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Abstract. We study an isometric immersion f : M — M with geodesic normal sections, where M is a semi-
Riemannian space form. In Riemannian geometry, it is known that f is helical, in particular, all geodesics of M have
the same proper order in M. However this does not hold in general, when M is indefinite semi-Riemannian. We give
sufficient conditions for an isometric immersion with geodesic normal sections to be helical.

1. Introduction

Let M be an n-dimensional submanifold in a Euclidean space R"*4. For any point
p € M and unit tangent vector x in the unit tangent sphere U, M at p, let E(p, x) be the
affine (¢ + 1)-dimensional subspace of R"*¢ through p spanned by x and the normal space
TPLM . The intersection of M and E(p, x) gives rise to a unit speed curve 8, with §,(0) = p
and B;(0) = x defined on an open interval containing 0. This curve By is called the normal
section at (p, x). In Chen and Verheyen [3], M is said to have geodesic normal sections if, for
any p € M and x € U, M, the normal section B, at (p, x) is geodesic in a neighborhood of
0. Another important concept used in this paper, called helical immersions, originated from
Besse [1]. Let f : M — M be an isometric immersion between Riemannian manifolds. If,
for each unit speed geodesic y of M, the curve f oy in M is a helix of order d with curvatures
M, ..., Ag—1 which are independent of y, then f is called a helical geodesic immersion of
order d. Chen and Verheyen [3] proved that a helical submanifold in a Euclidean space has
geodesic normal sections using a result for helical geodesic immersions in Sakamoto [10].
Verheyen proved its converse in [11]. Their results were proved in the case where the ambient
space is a Riemannian space form by Hong and Houh [5].

Also in semi-Riemannian geometry, the notions of submanifolds with geodesic nor-
mal sections and helical geodesic immersions can be introduced. Kim [6] classified semi-
Riemannian surfaces in R> with vanishing mean curvature and geodesic normal sections. His
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classification shows that there exist surfaces with geodesic normal sections which are not he-
lical. The present author [7] studied helical geodesic immersions between semi-Riemannian
manifolds and showed that a helical immersed submanifold in a semi-Riemannian space form
has geodesic normal sections.

In this paper, we study semi-Riemannian isometric immersions with geodesic normal
sections Let f : M — M be a semi-Riemannian isometric immersion into a semi-Riemannian
space form. In contrast to the Riemannian case, there exist space-like, time-like and null
geodesics and normal sections on M. Thus we say that f has space-like (resp. time-like)
geodesic normal sections if any space-like (resp. time-like) unit speed normal section By is
locally geodesic. We show that f has space-like geodesic normal sections if and only if f has
time-like geodesic normal sections. Furthermore, we prove that if f has space-like geodesic
normal sections, then there exist some d € N, positive constants A1, ..., Ag—1 € R such that,
for any space-like unit speed geodesic y of M, f o y has Frenet curvatures A1, ..., Ag—1 in
M. In semi-Riemannian geometry, note that f o y is not necessarily of proper order d. As
a corollary of this result, we can give some sufficient conditions for an isometric immersion
with geodesic normal sections to be helical.

In Section 2 we prepare basic notations and equations that we use later. The definitions
of isometric immersions with geodesic normal sections and helical geodesic immersions in
semi-Riemannian geometry are also given. Section 3 is devoted to the study of such isometric
immersions.

2. Preliminaries

Let f : M — M be an isometric immersion of a connected n-dimensional semi-
Riemannian manifold M into an (n + ¢)-dimensional semi-Riemannian manifold M of con-
stant sectional curvature. For all local formulas and computations we may regard f as an
embedding and thus we shall often identify p € M with f(p) € M and the tangent space
T,M the subspace fi(TpM) of TpM . We denote the normal space of f at p by T;-M .
Let V (resp. V) be the Levi-Civita connection of M (resp. M), B the second fundamen-
tal form, A the shape tensor, and V-1 the normal connection. Clearly A is related to B as
(AeX,Y) = (B(X,Y), &), where (, ) is the semi-Riemannian metric of M, and X and Y are
vector fields tangent to M, and & is a vector field normal to M.

