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Structure of Jackson Integrals of BCn Type

Kazuhiko AOMOTO and Masahiko ITO

Kyoto Sangyo University and Aoyama Gakuin University

(Communicated by K. Uchiyama)

Abstract. The finiteness of non-symmetric and symmetric cohomologies associated with Jackson integrals
of type BCn is studied. The explicit bases of the cohomologies are also given. These bases determine parameter-
dependent Jackson integral, and it is shown that they satisfy holonomic systems of linear q-difference equations with
respect to the parameters.

1. Introduction

q-hypergeometric Jackson integrals are defined as an infinite sum over a lattice of a
q-multiplicative function Φ(z) defined on the n-dimensional algebraic torus (C∗)n. Jackson
integrals with Weyl group symmetry are especially interesting. In particular, such integrals
with symmetry associated with A-type root system have already been investigated by several
authors, and they have found important applications in product formulae, q-KZ equations,
Yang–Baxter equations, orthogonal polynomials, etc (see [10, 25, 27, 34]). However, very
little is known about BCn-type integrals.

One of us has developed the rational q-de Rham cohomology theory for studying Jack-
son integrals giving general q-hypergeometric functions (see [2, 3, 4, 5]). The purpose of this
paper is to show the finite dimensionality of non-symmetric and symmetric cohomologies
Hn(X,Φ,∇q ), Hn

sym(X,Φ,∇q ) associated with Jackson integrals of type BCn, and to find

their explicit bases. Futhermore, we show that the parameter-dependent integrals determined
by these bases satisfy linear holonomic q-difference equations with respect to the parame-
ters (see Theorems 1.6–1.9). For the generic case, finite dimensionality was proved in full
generality in [9, 31].

The symmetric cohomologyHn
sym(X,Φ,∇q ), which has a basis represented by symplec-

tic Schur functions, is particularly important. When the dimension κ = dimHn
sym(X,Φ,∇q )

is equal to 1, the BCn-type Jackson integrals (or Gustafson–Macdonald type sums) are ex-
pressible as an infinite product of q-gamma functions and theta functions (see [14, 15, 21, 22,
26]).
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At present, the explicit form of q-difference equations arising from BCn-type Jackson
integrals has not been found except for the BC1 case (see (45) and (46)). Instead, using the
definition (1) of Jackson integral below, we can evaluate the determinants of the pairings of
the cohomologyHn

sym(X,Φ,∇q ) and the corresponding nth homology (represented by lattice

orbits in (C∗)n). Some of these results are given in Section 4 without proof. Further details
are discussed in [7, 8, 24, 23]. Finally, in the appendix we prove the dimension formula for
κ̃ = dimHn(X,Φ,∇q ) in a purely analytic way, using generating functions for counting the
number of special tree-like graphs.

To explain the main theorems we first introduce the Jackson integrals and their coho-
mologies.

1.1. Jackson integral. Throughout this paper, q is a real number such that 0 < q < 1
and we use the symbols (a; q)∞ = ∏∞i=0(1 − aqi) and (a; q)k = (a; q)∞/(aqk; q)∞ for
k ∈ Z.

Let m be an even positive integer defined by m = 2s + 2, s = −1, 0, 1, 2, 3, . . .
and a1, a2, . . . , am, t1, t2, . . . , tl be arbitrary constants in C∗. We denote by Φ(z) =
Φ(z1, z2, . . . , zn) the q-multiplicative function of Bn type

Φ(z)=
n∏
r=1

z
m
2 −δ+(n−r)(l−2τ )
r

m∏
k=1

n∏
r=1

(qa−1
k zr ; q)∞

(akzr ; q)∞

×
l∏

k=1

∏
1≤i<j≤n

(qt−1
k zi/zj ; q)∞(qt−1

k zizj ; q)∞
(tkzi/zj ; q)∞(tkzizj ; q)∞

defined on X = (C∗)n, where qδ = a1a2 · · · am and qτ = t1t2 · · · tl (see [18, 19]). For
an arbitrary z = (z1, z2, . . . , zn) ∈ X, we define the q-shift z → zqν by the lattice point
ν = (ν1, ν2, . . . , νn) ∈ Zn as

zqν := (z1q
ν1, z2q

ν2, . . . , znq
νn) ∈ X .

The set Λz := {zqν ∈ X ; ν ∈ Zn} forms an orbit of the lattice Zn in X.

DEFINITION 1.1. For a function ϕ(z) on X and an arbitrary point ξ =
(ξ1, ξ2, . . . , ξn) ∈ X, the Jackson integral over Λξ is defined as the pairing of difference
n-forms and lattice orbits∫

Λξ

Φ(z)ϕ(z)
dqz1

z1
∧ · · · ∧ dqzn

zn
:= (1− q)n

∑
ν∈Zn

Φ(ξqν)ϕ(ξqν) (1)

provided this sum exists. The left-hand side of (1) is simply denoted by 〈ϕ, ξ〉.
REMARK 1.1.1. If m is an odd integer, i.e., m = 2s + 1, then it is sufficient to take

a2s+2 = √q in the case m = 2s + 2. The main results at the end of this section are not
changed by this substitution.
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By definition, the Jackson integral 〈ϕ, ξ〉 is invariant under the q-shift ξ → ξqν , ν ∈ Zn.
Since 〈1, ξ〉 is convergent if

|a1a2 · · · am(t1t2 · · · tl)n+i−2| > q
m
2 +(n+i−2) l2 for i = 1, 2, . . . , n , (2)

and {
akξr �∈ qZ for 1 ≤ r ≤ n, 1 ≤ k ≤ m ,
tkξi/ξj , tkξiξj �∈ qZ for 1 ≤ i < j ≤ n, 1 ≤ k ≤ l ,

we assume the above conditions for a1, a2, . . . , am, t1, t2, . . . , tl and ξ ∈ X.
Let {ε1, ε2, . . . , εn} be the standard basis of Rn satisfying 〈εi, εj 〉 = δij for all i, j =

1, 2, . . . , n, where δij denotes the Kronecker delta. The Weyl groupW of typeCn is generated
by the reflections σε1−ε2 , σε2−ε3 , . . . , σεn−1−εn , σ2εn, where

σα(x) := x − 2
〈α, x〉
〈α, α〉α for x ∈ Rn .

The scalar product 〈·, ·〉 is uniquely extended linearly to Cn. For the variable z ∈ X, if we
put z = (q〈ε1,x〉, . . . , q〈εn,x〉), then the transformation of z by σ ∈ W is defined by σz :=
(q〈ε1,σx〉, . . . , q〈εn,σx〉). For instance, the transformations of z ∈ X by the generators of W
are given by

σεi−εi+1 : zi ←→ zi+1 (1 ≤ i ≤ n− 1),

σ2εn : zn ←→ z−1
n .

The group W acts on a space of functions on X:

σ(∈ W) : f (z) −→ σf (z) := f (σ−1z).

