Then, by virtue of Lemma 3.3, we can see that f has null
geodesic normal sections, that is, each normal section βv of f is locally pregeodesic for any
null vector v ∈ Λ = ⋃

p∈M Λp, where Λp is the nullcone of TpM .

For v ∈ T M , k, l ∈ N, we put νk,l(v) := 〈(Dk−2B)(vk), (Dl−2B)(vl)〉 and
(GkB)(v) := det (νi,j (v))1≤i,j≤k , and (G0B)(v) := 1. From Equation (3) and Ck,k = 1

of Lemma 3.2 and Lemma 3.3, we have
∧k

i=1 σ
(i)
x = ∧k

i=1(D
i−2B)(Xi) for x ∈ UM . So

we have for any x ∈ UM ,

Gkσx = (GkB)(X) .(5)

LEMMA 3.4. The following property (Ei) holds for i ≥ 2:
For any h, j ∈ N0 (j ≥ 2, 0 ≤ h ≤ i − 1), p ∈ M , x ∈ U+

p M , y ∈ UpM (〈x, y〉 = 0),

〈(Di−2B)(xh, y, xi−h−1), (Dj−2B)(xj )〉 = 0 .
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PROOF. The property (E2) follows from Lemma 3.2. Suppose that (Em) holds for any
2 ≤ m ≤ i. We prove that (Ei+1) is satisfied (i ≥ 2). For 1 ≤ h ≤ i, we have from (Ei),

〈(Di−1B)(xh, y, xi−h), (Dj−2B)(xj )〉
= x · 〈(Di−2B)(Xh−1, Y,Xi−h), (Dj−2B)(Xj )〉

− 〈(Di−2B)(xh−1, y, xi−h), (Dj−1B)(xj+1)〉 = 0 ,

where X and Y are extensions along σx = f ◦ γx of x and y respectively satisfying ∇̄xX =
∇̄xY = 0 and 〈X,Y 〉 = 0. Hence we only need to prove (Ei+1) for h = 0. Using the Codazzi
equation, we see that (E3) for h = 0 holds. So we shall prove the case i ≥ 3. Applying Ricci
identity for (Di−3B)(xi−1), we have

〈(Di−1B)(x, y, xi−1), (Dj−2B)(xj )〉 − 〈(Di−1B)(y, xi), (Dj−2B)(xj )〉
= 〈[A(Di−3B)(xi−1), A(Dj−2B)(xj )]x, y〉

+
i−4∑
h=0

〈(Di−3B)(xh,R(x, y)x, x), (Dj−2B)(xj )〉.

By 〈x,R(x, y)x〉 = 0 and the induction hypothesis, we obtain (Ei+1) for h = 0. Conse-
quently (Ei) is true for any i ≥ 2. �

LEMMA 3.5. If k + l is even, then νk,l is constant on U+
p M for each p ∈ M . If k + l

is odd, then |νk,l| is constant on U+
p M for each p ∈ M . In this case, if U+

p M is connected,

then νk,l = 0 on U+
p M .

PROOF. It is clear when k = 1 or l = 1. So we only need to verify this lemma for
k, l ≥ 2. Let cε(θ) (resp. sε(θ)) be cos θ or cosh θ (resp. sin θ or sinh θ ) according to whether
ε is equal to (+1) or (−1). For any x ∈ U+

p M (p ∈ M) and y ∈ UpM such that 〈x, y〉 = 0,

〈y, y〉 = ε ∈ {−1,+1}, we put zε(θ) = cε(θ)x + sε(θ)y, hence zε(θ) ∈ U+
p M for any θ ∈ R.

Using Lemma 3.4, we have d
dθ

∣∣
θ=0νk,l(zε(θ)) = 0. Thus νk,l is constant on a component of

U+
p M . On the other hand, for any x ∈ U+

p M , νk,l(−x) = (−1)k+lνk,l(x). If U+
p M is non-

connected (hence it has two components), then the vector (−x) is in the component which
does not contain x ∈ U+

p M . Therefore this lemma is proved. �

LEMMA 3.6. Each νk,l is constant on U+M for any k, l ∈ N. In particular, if k + l is
odd, then νk,l vanishes.

PROOF. Since it is clear when k = 1 or l = 1, we assume that k, l ≥ 2. Because
dim M ≥ 2, for any p ∈ M , y ∈ UpM , there exists x ∈ U+

p M such that 〈x, y〉 = 0. Using

Lemma 3.4, we have

y · νk,l(X
′) = 〈(Dk−2B)(y, xk), (Dl−2B)(xl)〉 + 〈(Dk−2B)(xk), (Dl−2B)(y, xl)〉 = 0 ,
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where X′ is an extension of x along σx such that ∇̄yX′ = 0. Since the equation above holds
for any p ∈ M , y ∈ UpM , using Lemma 3.5, we can obtain this lemma in the cases where

k + l is even. When k + l is odd and U+
p M is connected, this lemma is clear by Lemma 3.5.

In the case where k + l is odd and U+
p M is non-connected,

νk,l(x) = x · νk−1,l(X) − νk−1,l+1(x) = −νk−1,l+1(x) = · · ·
= ((−1)(k−l−1)/2/2) x · ν(k+l−1)/2,(k+l−1)/2(X) = 0 ,

where x ∈ U+
p M (p ∈ M). Thus we have finished the proof of this lemma. �

Since f has null geodesic normal sections, we can see that σ
(k)
v is a linear combination

of V,B(V 2), . . . , (Dk−2B)(V k), where v ∈ Λ. Using Lemma 3.6, in the case where k + l is

even, there exists dk,l ∈ R such that νk,l(v) = dk,l〈v, v〉(k+l)/2 for any v ∈ T M . Consequently
νk,l(v) = 0 for any k, l ∈ N and null vector v ∈ Λ. So, it is obvious that the scalar product

at σv(s) ∈ M̄ is vanishing on Sp {σ (k)
v (s) | k ∈ N} which is a subspace of E(γv(s), γ

′
v(s)).