The k-th (k > 1) covariant derivative D¥ B of B with respect to V and V= is defined by

(DEBY(X1, ..., Xk42) - = Vi, (DX ' B)(Xa, ..., Xiy2))

k+2

=Y DB XKoo Va Ki e Xikg2)
i=2

where D°B = B. Then the Ricci identity for (D*2B)(X1, ..., Xp) is
(D*BY(X. Y. X1..... X)) — (D*B)(Y. X, X1...., Xp)
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k
= R*(X,Y)(D*?B)(X1,.... Xx) = Y (D**B)(X1,..., RXX,)Xi, ..., Xp),
i=1
where R (resp. R1L) is the curvature tensor of V (resp. V1), We denote (D¥B)(X, ..., X) by
(D¥ B)(X*+2) for short.
The equations of Gauss, Codazzi and Ricci are given by
RX,Y)Z=c({{Y,Z)X —(X,Z)Y) + Apy, )X — Apx,2)Y ,
(DB)(X.Y,Z) = (DB)(Y, X, Z),
RE(X, Y)E = B(X, AgY) — B(A¢X, Y),

respectively, where ¢ is the constant sectional curvature of M.

Let L be a submanifold of M. Hereafter, we say that L is totally geodesic in M, if VxY
is tangent to L for any tangent vector fields X and Y of L. We note that the induced tensor
field on L from the semi-Riemannian metric on M is not necessarily non-degenerate. Since
M has constant sectional curvature, if, for any p € M and subspace V of T,,M , there exists a
totally geodesic submanifold L containing p such that T,L = V.

Forany p € M andv € T,M (v # 0), let E(p, v) be the vector subspace of TpM
spanned by v and T;-M . E(p, v) determines a (g + 1)-dimensional totally geodesic subman-
ifold E(p, v) of M such that pE E(p, v) and Tpf(p, v) = E(p, v). The intersection of M
and E(p, v) gives rise to a regular curve B, such that 8,(0) = p and B, (0) = v in a neighbor-
hood of p in M, which is called a normal section of f at (p, v). An isometric immersion f
has geodesic normal sections if B, is pregeodesic on M in a neighborhood at 0 for any p € M
andv € T, M (v # 0) (or, equivalently, each geodesic of M is locally a normal section of f).
For example, semi-Riemannian spheres and their Veronese immersions ([2, Examples 1.1 and
1.2]) have geodesic normal sections.

EXAMPLE 2.1. (cf.[2], [6]) For real-valued smooth functions fi, ..., fi € C*(R"),

R! > p> (fi(p)..... filp). p. fi(p). ... fi(p) € RIJP =R x R! x R}

is an isometric immersion with geodesic normal sections, where R} is the n-dimensional
semi-Euclidean space with index .

In this paper, we say that a curve in M is of proper order e if the image is contained in
some e-dimensional totally geodesic submanifold of M and is not contained in any (e — 1)-
dimensional ones. We recall the notion of Frenet curves in semi-Riemannian geometry. Let
¢: 1 — M aunit speed curve on M, thatis, |(c/, ¢/} = 1. We putfork e Nands € I,

(Gre)(s) = det({cD(s), ¢ () 1<i,j<k -

In contrast to the Riemannian case, we note that the equations Gxc # 0 (1 < k < d),
Gai1c = 0on I do not necessarily mean that ¢(¢+1 is linearly dependent on ¢, ¢”, . .., ¢,
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We assume that Gxc # O on [ forany 1 < k < d. So we have d < e in general, where e
is the proper order of c¢. Then, we can apply the Gram-Schmidt orthonormalization process

to c’(s), ¢’ (s), ..., c(d)(s) at each point c(s). Consequently we have the Frenet d-frame field
c1,¢2,...,cq of ¢, which satisfies
(1) c; = —¢gi—18iki—1ci—1 + Ajcip1 for 1 <i<d-—1,

where g = A0 =0,c0 =0,¢; = {ci,ci) e {—1,+1} (1 <i <d)and A; (1 <i <d —1)are
functions on / satisfying the following formulas:

senGic —_ 1Gim1el'2|Gigic|'2

2 & = ,
@) ! sgnGi_ic ' |Gicl|

’

where Goc = 1. (See [4] for a computational algorithm, the d-Frenet frame, and the curva-
tures of a Euclidean curve.) Conversely if a curve ¢ : I — M satisfies Equation (1), then
Grc # 0 on I holds for any 1 < k < d. For such a curve ¢, we say that ¢ has the Frenet
curvatures Ay, ..., Ag—1 and signatures €1, . . ., 5. Furthermore, when cd+D ig linearly de-
pendent on ¢, ¢”, ..., c@ (hence the proper order is equal to d), the curve c satisfies the
Frenet formula: Equation (1) and

€l = —Ed—1€dAd—1Cd—1 -
Then we call the curve ¢ a Frenet curve of order d, curvatures 11, ..., Lg—1 and signatures
€1, ..., &q. If all curvatures are constant, the curve c is called a helix of order d.

An isometric immersion f is called a helical space-like geodesic immersion of order d,
for any unit speed space-like geodesic y of M, the curve f o y in M is a helix of order d,
curvatures Aq, ..., Ag— and signatures &1 = +1, &2, ..., &4, which are independent of the
choice of y. We define a helical time-like geodesic immersion in a similar way.

In [7], we obtained that f is a helical space-like geodesic immersion of order d if and
only if f is a helical time-like geodesic immersion of order d. Hence we may call these helical
geodesic immersions. We also showed that, in semi-Riemannian geometry, a helical geodesic
immersion has geodesic normal sections.

In Riemannian geometry, an isometric immersion f : M — M with geodesic normal
sections is helical ([5], [11]), in particular, every geodesic of M has the same proper order
in M. Also in the case where M is indefinite, semi-Riemannian spheres and their Veronese
immersions have this properties for non-null geodesics. However, for an isometric immersion

n+21

in Example 2.1, the proper order in R;);” of a non-null geodesic y of Ry depends on the

initial velocity y’(0) in general.

3. Isometric immersions with geodesic normal sections

Let f : M — M be an isometric immersion of a connected semi-Riemannian manifold
M into a semi-Riemannian manifold M of constant sectional curvature and dim M > 2. We
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denote by UTM (resp. U~ M) the space-like (resp. time-like) unit tangent bundle of M.
Whenever x € UM = U;M UU, M (p € M), we give the normal section B, of f at
(p, x) the arc-length parameter with B, (0) = p and B, (0) = x. Then we temporarily say that
f has space-like or (+1)- (resp. time-like or (—1)-) geodesic normal sections if 8, is geodesic
in M forany p € M and x € U:;M (resp. U, M). For p € M and v € T, M, we let y, stand
for a geodesic of M such that y,(0) = p and y,(0) = v. We puto, = foy,and V = o).
The uniqueness theorem for geodesics implies the following lemma ([3, Lemma 1]).

LEMMA 3.1. If f has e-geodesic normal sections (¢ € {—1,+1}), then, for any
x € U®M, after a suitable reparametrization, oy locally remains a normal section of f at
(yx(8), yi(s)) for all s € domyy. In particular, the component of U)Ek) (s) tangent to M is
proportional to o (s) for any s € domyy and k € N.

From now on, for convenience, we write (D! B)(v) instead of v € T M. The following
arguments are analogous to those of Verheyen [11].

LEMMA 3.2. If f has e-geodesic normal sections (¢ € {—1, +1}), then the following
property (Fy) holds for any x € U*M and k € N:
(F1) o, =X, (F2) o/ = B(X?), and for k > 3,
(Fk) there exist smooth functions Cy; (1 <1 < k) ondom yx such that Cyy =1, Cx -1 =0
and

k
3) o =3"Cri (D'2B)(XY),
=1

and A pi-3 gy ok-1yx = (D3 B) (xk=1), B(x?))x holds.