Let Θ(z) be the function on X defined by

Θ(z) := (1− q)n∏n
r=1 z

s+1−δ+(n−r)(l−2τ )
r∏m

h=1
∏n
r=1 ϑ(ahzr; q)

∏l
k=1
∏

1≤i<j≤n ϑ(tkzi/zj ; q)ϑ(tkzizj ; q)
(3)

where ϑ(z; q) is the Jacobi theta function (z; q)∞(q/z; q)∞(q; q)∞. Since the theta function
has the property ϑ(qz; q) = −ϑ(z; q)/z, if we put

Uσ (z) := σΘ(z)

Θ(z)
for σ ∈ W , (4)

then Uσ (z) is the cocycle of pseudo-constants, i.e., a constant with respect to the q-shifts
z→ zqν , ν ∈ Zn. More precisely, by definition of Φ(z), it follows that the function σΦ(z) is
equal to Φ(z) up to the pseudo-constant Uσ (z) as follows:

σΦ(z) = Φ(z)Uσ (z) . (5)

In this sense, we regard the function Φ(z) as symmetric with respect toW , and bothΦ(z) and
σΦ(z) satisfy the same q-difference equations with respect to the q-shift z→ zqν , ν ∈ Zn.
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From (1) and (5), we immediately have the following lemma:

LEMMA 1.2. If σ ∈ W , then

σ 〈ϕ, ξ〉 = Uσ (ξ)〈σϕ, ξ〉 . (6)

In particular, if ϕ(z) is skew-symmetric under the action of W , i.e.,

σϕ(z) = sgn(σ ) ϕ(z) ,

then

σ 〈ϕ, ξ〉 = sgn(σ )Uσ (ξ)〈ϕ, ξ〉 . (7)

1.2. Rational de Rham cohomology of BCn type. We denote by L the ring of Lau-

rent polynomials C[z1, . . . , zn, z
−1
1 , . . . , z−1

n ] over C. Let R be the L-module generated by
the following set of rational functions of z:

⋃
h≥0

{ m∏
k=1

n∏
j=1

(akzj ; q)−h
(qa−1

k zj ; q)h
l∏

k=1

∏
1≤i<j≤n

(tkzi/zj ; q)−h (tkzizj ; q)−h
(qt−1

k zi/zj ; q)h (qt−1
k zizj ; q)h

}

and Ralt be the part of R consisting of the elements which are skew-symmetric under the
action of W , i.e.,

Ralt := {ϕ(z) ∈ R ; σϕ(z) = sgn(σ ) ϕ(z) for σ ∈ W } .
LEMMA 1.3. For ϕ(z) ∈ R and ξ ∈ X, the Jackson integral 〈ϕ, ξ〉 is written as

〈ϕ, ξ〉 = fϕ(ξ)Θ(ξ)
where fϕ(z) is a holomorphic function on X. Moreover, if ϕ(z) ∈ Ralt, then there exists a
holomorphic function gϕ(z) on X such that

〈ϕ, ξ〉 = gϕ(ξ)Θ(ξ)θalt(ξ)

where

θalt(z) :=
n∏
i=1

ϑ(z2
i ; q)
zi

∏
1≤j<k≤n

ϑ(zj /zk; q)ϑ(zjzk; q)
zj

.

Note that the function θalt(z) is obviously skew-symmetric, i.e.,

σθalt(z) = sgn(σ ) θalt(z) . (8)

We denote by Tu and T −u the shift operators on a parameter u → uq and u → uq−1

respectively. The cocycle function associated with Φ(z) is defined by

bν(z) := Φ(zqν)/Φ(z) = T ν1
z1
· · ·T νnzn Φ(z)/Φ(z) for ν ∈ Zn ,

which is the so-called b-function. The b-function bν(z) satisfies the relation

σbν(z) = bσ(ν)(z) for σ ∈ W. (9)
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In particular, if ν = εr , r = 1, 2, . . . , n, we have

bεr (z) = q
m
2 −δ+(n−r)(l−2τ )

m∏
k=1

1− akzr
1− qa−1

k zr

×
l∏

k=1

( r−1∏
j=1

(1− t−1
k zj /zr )(1− tkzj zr )

(1− q−1tkzj /zr )(1− qt−1
k zj zr )

×
n∏

j=r+1

(1− tkzr/zj )(1− tkzj zr )
(1− qt−1

k zr/zj )(1− qt−1
k zj zr)

)
,

which is simply denoted by br(z).
Let ∇q be the n-dimensional covariant q-difference operator defined by

∇q : (ψ1(z), ψ2(z), . . . , ψn(z)) ∈ Rn −→
n∑
j=1

∇q,jψj (z) ∈ R

where ∇q,jψ(z) := ψ(z) − bj (z)Tzj ψ(z). We denote by A the alternation

A : f (z) −→
∑
σ∈W

sgn(σ ) σf (z)

for a function f (z) on X. Then we have

Ralt =AR , (10)

A∇q (Rn)=∇q (Rn) ∩ Ralt . (11)

DEFINITION 1.4. The quotients H = R/∇q (Rn) and Hsym = Ralt/A∇q (Rn) de-
fine the n-dimensional non-symmetric and symmetric rational de Rham cohomologies
Hn(X,Φ,∇q ), Hn

sym(X,Φ,∇q ) associated with the Jackson integrals (1) respectively. They

are isomorphic (see also [5, 9] for the definitions of these cohomologies).

It should be remarked that here we call the symmetric cohomology for “cohomology
consisting of skew-symmetric elements.” The reader should not be confused by this in the
sequel.

REMARK 1.4.1. By symmetry, it follows that

A∇q (Rn) ⊂ ∇q (Rn) ,
and A∇q,i = A∇q,j for all i, j ∈ {1, 2, . . . , n}, so that we have

A∇q (Rn) = A∇q,rR .
This implies that Hsym is identified with the linear subspace of H consisting of the elements
which are skew-symmetric under the Weyl group W .

LEMMA 1.5. Suppose ϕ(z) ∈ ∇q (Rn). Then 〈ϕ, ξ〉 = 0 and 〈Aϕ, ξ〉 = 0 if they are
summable.
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This lemma shows that the integral 〈ϕ, ξ〉 for ϕ(z) ∈ R and that for ϕ(z) ∈ Ralt depend
only on the quotients H and Hsym respectively.

1.3. Main results. For a sequence of integers λ = (λ1, λ2, . . . , λn) ∈ Zn we set

zλ := zλ1
1 z

λ2
2 . . . z

λn
n and denote the skew-symmetric Laurent polynomials in z

Azλ :=
∑
σ∈W

sgn(σ ) σ (zλ) ,

which are equal to the n × n determinant with (k, j)-entry z
λj
k − z

−λj
k . It is obvious that the

set of skew-symmetric Laurent polynomials is spanned by {Azλ ; λ1 > λ2 > · · · > λn > 0}.

In the sequel we assume that

(C) all the parameters a1, a2, . . . , am and t1, t2, . . . , tl are generic.

The purpose of this paper is to prove the following four theorems:

THEOREM 1.6. Let Q be the set defined by

{(λ1, . . . , λn) ∈ Zn; −s − 1− (n− 1)l ≤ λi ≤ s + (n− 1)l for 1 ≤ i ≤ n} . (12)

Under the condition (C),Hn(X,Φ,∇q ) has dimension κ̃ := {m+ 2(n− 1)l}n and is spanned

by the basis {zλ ; λ ∈ Q}.
THEOREM 1.7. Let Qsym be the set defined by

{(λ1, λ2, . . . , λn) ∈ Zn ; s + (n− 1)l ≥ λ1 > λ2 > · · · > λn ≥ 1} . (13)

Under the condition (C), Hn
sym(X,Φ,∇q ) has dimension κ := (s+(n−1)l

n

)
and is spanned by

the basis {Azλ ; λ ∈ Qsym}.
We obtain the following holonomic q-difference equations for 〈zλ, ξ〉 and 〈Azλ, ξ〉, with

respect to the q-shift of the parameters a1, . . . , am and t1, . . . , tl :

THEOREM 1.8. There exist invertible matrices Yak , Ytj whose entries η(ak)λ,ν , η
(tj )

λ,ν are

rational functions of a1, . . . , am and t1, . . . , tl respectively, such that

Tak 〈zλ, ξ〉 =
∑
ν∈Q

η
(ak)
λ,ν 〈zν, ξ〉 ,

Ttj 〈zλ, ξ〉 =
∑
ν∈Q

η
(tj )

λ,ν 〈zν, ξ〉

where λ runs over the set Q satisfying (12).
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THEOREM 1.9. There exist invertible matrices Yak , Ytj whose entries y(ak)λ,ν , y
(tj )

λ,ν are

rational functions of a1, . . . , am and t1, . . . , tl respectively, such that

Tak 〈Azλ, ξ〉 =
∑

ν∈Qsym

y
(ak)
λ,ν 〈Azν, ξ〉 , (14)

Ttj 〈Azλ, ξ〉 =
∑

ν∈Qsym

y
(tj )

λ,ν 〈Azν, ξ〉 (15)

where λ runs over the set Qsym satisfying (13).