Therefore we conclude

COROLLARY 3.7. If f has space-like geodesic normal sections, then f has null ge-
odesic normal sections. In particular, for any null vector v ∈ Λ, each normal section βv is

locally contained in a totally geodesic submanifold of M̄ whose induced metric is identically
vanishing.

Lemma 3.6 implies that GkB is constant on U+M for any k ∈ N. Thus there uniquely
exists d ∈ N such that GkB �= 0, 1 ≤ k ≤ d , and Gd+1B ≡ 0. Then we call this natural
number d the geodesic non-degeneracy order of f .

THEOREM 3.8. Assume that f : M → M̄ is an isometric immersion with space-like
geodesic normal sections and its geodesic non-degeneracy order is equal to d . Then, for any
space-like (resp. time-like) unit speed geodesics γ of M , the curve f ◦ γ has constant Frenet

curvatures λ1, . . . , λd−1, signatures ε1, . . . , εd (resp. (−1)1ε1, . . . , (−1)dεd) in M̄ , where
for x ∈ U+M ,

εk = sgn (GkB)(x)

sgn (Gk−1B)(x)
, λk = |(Gk−1B)(x)|1/2 |(Gk+1B)(x)|1/2

|(GkB)(x)| .

PROOF. Using the formula (2) and Equation (5), we obtain this theorem for space-
like geodesics of M . Since GkB is constant, say bk, on U+M , we obtain (GkB)(v) =
bk〈v, v〉k(k+1)/2 for any v ∈ T M . Thus we have sgn (GkB)(x)/sgn (Gk−1B)(x) = (−1)kεk

for x ∈ U−M . Hence we can prove the statement for time-like geodesics in a similar way. �

From the definition of geodesic non-degeneracy order d , we can see that even if f ◦ γ is
of proper order > d , it never has the d-th Frenet curvature. For convenience, we consider the
following property:
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(Pe) All geodesics of M are of proper order ≤ e in M̄ and there exists a geodesic which

is of proper order e in M̄ .
From the definition of Frenet curves, we obtain the following corollary.

COROLLARY 3.9. Under the same assumption as in Theorem 3.8, we see that if (Pd)

holds, then f is a helical geodesic immersion of order d .

We showed in [7] that helical geodesic immersions have geodesic normal sections in
semi-Riemannian geometry. For a helical geodesic immersion of order d , it is obvious that
the helical order is equal to the geodesic non-degeneracy order, and (Pd) holds. Consequently
the next corollary follows.

COROLLARY 3.10. f is a helical geodesic immersion of order d if and only if f has
geodesic normal sections with geodesic non-degeneracy order d and the property (Pd) holds.

REMARK 3.11. In [8] we constructed helical geodesic immersions of arbitrary order
d between semi-Riemannian spheres. Using these immersions, we can obtain an isometric
immersion with geodesic normal sections between semi-Riemannian spheres such that its
geodesic non-degeneracy order is equal to d and the property (Pe) holds, where d and e are
any natural numbers with d ≤ e.

Put N := 
{i | εi = −1, 1 ≤ i ≤ d} and N̄ := 
{i | (−1)iεi = −1, 1 ≤ i ≤ d}. If
M is indefinite, then it is clear that N, N̄ − 1 ≤ ind M̄ − ind M and d − N − 1, d − N̄ ≤
codim M − (ind M̄ − ind M).

COROLLARY 3.12. Under the same assumption as in Theorem 3.8, we can see that
if M is indefinite and either N = ind M̄ − ind M , N̄ − 1 = ind M̄ − ind M , d − N − 1 =
codim M − (ind M̄ − ind M) or d − N̄ = codim M − (ind M̄ − ind M) holds, then f is a
helical geodesic immersion of order d .

PROOF. From Lemma 3.6 and the definition (4) of Ck,l , by induction, we can prove
that each Ck,l in Equation (3) is constant and that if k + l is odd and l ≥ 2, then Ck,l = 0.

In the case where N = ind M̄ − ind M , the orthogonal complement of Sp {σ (k)
x (0) | 1 ≤

k ≤ d} in E(γx(0), γ ′
x(0)) is positive definite for any x ∈ U+M . Then the definition of

the geodesic non-degeneracy order and Equations (3) and (5) imply that (Dd−1B)(xd+1) is a

linear combination of (Dl−2B)(xl), l ∈ {2, 4, . . . , d − 1} or l ∈ {3, 5, . . . , d − 1} according
as d + 1 is even or odd. Therefore we can obtain the following equation for x ∈ U+M:

(Dd−1B)(xd+1) =
∑

l

cl 〈x, x〉(d+1−l)/2(Dl−2B)(xl) ,(6)

where cl ∈ R. It is obvious that Equation (6) holds for any x = v ∈ T M . Hence
any geodesics of M are of proper order ≤ d in M̄ , that is, (Pd) holds. It follows from
Corollary 3.9 that f is helical. Also using a similar argument to the other cases, we obtain
this corollary. �
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COROLLARY 3.13. Under the same assumption as in Theorem 3.8, we can see that if

M is space-like and either N = ind M̄ − ind M or d −N − 1 = codim M − (ind M̄ − ind M)

holds, then f is a helical geodesic immersion of order d .

When M̄ is space-like, that is, Riemannian, the equation N = ind M̄ − ind M = 0 holds.
Thus the last corollary recovers results of Verheyen [11], and Hong and Houh [5].
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