PROOF. We have o] = X, 0/ = B(X?) and o¥ = —AgxyX + (DB)(X3). Accord-
ing to Lemma 3.1, we get Ap(,2)x = e(B(x?), B(x?))x for any x € U°M. Hence (F1), (F2)
and (F3) hold, where C33 = 1, C32 = 0 and C3.1 = —&(B(X?), B(X?)). By induction on k,
we shall show that the property (Fi) holds for any k > 3. We already have (F3). We verify

that (F+1) holds when (F) is true for any 3 < [ < k. From the induction hypothesis, it
follows that

k—1

ok+h = <(xck,1) — Y Crie((D'2B)(x), B(X2)))X — A(pi-2py(xiy X
=2

k
+ Y ((XCri+ Cri-n) (D2 B) (X)) + (D* ' B)(X ).
=2

According to Lemma 3.1 again, we have for any x € U*M,

A(pr-2g) kX = e((DF2B)(x"), B(x?))x .
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Therefore we put

@ { Citrkt1 =1, Crp11:= (XCpp) + Cy -1 for2 <1 <k,
Cirt.1 = (XCi1) = Xy Crr (D2 B) (X)), B(X?).
Since we obtain (Fy41), the proof is complete. a

LEMMA 3.3. Let ¢ be (—1) or (41). The following conditions are equivalent:
(i) f has e-geodesic normal sections,
(i) f has geodesic normal sections,

(iii) Foranyx € U*M and k > 2,

A(pr-2pychyx = e((DF2B)(x"), B(x?))x
(iv) Foranyve TM andk > 2,
(v, V) Apr-2)0ky v = (DF2B)(WF), BwH))v.

PROOF. On account of Lemma 3.2, (i) implies (iii). It is obvious that (iii) and (iv) are
equivalent. Suppose that (iv) holds. Then we have A pr-2py,kv A v = 0 for any non-null
vector v. Moreover because of the continuity of the map TM > v > A (pi-2p) kU AV €

/\2 TM, A pr-2pyk)v Av is identically vanishing on T M forany k € N. So, forp € M, v €

T,M (v # 0), we can see that Sp{a"(s) | k € N} C E(y,(s), y,(5)) (s € dom y,) is locally
parallel along o, with respect to V, where Sp denotes the linear span. Therefore the image
of oy, is locally contained in E (p, v), which is a totally geodesic submanifold in M such
that 7 E (p,v) = E(p, v). Thus f has geodesic normal sections. It is trivial that (ii) implies
). O

Since we see that f has space-like geodesic normal sections if and only if f has time-
like geodesic normal sections, hereafter, we assume that f has space-like geodesic normal
sections, hence ind M < dim M. Then, by virtue of Lemma 3.3, we can see that f has null
geodesic normal sections, that is, each normal section 8, of f is locally pregeodesic for any
null vectorv € A = Ap, where A is the nullcone of 7, M.

peM
For v € TM, k,I € N, we put v ;(v) := ((D*2B)(v*), (D'2B)(v))) and
(GrB)(v) = det(v; j(v))i<i,j<k, and (GoB)(v) := 1. From Equation (3) and Cy x = 1
of Lemma 3.2 and Lemma 3.3, we have /\f;l ol = f:l (D'"2B)(X") forx € UM. So
we have forany x € UM,
(5) Grox = (GkB)(X) .

LEMMA 3.4. The following property (E;) holds fori > 2:
Foranyh,jeNo(j>2,0<h<i—1),peM,xe U;M,y eUpM ({x,y)=0),

(D'2B)(x", y, x="=1 (DI72B)(x/)) = 0.
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PROOF. The property (E>) follows from Lemma 3.2. Suppose that (E,,;) holds for any
2 <m <i. We prove that (E;41) is satisfied (i > 2). For 1 < h < i, we have from (E;),

(DB (x", y, '), (DI 72 B) (x 7))
=x - (D'2B)(X" Y, X', (DI72B)(XY))

— (DB y, X, (DT B () = 0,

where X and Y are extensions along o, = f o y, of x and y respectively satisfying V., X =
V.Y =0and (X, Y) = 0. Hence we only need to prove (E; 1) for i = 0. Using the Codazzi
equation, we see that (£3) for 1~ = 0 holds. So we shall prove the case i > 3. Applying Ricci
identity for (D'3B)(x'~1), we have