REMARK 1.9.1. If (m, l) = (2n+2, 0) or (4, 1) in Theorem 1.7, then κ = 1 and hence
the matrices Yak and Yt1 in Theorem 1.9 reduce to scalars which are explicitly expressible as
a ratio of product of q-gamma functions. These coincide with some results in [19, 13, 5, 20,
21, 22, 25, etc]. See also Theorems 4.1 and 4.2 in Section 4.

The proofs of Theorems 1.6–1.9 will be given in the next two sections, based on the
results in [4, 9].

2. The dimension of Hn(X,Φ,∇q )
In this section, we prove Theorems 1.6 and 1.8 for non-symmetric case.

2.1. Proof of dimHn(X,Φ,∇q ) ≥ κ̃. Let ∆+ be the set of positive roots of type Bn
relative to the simple root {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, εn}. The set ∆+ is written as

∆+ = ∆+short ∪∆+long

where ∆+short := {εi ; 1 ≤ i ≤ n} and ∆+long := {εi ± εj ; 1 ≤ i < j ≤ n}. Let R be the set

defined by

R := {〈β, x〉 − αk ; β ∈ ∆+short, 1 ≤ k ≤ m} ∪ {〈β, x〉 − τk ; β ∈ ∆+long, 1 ≤ k ≤ l} , (16)

which consists of all affine forms of x = (x1, x2, . . . , xn) ∈ Cn corresponding to each factor
in the numerator of Φ(z) where ak = qαk , tk = qτk and zi = q〈εi ,x〉. We express by µ̄
and −µ0 the homogeneous part and the constant term of µ ∈ R respectively, i.e., we have

µ(x) = 〈µ̄, x〉 − µ0. Let R̃ be the set defined by

R̃ := {{µ(1), . . . , µ(n)} ⊂ R ; [µ̄(1), . . . , µ̄(n)] �= 0
}

where [µ̄(1), . . . , µ̄(n)] denotes the determinant det
(〈µ̄(i), εj 〉)1≤i,j≤n, i.e., µ̄(1), . . . , µ̄(n) are

linearly independent if {µ(1), . . . , µ(n)} ∈ R̃.

LEMMA 2.1.

κ̃ =
∑

{µ(1),...,µ(n)}∈R̃
[µ̄(1), . . . , µ̄(n)]2 . (17)
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REMARK 2.1.1. The system {µ(1), . . . , µ(n)} is associated with a special graph with n
edges, and the identity (17) can be explained in a graphical sense. See [4, 9] and the Appendix
for more details.

PROOF. Let M be the positive definite symmetric matrix of degree n such that

M :=
( ∑
µ∈R
〈µ̄, εi〉〈µ̄, εj 〉

)
1≤i,j≤n

.

The matrixM is written as M = mA+ lB where

A =
( ∑
β∈∆+short

〈β, εi〉〈β, εj 〉
)

1≤i,j≤n
=
( n∑
k=1

〈εk, εi〉〈εk, εj 〉
)

1≤i,j≤n
,

B =
( ∑
β∈∆+long

〈β, εi〉〈β, εj 〉
)

1≤i,j≤n

=
( ∑

1≤k<k′≤n
〈εk − εk′, εi〉〈εk − εk′, εj 〉

)
1≤i,j≤n

+
( ∑

1≤k<k′≤n
〈εk + εk′, εi〉〈εk + εk′, εj 〉

)
1≤i,j≤n

.

Since B = 2(n− 1)A (see [17, Lemma 4.6]) and A is the identity matrix, we have

detM = det((m+ 2(n− 1)l)A) = {m+ 2(n− 1)l}n = κ̃ . (18)

On the other hand, we have the following identity of Gram determinant:

detM =
∑

{µ(1),...,µ(n)}∈R̃
[µ̄(1), . . . , µ̄(n)]2 (19)

From (18) and (19), we obtain (17). This completes the proof. �

Using Lemma 1.3, for ϕ(x) ∈ R the Jackson integral 〈ϕ, z〉 is written as

〈ϕ, z〉 = fϕ(z)Θ(z) (20)

where fϕ(z) denotes a holomorphic function onX. Since the integral 〈ϕ, z〉 is invariant under
the q-shift z→ zqν , ν ∈ Zn, calculating the quasi-periodicity ofΘ(z) explicitly from (3), we
see the function fϕ(z) satisfies the following functional equation:

Tzi f (z) = (−1)mq−
m
2 −(n−1)lz

−m−2(n−1)l
i f (z) for 1 ≤ i ≤ n . (21)

We denote by H the linear space of holomorphic functions f (z) on X satisfying (21). H has
dimension κ̃ and its basis consists of the theta functions

n∏
i=1

z
λi
i ϑ
(− (−1)mzm+2(n−1)l

i qλi+
m+2(n−1)l

2 ; qm+2(n−1)l) (22)
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where λ = (λ1, λ2, . . . , λn) runs over the set Q.

REMARK 2.1.2. This fact follows from a general result on theta functions of several
variables (see for example, [32, Theorem 12A] or [12, §35, p91–94]). In fact the space Hi

of holomorphic functions depending on the single variable zi satisfying (21) has dimension
m+ 2(n− 1)l and the basis consisting of the functions

z
λi
i ϑ
(− (−1)mzm+2(n−1)l

i qλi+
m+2(n−1)l

2 ; qm+2(n−1)l) .
Then H is isomorphic to the tensor product of Hi (1 ≤ i ≤ n).

From (20), the following map M is well-defined:

M : R −→ H
ϕ(z) �−→Mϕ(z) := 〈ϕ, z〉

Θ(z)
.

(23)

The following is a key lemma for the proof:

LEMMA 2.2. There exist φi(z) ∈ L (1 ≤ i ≤ κ̃) such that Mφi(z)’s are linearly
independent in H.

PROOF. The outline of proof is quite similar to that in [9, §3]. (See also [9, Proposition
4].)

We fix a vector η = (η1, η2, . . . , ηn) ∈ Zn such that η1 � · · · � ηn � 0. The signs

ε1, ε2, . . . , εn ∈ {+1,−1} for {µ(1), . . . , µ(n)} ∈ R̃ relative to η are uniquely determined as
follows:

εi :=
{+1 if 〈η, x〉 > 0 ,
−1 if 〈η, x〉 < 0

where x ∈ Rn is a vector satisfying 〈µ̄(i), x〉 > 0 and

〈µ̄(1), x〉 = 0, . . . , 〈µ̄(i−1), x〉 = 0, 〈µ̄(i+1), x〉 = 0, . . . , 〈µ̄(n), x〉 = 0 .

Note that, for all {µ(1), . . . , µ(n)} ∈ R̃ we have

〈η, ν〉 ≥ 0 if 〈ε1µ̄
(1), ν〉 ≥ 0, . . . , 〈εnµ̄(n), ν〉 ≥ 0 . (24)

Moreover, we set

εµ(i)(x) := 〈εi µ̄(i), x〉 − µ(i)0 for µ(i)(x) = 〈µ̄(i), x〉 − µ(i)0 .

For {µ(1), . . . , µ(n)} ∈ R̃, we also consider the solutions z = qx to the following n equations
in (C∗)n

qεµ
(1)(x) = qν1, qεµ

(2)(x) = qν2, . . . , qεµ
(n)(x) = qνn (25)

for given integers νi ∈ Z (i = 1, 2, . . . , n). The set of all solutions

{z = qx ∈ (C∗)n ; qεµ(1)(x) = qν1, . . . , qεµ
(n)(x) = qνn and ν = (ν1, . . . , νn) ∈ Zn}
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is divided into [ε1µ̄
(1), . . . , εnµ̄

(n)]2 disjoint parts modulo the translation by the group qZn .
Thus the set of all solutions is written as the union of lattice orbits. (See [9, Lemmas 3.2 and
3.3].) Since [ε1µ̄

(1), . . . , εnµ̄
(n)]2 = [µ̄(1), . . . , µ̄(n)]2, the set

{z = qx ∈ (C∗)n; qεµ(1)(x) = qν1, . . . , qεµ
(n)(x) = qνn and ν = (ν1, . . . , νn) ∈ Zn≥0}

is also divided into [µ̄(1), . . . , µ̄(n)]2 disjoint parts. We may take ξ as the point in each disjoint
parts such that |zη| is maximum there, and the each disjoint part is written as the fan

Λ+ξ = {ξqν; 〈ε1µ̄
(1), ν〉 ≥ 0, . . . , 〈εnµ̄(n), ν〉 ≥ 0}.

We call such a point ξ the critical point relative to the function |zη|. From Lemma 2.1 we
have in total the κ̃ critical points, all of which are different from each other. We denoted by

CR the set of all critical points. By (24), in spite of the choice of {µ(1), . . . , µ(n)} ∈ R̃, each
critical point ξ ∈ CR is the maximum point in Λ+ξ of the function |zη| = |ξη|q〈η,ν〉 for the

common fixed η.
For example, in case where n = 2, the choices of (ε1, ε2) for (µ̄(1), µ̄(2)) are given as

follows:

(µ̄(1), µ̄(2)) (ε1, ε2) [µ̄(1), µ̄(2)]2
(ε1, ε2) (1, 1) 1

(ε1, ε1 − ε2) (1,−1) 1

(ε2, ε1 − ε2) (1, 1) 1

(µ̄(1), µ̄(2)) (ε1, ε2) [µ̄(1), µ̄(2)]2
(ε1, ε1 + ε2) (1, 1) 1

(ε2, ε1 + ε2) (−1, 1) 1

(ε1−ε2, ε1+ε2) (1, 1) 4

Corresponding to these choices, we can define

Λ+ξ = {ξqν ; ν1 ≥ 0, ν2 ≥ 0} ξ = (ak, aj ) ,
Λ+ξ = {ξqν ; ν1 ≥ 0, ν1 − ν2 ≤ 0} ξ = (ak, aktj ) ,
Λ+ξ = {ξqν ; ν2 ≥ 0, ν1 − ν2 ≥ 0} ξ = (aktj , ak) ,
Λ+ξ = {ξqν ; ν1 ≥ 0, ν1 + ν2 ≥ 0} ξ = (ak, tj a−1

k ) ,

Λ+ξ = {ξqν ; ν2 ≤ 0, ν1 + ν2 ≥ 0} ξ = (aktj , a−1
k ) ,

Λ+ξ = {ξqν ; ν1 − ν2 ≥ 0, ν1 + ν2 ≥ 0} ξ = ±(√tktj ,√tj t−1
k ) ,

Λ+ξ = {ξqν ; ν1 − ν2 ≥ 0, ν1 + ν2 ≥ 0} ξ = ±(√qtktj ,√qtj t−1
k ) .

Though the Jackson integral 〈ϕ, ξ〉 overΛξ diverges for ξ ∈ CR with

(ε1, ε2, . . . , εn) �= (1, 1, . . . , 1)
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because Φ(z) has poles in Λ+ξ , the function Mϕ(z) is still well-defined at z = ξ by analytic

continuation. Since the function

ϑ(qµ
(i)
0 zµ̄

(i); q)
ϑ(q1−µ(i)0 zµ̄

(i); q)
(zµ̄

(i)

)2µ
(i)
0 −1

is invariant under the q-shift z→ qνz, ν ∈ Zn, we have the relation

〈ϕ, z〉
Θ(z)

= reg〈ϕ, z〉
regΘ(z)

(26)

where

reg〈ϕ, ξ〉 :=
∫
Λξ

ϕ(z)Φreg(z)
dqz1

z1
∧ · · · ∧ dqzn

zn
(27)

= (1− q)n
∑
ζ∈Λξ

Φreg(ζ )ϕ(ζ ) ,

Φreg(z) :=Φ(z)
∏

i such that
εi=−1

ϑ(qµ
(i)
0 zµ̄

(i); q)
ϑ(q1−µ(i)0 zµ̄

(i); q)
(zµ̄

(i)

)2µ
(i)
0 −1 (28)

and

regΘ(ξ) := Θ(ξ)
∏

i such that
εi=−1

ϑ(qµ
(i)
0 ξ µ̄

(i); q)
ϑ(q1−µ(i)0 ξ µ̄

(i) ; q)
(ξ µ̄

(i)

)2µ
(i)
0 −1 .

Note that for the critical point ξ ∈ CR the function reg〈ϕ, ξ〉 is the sum over the fan Λ+ξ
instead of Λξ because Φreg(ζ ) = 0 if ζ ∈ Λξ \Λ+ξ . Thus the poles of 〈ϕ, z〉 and Θ(z) lying

in Λ+ξ , ξ ∈ CR, are cancelled out at z = ξ in (26), and the value of the function Mϕ(z) at

z = ξ is written as

Mϕ(ξ) = reg〈ϕ, ξ〉
regΘ(ξ)

.

For ξ ∈ CR with (ε1, ε2, . . . , εn) = (1, 1, . . . , 1), the regularizations reg〈ϕ, ξ〉 and regΘ(ξ)
coincide with the ordinary 〈ϕ, ξ〉 and Θ(ξ) respectively. When we labelled the points in CR
as CR = {ξ(1), ξ (2), . . . , ξ (κ̃)}, we have the following claim which is elementary to prove:

Claim. There exist κ̃ polynomials ϕi(z) in z1, z2, . . . , zn such that

ϕi(ξ
(j)) = δij for 1 ≤ i, j ≤ κ̃ .

We define the functions φi(z) ∈ L by

φi(z) := ϕi(z)zNη
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where N is an integer and zNη = zNη1
1 . . . z

Nηn
n . From (27) and (28), the sum reg〈φi, ξ (j)〉 over

the fan Λ+
ξ (j)

for a large integer N has the asymptotic form

reg〈φi, ξ (j)〉 = (1− q)nΦreg(ξ
(j))(ξ (j))Nηϕi(ξ

(j))(1+O(qN)) .
This means that det

(
reg〈φi, ξ (j)〉

)
1≤i,j≤n does not vanish identically, so that

det
(Mφi(ξ

(j))
)

1≤i,j≤n = det
(
reg〈φi, ξ (j)〉

)
1≤i,j≤n

/ κ̃∏
j=1

regΘ(ξ(j))

does not vanish identically. Hence Mφi(z) ∈ H, 1 ≤ i ≤ κ̃ are linearly independent. This
completes the proof. �

PROPOSITION 2.3. The map M is surjective. In particular, dimH ≥ κ̃
PROOF. From dimH = κ̃ and Lemma 2.2, the map M is surjective. From Lemma 1.5,

the kernel of the map M includes ∇q (Rn), so that

dimH = dimR/∇q (Rn) ≥ dimR/kerM = dimH = κ̃
This completes the proof. �

REMARK 2.3.1. Since kerM ⊃ ∇q (Rn), M naturally induces the map from H to H,

which is surjective. We denote it byM : H → H. At the end of this section, we will see that

M gives the isomorphism H
∼→ H and that kerM = ∇q (Rn).