(D' B)(x, y.x' ™, (DI2B)())) = (D' B)(y, 2D, (D)2 B) ()

{([Api-3pyxi-1)s Api2 By X, V)
i—4

+ ) ((DTB)A", Rx, y)x,x), (DI 2B ().
h=0

By (x, R(x, y)x) = 0 and the induction hypothesis, we obtain (E;+1) for » = 0. Conse-
quently (E;) is true for any i > 2. O

LEMMA 3.5. Ifk +1is even, then vy is constant on U;Mfor eachp e M. If k +1
is odd, then |vi | is constant on U;{M for each p € M. In this case, ifU;{M is connected,
then vi; = 0on U;M.

PROOF. Itis clear when k = 1 or/ = 1. So we only need to verify this lemma for
k,1 > 2.Letc.(0) (resp. s¢(6)) be cos O or cosh @ (resp. sin 6 or sinh #) according to whether
gisequalto (+1) or (—1). Forany x € U;“M (p € M)and y € Up,M such that (x, y) =0,
(v,y) =ee{-1,+1},weputz,(0) = c:(0)x +5:(0)y, hence z.(0) € U;‘M forany 6 € R.
Using Lemma 3.4, we have dd_e |0:0vk,z(zg(9)) = 0. Thus v is constant on a component of
U M. On the other hand, for any x € UM, vy i(—x) = (=D g (x). If U,fM is non-
connected (hence it has two components), then the vector (—x) is in the component which
does not contain x € U ;{ M. Therefore this lemma is proved. |

LEMMA 3.6. Each vy is constant on UT M for any k, [ € N. In particular, if k + 1 is
odd, then vy | vanishes.

PROOEF. Since it is clear when kK = 1 or [ = 1, we assume that k,/ > 2. Because
dimM > 2,forany p € M,y € U,M, there exists x € U;‘M such that (x, y) = 0. Using
Lemma 3.4, we have

y v (X') = (DF2B)(y, x5), (D2 B)(x))) + (D2 B)(x%), (D' 2 B) (v, x')) = 0,
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where X’ is an extension of x along o, such that ?yX " = 0. Since the equation above holds
forany p € M, y € U,M, using Lemma 3.5, we can obtain this lemma in the cases where
k + [ is even. When k + [ is odd and U;{M is connected, this lemma is clear by Lemma 3.5.

In the case where k + [ is odd and U I‘,“ M is non-connected,

V1 () = X - p—1,1(X) — Ve—1,141(x) = —Vp—1,141(x) = - - -
= ((=D*=D22) x vgepi— 12, (kpi—1y2(X) = 0,

where x € U;M (p € M). Thus we have finished the proof of this lemma. O

Since f has null geodesic normal sections, we can see that Ulf ) is a linear combination

of V, B(V?), ..., (D*2B)(V¥), where v € A. Using Lemma 3.6, in the case where k + [ is
even, there exists dy ; € R such that vg ;(v) = dg (v, v)(kH)/2 forany v € T M. Consequently
Vk,1(v) = 0 for any k,/ € N and null vector v € A. So, it is obvious that the scalar product
at o,,(s) € M is vanishing on Sp {olfk) (s) | k € N} which is a subspace of E(yy(s), ¥, (s)).
Therefore we conclude

COROLLARY 3.7. If f has space-like geodesic normal sections, then f has null ge-
odesic normal sections. In particular, for any null vector v € A, each normal section By is
locally contained in a totally geodesic submanifold of M whose induced metric is identically
vanishing.

Lemma 3.6 implies that G B is constant on U+ M for any k € N. Thus there uniquely
exists d € N such that GkB # 0,1 < k < d, and G441 B = 0. Then we call this natural
number d the geodesic non-degeneracy order of f.