2.2. Proof of dimHn(X,Φ,∇q ) ≤ κ̃ . The b-function bν(z) can be written as bν(z) =
b+ν (z)/b−ν (z) for b±ν (z) ∈ L. In particular, for ν = ε1 we have b1(z) = b+1 (z)/b−1 (z) where

b+1 (z)= z−s−1−(n−1)l
1

m∏
k=1

(a−1
k − z1)×

l∏
k=1

n∏
j=2

(
t−1
k −

z1

zj

)
(t−1
k − z1zj ) , (29)

b−1 (z)= (qz1)
−s−1−(n−1)l

m∏
k=1

(1− qz1

ak
)×

l∏
k=1

n∏
j=2

(
1− t−1

k

qz1

zj

)
(1− t−1

k qz1zj ) . (30)

Similarly the symmetry (9) gives the identity

bi(z) = b1(zi , z2, . . . , zi−1, z1, zi+1, . . . , zn) for i = 2, 3, . . . , n . (31)

The Newton polyhedron∆(b±i ) of the function b±i (z) is the convex polyhedron defined by

{(x1, . . . , xn) ∈ Rn ; |x1| + · · · + |xn| ≤ s + 1+ (n− 1)l, |xk| ≤ l (k �= i)}
in the sense of theory of torus embeddings [28]. We define the mapDi :L→ L by

ϕ(z) =
∑
λ

cλz
λ �−→ Diϕ(z) =

∑
λ

cλDiz
λ
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where

Diz
λ := ∇q,i{

(
T −zi b

−
i (z)
)
zλ} = (T −zi b−i (z))zλ − b+i (z) Tzi zλ

= zλ
(
T −zi b

−
i (z)− b+i (z)qλi

)
∈ L. (32)

The Newton polyhedron ofDizλ is written as λ+∆(b±i ), which is translation of∆(b±i ) by λ.
Let Kr , r = 0, 1, 2, . . . , be the convex polyhedra

Kr := {(x1, . . . , xn) ∈ Rn ; |x1| + · · · + |xn| ≤ rn}
and 〈Kr 〉 denote the linear subspace of L such that

〈Kr 〉 :=
⊕

λ∈Kr∩Zn
Czλ .

Suppose r ≥ s + 1+ (n− 1)l. Consider the convex polyhedron

K′r,i :=
{
(x1, . . . , xn) ∈ Rn ; |x1| + · · · + |xn| ≤ rn− s − 1− (n− 1)l ,

|xk| ≤ r for k = 1, . . . , i − 1, i + 1, . . . , n

}

and the linear space

〈K′r,i〉 :=
⊕

λ∈K′r,i∩Zn
Czλ .

If λ ∈ K′r,i ∩ Zn, then λ+∆(b±i ) ⊂ Kr , so that we have the finite map

Di : 〈K′r,i〉 −→ 〈Kr 〉
where the domain L of Di is restricted to 〈K′r,i〉. When a−1

k , t−1
j → 0 for all k, j , from (29),

(30), (31) and (32),Dizλ is expressed as

lim
a−1
k ,t−1

j →0
Diz

λ = zλ(z−s−1−(n−1)l
i − (−1)mqλi zs+1+(n−1)l

i

)
. (33)

This implies that for an arbitrary element ϕ(z) ∈ 〈Kr 〉, there exist ψi(z) ∈ 〈K′r,i〉 such that

the Newton polyhedron of

ϕ(z)−
n∑
i=1

Diψi(z)

contained in a subdomain of Kr such that

−s − 1− (n− 1)l ≤ xi ≤ s + (n− 1)l for i = 1, 2, . . . , n ,

so that

ϕ(z)−
n∑
i=1

Diψi(z) ∈ B
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where B is the linear subspace defined by

B :=
⊕
λ∈Q

Czλ .

Therefore, we obtain the following:

LEMMA 2.4. The finite map

B ⊕
n⊕
i=1

〈K′r,i〉 −→ 〈Kr 〉

(ϕ(z), ψ1(z), . . . , ψn(z)) �−→ ϕ(z)+D1ψ1(z)+ · · · +Dnψn(z)
is a surjection, provided a−1

k , t−1
j all are sufficiently close to 0, a fortiori provided they are

generic.

Since L = ⋃r≥0 Kr , we have the following as an immediate consequence of Lemma
2.4.

LEMMA 2.5. The map B ⊕ Ln −→ L,

(ϕ(z), ψ1(z), . . . , ψn(z)) �−→ ϕ(z)+D1ψ1(z)+ · · · +Dnψn(z)
is surjective. In other words the following map is surjective:

N : B −→L/(D1L+ · · · +DnL)
ϕ(z) �−→ϕ(z)mod(D1L+ · · · +DnL) .

In particular, dimL/(D1L+ · · · +DnL) ≤ κ̃.
PROPOSITION 2.6. The map N gives the canonical isomorphism

B ∼→ L/(D1L+ · · · +DnL) .
PROOF. We want to prove that the map N is bijective. In order to prove it, it is sufficient

to show dimL/(D1L+ · · · +DnL) = κ̃ . We consider the map M|L : L→ H by restricting
the map M to L, where M is defined by (23). From dimH = κ̃ and Lemma 2.2, M|L is
surjective. From Lemma 1.5, the subspace D1L + · · · + DnL of L is included in the kernel
of the map M|L, so that

dimL/(D1L+ · · · +DnL) ≥ dimL/kerM|L = dimH = κ̃ .
This completes the proof. �

REMARK 2.6.1. By Proposition 2.6, we have dimB = dimH. This means that the
composition of the surjective maps

B −→ H
M−→ H

ϕ(z) �−→ ϕ(z)mod∇q (Rn) �−→ Mϕ(z)
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gives the canonical isomorphism B ∼→ H, and B is embedded inH.We will see B ∼= H later.

Since

TakΦ(z)

Φ(z)
=

n∏
i=1

(1− a−1
k zi)(1− akzi)/zi ∈ L , (34)

TtjΦ(z)

Φ(z)
=
∏

1≤i<i′≤n
(1−t−1

j zi/zi′)(1−tj zi/zi′)(1−t−1
j zizi′)(1−tjzizi′)/z2

i ∈L , (35)

the q-shifts ak → akq, tj → tj q give rise to the following maps from L into L and hence
from R into R:

T̂ak : ϕ(z) �−→
TakΦ(z)

Φ(z)
Takϕ(z) , T̂tj : ϕ(z) �−→

Ttj Φ(z)

Φ(z)
Ttj ϕ(z) (36)

over the coefficients of rational functions of a1, a2, . . . , am, t1, t2, . . . , tl . Let us number, as
a basis of B, the set of monomials zλ, λ ∈ Q. Then, from Proposition 2.6, we have the
following unique expressions on L/(D1L+ · · · +DnL).

T̂ak z
λ ≡
∑
ν∈Q

zνη
(ak)
λ,ν mod (D1L+ · · · +DnL) 1 ≤ k ≤ m , (37)

T̂tj z
λ ≡
∑
ν∈Q

zνη
(tj )

λ,ν mod (D1L+ · · · +DnL) 1 ≤ j ≤ l , (38)

where Yak = (η
(ak)
λ,ν ),Ytj = (η

(tj )

λ,ν ) denote square matrices of degree κ̃ whose entries are

rational functions of a1, a2, . . . , am, t1, t2, . . . , tl respectively.

LEMMA 2.7. Yak ,Ytj are all invertible.

PROOF. Consider the asymptotic behaviours of the matrices Yak ,Ytj for ak , tj → +∞
for all k, j . Since

TakΦ(z)

Φ(z)
∼ (−1)nank ,

Ttj Φ(z)

Φ(z)
∼ tn(n−1)

j ,

from (34) and (35), we have

η
(ak)
λ,ν ∼ (−1)nank δλν , η

(tj )

λ,ν ∼ tn(n−1)
j δλν

respectively where δλν denotes the Kronecker delta. This implies that neither detYak nor
detYtj vanishes identically, i.e., the matrices Yak ,Ytj are invertible. �

PROPOSITION 2.8. R is written as R = B +∇q (Rn). In particular, dimH ≤ κ̃ .
PROOF. We can define T̂ −ak , T̂

−
tj

from R into itself as

T̂ −ak ϕ(z) :=
T −ak Φ(z)
Φ(z)

T −ak ϕ(z) , T̂ −tj ϕ(z) :=
T −tj Φ(z)
Φ(z)

T −tj ϕ(z) .
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From Lemma 2.7 and the identities

T̂ −ak∇q = ∇q T̂ −ak , T̂ −tj ∇q = ∇q T̂ −tj ,
T̂ −ak , T̂

−
tj

are uniquely representable as

T̂ −ak z
λ ≡
∑
ν∈Q

zνη̃
(ak)
λ,ν , (39)

T̂ −tj z
λ ≡
∑
ν∈Q

zνη̃
(tj )

λ,ν (40)

respectively for certain rational functions η̃(ak)λ,ν , η̃
(tj )

λ,ν of a1, a2, . . . , am, t1, t2, . . . , tl . Since we

have

R =
⋃
h≥0

{ s∏
k=1

T̂ −ak
l∏

j=1

T̂ −tj

}h
L , (41)

Proposition 2.8 holds. �

2.3. Proof of Theorems 1.6 and 1.8. Propositions 2.3 and 2.8 show that

dimH = κ̃
and that {zλ ; λ ∈ Q}, which is a set of generators of B, is a basis of H , i.e.,

B ∼= L/(D1L+ · · · +DnL) ∼= H .

Thus Theorem 1.6 is proved. Theorem 1.8 is an immediate consequence of (37) and (38) in
view of Lemma 1.5.

REMARK. Moreover, (39) and (40) show that there exist matrices Y−ak = (η̃(ak)λ,ν ), Y−tj =
(η̃
(tj )

λ,ν ) which represent the shift operators T −ak : ak → akq
−1 and T −tj : t → tq−1 respectively

as

Y−ak = (T −akYak )−1 and Y−tj = (T −tj Ytj )−1 . (42)

3. The dimension of Hn
sym(X,Φ,∇q )

In this section, we prove Theorems 1.7 and 1.9 for symmetric cohomology case. We first
remark that

LEMMA 3.1. Let Halt be the linear subspace of H consisting of the functions f (z)

satisfying σf (z) = sgn(σ )f (z). Then Halt has dimension κ = (s+(n−1)l
n

)
and has a basis

consisting of

A
n∏
i=1

z
λi
i ϑ
( − (−1)mzm+2(n−1)l

i qλi+
m+2(n−1)l

2 ; qm+2(n−1)l) (43)
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where λ runs over the set Qsym.

PROOF. Since A is the projection from H onto Halt, Halt is identified with AH, i.e.,
Halt coincides with the set of functions Af (z) where f (z) ∈ H. Hence Halt is spanned by
(43). On the other hand, for each λ ∈ Qsym, (43) contains the monomial term corresponding
to λ

n∏
i=1

z
λi
i ϑ
(− (−1)mzm+2(n−1)l

i qλi+
m+2(n−1)l

2 ; qm+2(n−1)l)
but not any monomial term corresponding to other µ ∈ Qsym. These monomials are linearly
independent in view of Remark 2.1.2. This means (43) are also linearly independent. �

The following is an immediate consequence of (4), (6), (7) and the definition of the map
M in (23):

LEMMA 3.2. If σ ∈ W , then σMϕ(z) =Mσϕ(z). In particular,

AMϕ(z) =MAϕ(z) .
Moreover, if ϕ(z) ∈ Ralt, then Mϕ(z) ∈ Halt.

3.1. Proof of Theorem 1.7. Let M|Ralt be the map restricting the domain R to Ralt.
From Lemma 3.2, we regard M|Ralt as the map from Ralt to Halt. The map M|Ralt : Ralt →
Halt is surjective, because the image of Ralt by M|Ralt coincides with Halt:

MRalt =MAR (by (10))

=AMR (by Lemma 3.2)

=AH (by Proposition 2.3)

=Halt .

From Remark 2.3.1 and (11), the kernel of M|Ralt coincides with A∇q (Rn) as follows:

kerM|Ralt = kerM ∩ Ralt = ∇q (Rn) ∩ Ralt = A∇q (Rn) .
Thus we have the canonical isomorphism

Hsym = Ralt/A∇q (Rn) = Ralt/kerM|Ralt

∼→MRalt = Halt

and we therefore obtain dimHsym = dimHalt = κ from Lemma 3.1.
Next we show that we can take the alternating sums Azν , ν ∈ Qsym as a basis of Hsym.

Indeed, when a−1
k , t−1

j → 0, from (33) we have by alternation,

lim
a−1
k ,t−1

j →0
AD1z

λ = A[zλ(z−s−1−(n−1)l
1 − (−1)mqλ1z

s+1+(n−1)l
1

)]
= Az−s−1−(n−1)l+λ1

1 z
λ2
2 · · · zλnn − qλ1Azs+1+(n−1)l+λ1

1 z
λ2
2 · · · zλnn (44)
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provided that s + 1 + (n − 1)l + λ1, λ2, . . . , λn are different from each other and that they
satisfy

|λ2|, . . . , |λn| ≤ |s + 1+ (n− 1)l + λ1| .
The highest terms on the right-hand side of (44) are

qλ1Azs+1+(n−1)l+λ1
1 z

λ2
2 · · · zλnn , Azs+1+(n−1)l−λ1

1 z
λ2
2 · · · zλnn , 2Azs+1+(n−1)l

1 z
λ2
2 · · · zλnn ,

according as λ1 > 0, λ1 < 0, λ1 = 0 respectively. Hence an arbitrary skew-symmetric
Laurent polynomial reduces to Azν , ν ∈ Qsym modulo A(D1L+ · · ·+DnL). Thus Theorem
1.7 is proved.

3.2. Proof of Theorem 1.9. T̂ak , T̂tj , T̂
−
ak
, T̂ −tj preserve Ralt, and we have the q-

difference equations with respect to the basis Azν , ν ∈ Qsym. Hence Theorem 1.9 holds.

REMARK 3.2.1. Yak , Ytj being restrictions of Yak ,Ytj to Hsym respectively, neither
detYak nor detYtj vanishes identically. In other words, Yak and Ytj are all non-singular and

Y−ak , Y
−
tj

can be defined similarly as in (39), (40) or (42).

4. Special symmetric cases

Let Hsym be the linear space of holomorphic functions f (z) on X satisfying σf (z) =
f (z) and Tzi f (z) = (−1)mq−m2 −(n−1)l+n+1z

−m−2(n−1)l+2(n+1)
i f (z) for 1 ≤ i ≤ n. Since

an arbitrary f (z) ∈ Halt has the factor θalt(z), Halt and Hsym are isomorphic by the map
θalt : Hsym→ Halt ; f (x) �→ f (x)θalt(z). We consider the map

Msym : Ralt −→ Hsym

ϕ(z) �−→Msymϕ(z) := 〈ϕ, z〉
Θ(z)θalt(z)

,

which is well-defined by (4), (7), (8) and Lemma 1.3. Since Msym is regarded as composition
of the maps

Ralt
M−→ Halt

θ−1
alt−→ Hsym ,

we see that Msym naturally induces the isomorphism Hsym
∼→ Hsym.

Let φλ(z) := Azλ throughout this section. The set {φλ(z) ; λ ∈ Qsym} is a basis of
Hsym = Hn

sym(X,Φ,∇q ). Using the map Msym, Eqs. (14) and (15) in Theorem 1.9 are rewrit-

ten as the equations in Hsym as follows:

TakMsymφλ(ξ)=
∑

ν∈Qsym

ȳ
(ak)
λ,ν Msymφν(ξ) ,
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TtjMsymφλ(ξ)=
∑

ν∈Qsym

ȳ
(tj )

λ,νMsymφν(ξ)

and Yak :=
(
ȳ
(ak)
λ,ν

)
, Ytj :=

(
ȳ
(tj )

λ,ν

)
denote square matrices of degree κ = (s+(n−1)l

n

)
whose

entries are rational functions of a1, a2, . . . , am, t1, t2, . . . , tl respectively.