THEOREM 3.8. Assume that f : M — M is an isometric immersion with space-like
geodesic normal sections and its geodesic non-degeneracy order is equal to d. Then, for any
space-like (resp. time-like) unit speed geodesics y of M, the curve f oy has constant Frenet

curvatures A1, ..., Ad—1, signatures €1, ..., &q (resp. (—1)181, R (—1)d8d) in M, where
forx e Utwm,
_sgn (G B)(x) . |(Gr-1B)0)|'? [(Giy1 B)(0)|'/2
sgn (Gx—1B)(x) [(GrB)(x)| '

PROOF. Using the formula (2) and Equation (5), we obtain this theorem for space-
like geodesics of M. Since Gy B is constant, say by, on UTM, we obtain (GyB)(v) =
by (v, v)**+D/2 for any v € TM. Thus we have sgn (G B)(x)/sgn (Gx—1B)(x) = (—1)kgg
for x € U~ M. Hence we can prove the statement for time-like geodesics in a similar way. O

From the definition of geodesic non-degeneracy order d, we can see that even if f oy is

of proper order > d, it never has the d-th Frenet curvature. For convenience, we consider the
following property:
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(P,) All geodesics of M are of proper order < e in M and there exists a geodesic which
is of proper order e in M.
From the definition of Frenet curves, we obtain the following corollary.

COROLLARY 3.9. Under the same assumption as in Theorem 3.8, we see that if (Pg)
holds, then f is a helical geodesic immersion of order d.

We showed in [7] that helical geodesic immersions have geodesic normal sections in
semi-Riemannian geometry. For a helical geodesic immersion of order d, it is obvious that
the helical order is equal to the geodesic non-degeneracy order, and (Py) holds. Consequently
the next corollary follows.

COROLLARY 3.10. f is a helical geodesic immersion of order d if and only if f has
geodesic normal sections with geodesic non-degeneracy order d and the property (Pg) holds.

REMARK 3.11. In [8] we constructed helical geodesic immersions of arbitrary order
d between semi-Riemannian spheres. Using these immersions, we can obtain an isometric
immersion with geodesic normal sections between semi-Riemannian spheres such that its
geodesic non-degeneracy order is equal to d and the property (P,) holds, where d and e are
any natural numbers with d < e.

Put N :=ti{i|e; = —1,1 <i <d}and N := g{i | (=Die; = —=1,1 < i < d}. If
M is indefinite, then it is clear that N, N — 1 < indM —ind M andd — N —1,d — N <
codim M — (ind M — ind M).

COROLLARY 3.12. Under the same assumption as in Theorem 3.8, we can see that
if M is indefinite and either N = ind M —ind M, N —1 = indM —indM,d — N — 1 =
codimM — (ind M —ind M) ord — N = codimM — (ind M — ind M) holds, then f is a
helical geodesic immersion of order d.

PROOF. From Lemma 3.6 and the definition (4) of Ci j, by induction, we can prove
that each Cy; in Equation (3) is constant and that if kK +/ is odd and [ > 2, then C¢; = 0.
In the case where N = ind M — ind M, the orthogonal complement of Sp {U,Ek) O]1 <
k < d} in E(yx(0), y;(0)) is positive definite for any x € U TM. Then the definition of
the geodesic non-degeneracy order and Equations (3) and (5) imply that (D?~!B)(x4+1) is a
linear combination of (D'~2B)(x!), 1 € {2,4,...,d —1}orl € {3,5,...,d — 1} according
as d + 1 is even or odd. Therefore we can obtain the following equation for x € Ut M:

6) (DB =Y o x, x) DD By ()
l

where ¢; € R. It is obvious that Equation (6) holds for any x = v € TM. Hence
any geodesics of M are of proper order < d in M, that is, (P;) holds. It follows from
Corollary 3.9 that f is helical. Also using a similar argument to the other cases, we obtain
this corollary. a
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COROLLARY 3.13. Under the same assumption as in Theorem 3.8, we can see that if
M is space-like and either N = ind M —ind M ord — N — 1 = codim M — (ind M — ind M)
holds, then f is a helical geodesic immersion of order d.

When M is space-like, that is, Riemannian, the equation N = ind M —ind M = 0 holds.
Thus the last corollary recovers results of Verheyen [11], and Hong and Houh [5].
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