As we have seen in the proof of the isomorphism H
∼→ H, the following two facts are

also essential for the proof of isomorphism Hsym
∼→ Hsym. One is that Yak , Ytj are invertible,

i.e., detYak , detYtj do not vanish identically. The other is that Msymφλ(z), λ ∈ Qsym are lin-

early independent in Hsym, i.e., there exist κ points ζ(µ) inX such that det
(Msymφλ(ζ(µ))

)
λ,µ

does not vanish identically.
In this section, we mention more concrete results about them when l = 0 and 1.

4.1. Symmetric case where l = 0. In this case, Hn
sym(X,Φ,∇q ) has dimension κ =(

s
n

)
. We have already seen in Remark 3.2.1 that detYak does not vanish identically, and the

explicit form of det Ya1 is actually given in [7] as follows:

det Ya1 = (−a1)
−n(sn)

( ∏2s+2
k=2 (1− a1ak)

1− a1a2 · · · a2s+2

)(s−1
n−1)

.

The parameters a1, a2, . . . , a2s+2 can be replaced symmetrically in the above formula. Ac-

cording to the following theorem, we see directly that detYak and det
(Msymφλ(ζ(µ))

)
λ,µ

do

not vanish identically:

THEOREM 4.1. The explicit form of detYa1 is given by

detYa1 =
( ∏2s+2

k=2 (1− a1ak)

1− a1a2 · · · a2s+2

)(s−1
n−1)

.

The parameters a1, a2, . . . , a2s+2 can be replaced symmetrically in the above formula. More-
over, the κ × κ determinant with (λ, µ) entry Msymφλ(ζ(µ)) is evaluated as

det
(Msymφλ(ζ(µ))

)
λ,µ
= (q; q)n(

s
n)∞
(∏

1≤i<j≤2s+2(qa
−1
i a−1

j ; q)∞
(qa−1

1 a−1
2 . . . a

−1
2s+2; q)∞

)(s−1
n−1)

×
( ∏

1≤i<j≤s

ϑ(ai/aj ; q)ϑ(aiaj ; q)
ai (q; q)2∞

)(s−2
n−1)

where ζ(µ) := (aµ1, aµ2 , . . . , aµn) ∈ X for µ = (µ1, µ2, . . . , µn) ∈ Qsym.

PROOF. See [7, 23]. See also [24] for another simple proof. �

REMARK 4.1.1. When m = 2n+ 2, i.e., s = n, the above determinant, whose matrix
size
(
s
n

)
equals 1, becomes nothing but the formula investigated by Gustafson [15]. See also

[22].
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4.2. Symmetric case where l = 1. We shall simply write t in place of t1. In this case,

Hn
sym(X,Φ,∇q ) has dimension κ = (s+n−1

n

)
. The explicit form of detYa1 is given in [8] as

follows:

det Ya1 = (−a1)
−n(s+n−1

n )
n∏
j=1

( ∏2s+2
k=2 (1− tn−j a1ak)

1− tn+j−2a1a2 · · · a2s+2

)(s+j−2
j−1 )

,

so that we have the following which implies that detYak does not vanish identically:

THEOREM 4.2. The explicit form of detYak is given by

detYa1 =
n∏
j=1

( ∏2s+2
k=2 (1− tn−j a1ak)

1− tn+j−2a1a2 · · · a2s+2

)(s+j−2
j−1 )

.

The parameters a1, a2, . . . , a2s+2 can be replaced symmetrically in the above formula.

PROOF. See [8]. �

Next we show the explicit form of det
(Msymφλ(ζ(µ))

)
λ,µ

for some κ points ζ(µ) in X.

In order to explain this, we choose special critical points ζ(µ) for the Jackson integrals (1) in
the following manner.

Let Z be the set of all compositions of n defined by

Z := {(µ1, µ2, . . . , µs) ∈ Zs ; µ1 + µ2 + · · · + µs = n, µ1 ≥ 0, . . . , µs ≥ 0} .
The number of elements in Z is equal to κ . For compositions µ = (µ1, µ2, . . . , µs), ν =
(ν1, ν2, . . . , νs) ∈ Z, we define the ordering µ ≺

Z
ν on Z if there exists i such that

µ1 = ν1 , µ2 = ν2, . . . , µi−1 = νi−1 , µi < νi .

Corresponding to the composition µ = (µ1, µ2, . . . , µs) ∈ Z, we take the point
(ζ1, ζ2, . . . , ζn) ∈ X satisfying{

ζi = ai if i ∈ {µ1, µ1 + µ2, . . . , µ1 + µ2 + ··· + µs} ,
ζj /ζj+1 = t if j �∈ {µ1, µ1 + µ2, . . . , µ1 + µ2 + ··· + µs}

or equivalently

ζi =



a1t

µ1−i if 1 ≤ i ≤ µ1 ,

a2t
µ1+µ2−i if µ1 + 1 ≤ i ≤ µ1 + µ2 ,

· · ·
ast

n−i if µ1 + · · · + µs−1 + 1 ≤ i ≤ n .
We denote such a point by ζ(µ) = (ζ(µ)1, ζ(µ)2, . . . , ζ(µ)n) ∈ X. For the point ζ(µ) ∈ X, we

denote by Λ+ζ(µ) the fan with the vertex ζ(µ) such that{
ζ(µ)q

ν ∈ X ; νi > 0 if i ∈ {µ1, µ1 + µ2, . . . , µ1 + µ2 + ··· + µs},
νj − νj+1 > 0 if j �∈ {µ1, µ1 + µ2, . . . , µ1 + µ2 + ··· + µs}

}
.
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Since Φ(ξ) = 0 if ξ ∈ Λζ(µ) \Λ+ζ(µ) , the Jackson integral (1) over Λζ(µ) is defined only over

the fan Λ+ζ(µ) .
For λ = (λ1, λ2, . . . , λn), ν = (ν1, ν2, . . . , νn) ∈ Qsym, we also define the reverse

lexicographic ordering λ ≺ ν on Qsym if λ1 = ν1, λ2 = ν2, . . . , λi−1 = νi−1, λi < νi for
some i ∈ {1, 2, . . . , n}.

THEOREM 4.3. The κ × κ determinant with (λ, µ) entry Msymφλ(ζ(µ)) is evaluated
as

(q; q)n(
s+n−1
n )

∞
n∏
k=1

(
(qt−(n−k+1); q)s∞
(qt−1; q)s∞

∏
1≤i<j≤2s+2(qt

−(n−k)a−1
i a−1

j ; q)∞
(qt−(n+k−2)a−1

1 a−1
2 · · · a−1

2s+2; q)∞

)(s+k−2
k−1 )

×
n∏
k=1

( n−k∏
r=0

∏
1≤i<j≤s

ϑ(t2r−(n−k)aia−1
j ; q)ϑ(tn−kaiaj ; q)

tr ai (q; q)2∞

)(s+k−3
k−1 )

,

where the rows λ ∈ Qsym and the columns µ ∈ Z of the matrix
(Msymφλ(ζ(µ))

)
λ,µ

are

arranged in decreasing orders of ≺ and ≺
Z

respectively.

PROOF. See [8]. �

As a corollary, we see det
(Msymφλ(ζ(µ))

)
λ,µ

does not vanish identically.

REMARK 4.3.1. In the special case where (m, l) = (4, 1), i.e., (s, l) = (1, 1), κ is
equal to 1, and the determinant reduces to Jackson integral itself which is explicitly evaluated
by van Diejen [13]. See also [11, 20, 21, etc].

4.3. q-difference equations in case where n = 1. In the special case where n = 1,
we have κ = s. One can write explicitly q-difference equations (14) as follows. We denote
by ek the kth elementary symmetric polynomials in a1, . . . , a2s+2. We simply write z = z1

and λ = λ1. The q-multiplicative function Φ(z) is written as

Φ(z) = qs+1−δ
2s+2∏
k=1

(qa−1
k z; q)∞

(akz; q)∞ .

Further we put uλ = 〈zλ − z−λ, ξ〉. Then (14) can be written as

Takuλ = uλ−1 − (ak + 1/ak)uλ + uλ+1 (1 ≤ λ ≤ s − 1) , (45)

Takus = us−1 − (ak + 1/ak)us +
s∑

µ=1

(−1)s−µ es−µ+1 − es+µ+1

1− e2s+2
uµ , (46)

where u0 = 0. In particular when s = 1, the Jackson integrals of Φ(z) give Askey–Wilson
integrals (see [20]), while when s = 2 they give, as a special case, the Stieltjes transform of
Askey–Wilson polynomials (the so-called 2nd solutions). See [6].
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A. Appendix

In this appendix we prove the identity (17) by counting the number of graphs associated

with {µ(1), . . . , µ(n)}.
A.1. Admissible graphs. Let R be the set defined by (16) which consists of linear

functions associated with the function Φ(z). We shall call a system of n-tuple of functions

{µ(1), . . . , µ(n)} ⊂ R admissible if their homogeneous parts µ̄(1), . . . , µ̄(n) are linearly inde-
pendent.

An admissible system represents a graph G with n + 1 vertices {0, 1, 2, 3, . . . , n} and n
coloured (white or red) edges in the following sense:

• The form 〈εi , x〉 − αk represents a white edge with the vertices {0, i}.
• The form 〈εi − εj , x〉 − τk or 〈εi + εj , x〉 − τk represents a white or a red edge with

the vertices i, j .
In this case we call G admissible. We shall denote by V (G), E(G) the set of vertices and the
set of edges of G respectively. Below we use the terminologies in [33].

PROPOSITION A.1. An admissible graph G is characterized as having the following
properties.

(i) G consists of two disjoint subgraphs G+,G0 such that 0 ∈ V (G+) and 0 /∈ V (G0).

(ii) G+ is a routed tree at the root 0.
(iii) Each connected component of G0 has only one circuit.
(iv) Any circuit contains an odd number of red edges.

We also call G+,G0 admissible. In this case, the absolute value of the determinant∣∣[µ̄(1), . . . , µ̄(n)]∣∣ equals 2r where r denotes the number of connected components of G0.

Proposition A.1 is an immediate consequence of Lemmas A.2–A.5, which we present
below. By assumption, all the homogeneous linear functions µ̄ corresponding to the edges in
E(G) are linearly independent and different from each other. Hence, by abuse of notation, we
may identify an edge {0, i} or {i, j } with the corresponding homogeneous linear function εi
or εi ± εj . For the set of edges E(S) of a subgraph S we denote by 〈E(S)〉 the linear space
spanned by the edges in E(S).

First note that G has no loop (with one vertex and one edge).

LEMMA A.2. Every connected subgraph of G is admissible. Every connected graph S
obtained from G is admissible by deleting some edges.

LEMMA A.3. Assume that S is a circuit in G. S is admissible if and only if the number
of red edges are odd.

PROOF. Let S be a circuit with p vertices i1, i2, . . . , ip and p edges {i1, i2}, . . . ,
{ip−1, ip}, {ip, i1}(p ≥ 2). Then the homogeneous functions {i1, i2}, . . . , {ip−1, ip} are
linearly independent. For any point satisfying

{ik, ik+1} = 0 (1 ≤ k ≤ p − 1)
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the function {ip, i1} is equal to 0 or ±2εi1 accordingly as the number of red edges being
even or odd. The former case implies that the edges are linearly dependent. The latter case
implies that the edges are linearly independent and εik (1 ≤ k ≤ p) is a linear combination of
{il, il+1} (1 ≤ l ≤ p − 1) and {ip, i1}:

εik ≡ 0 mod 〈E(S)〉 . (47)

Lemma A.3 is proved. �

LEMMA A.4. If G+ is a connected component of G including the vertex 0, then G+ has
no circuit.

PROOF. Suppose on the contrary that G+ has a circuit S. From Lemma A.3 we may
assume thatE(S) has an odd number of red edges. Then there exists a vertex i of S and a path
S′ connecting 0 and i such that E(S) ∩ E(S′) = ∅. We have

εi ≡ 0 mod 〈E(S′)〉 .
From (47), we have

εi ≡ 0 mod 〈E(S)〉 .
These two equalities imply that the edges in E(S ∪ S′) are linearly dependent. This is a
contradiction. Lemma A.4 is proved. �

LEMMA A.5. Every connected component of G0 has only one circuit.

PROOF. Suppose that a connected component of G0 has no circuit, i.e., it is a tree. Then
the number of vertices would be greater than the number of edges. Therefore the same would
be true for G0, which is a contradiction, because the cardinality of V (G0) is equal to the
cardinality of E(G0).

Next we suppose that G0 has two circuits, say S, S′.We may assume that each circuit has
an odd number of red edges. We consider the following three cases.

Case 1: the case where the cardinality |V (S) ∩ V (S′)| ≥ 2. Let i, j be two vertices in
V (S) ∩ V (S′). Both S, S′ are divided into two disjoint paths S1, S2 and S′1, S′2 respectively
which connect i and j. Then we may assume

εi + εj ≡ 0 mod 〈E(S1)〉 , εi − εj ≡ 0 mod 〈E(S2)〉 ,
because one of S1, S2 has odd red edges and the other has even red edges. Likewise we have

εi + εj ≡ 0 mod 〈E(S′1)〉 , εi − εj ≡ 0 mod 〈E(S′2)〉 .
This means that neither E(S1 ∪ S′1) nor E(S2 ∪ S′2) is admissible. This is a contradiction.

Case 2: the case where |V (S) ∩ V (S′)| = 1. Let i ∈ V (S) ∩ V (S′). Then E(S) ∩
E(S′) = ∅ and

εi ≡ 0 mod 〈E(S)〉 , εi ≡ 0 mod 〈E(S′)〉 .
Hence S ∪ S′ is not admissible, which is a contradiction.



472 KAZUHIKO AOMOTO AND MASAHIKO ITO

Case 3: the case where V (S) ∩ V (S′) = ∅. There exist two vertices i ∈ V (S), j ∈
V (S′) and a path S′′ connecting i, j such that E(S)∩E(S′′) = E(S′)∩E(S′′) = ∅. Then we
have

εi ≡ 0 mod 〈E(S)〉 , εj ≡ 0 mod 〈E(S′)〉 , εi + εj or εi − εj ≡ 0 mod 〈E(S′′)〉
respectively. Then S ∪ S′ ∪ S′′ is not admissible. This is again a contradiction. Lemma A.5 is
proved. �

We denote by G(n) the number

G(n) :=
∑

G:admissible

[µ̄(1), . . . , µ̄(n)]2 .

THEOREM A.6. G(n) = {m+ 2(n− 1)l}n , n = 0, 1, 2, . . .

We put G(0) = 1 and consider the generating function

Ĝ(t) = 1+
∞∑
n=1

G(n)

n! t
n .

Theorem A.6 is then equivalent to

Ĝ(t) =
∞∑
n=0

{m+ 2(n− 1)l}n
n! tn .

A.2. Case wherem = 0, l = 1. First we assume that m = 0, l = 1 so that V (G+) =
{0}, E(G+) = ∅ and E(G) = E(G0). Remark that in this case G(0) = 1, G(1) = 0.

We denote by g(n) the number of all connected admissible graphs G0 with n white or red

edges and n vertices such that
∣∣[µ̄(1), . . . , µ̄(n)]∣∣ = 2. Then

LEMMA A.7.

g(n) = 2n−2(n− 1)!
n−2∑
k=0

nk

k! .

PROOF. We can apply to this case Cayley formula for counting trees with labelled
vertices and prove that, for n ≥ r ≥ 2, the number of connected admissible graphs with one
r-polygon and n vertices equals

2n−2(n− 1)(n− 2) · · · (n− r + 1)nn−r .

Hence we have ∑
G0: connected

admissible

[µ̄(1), . . . , µ̄(n)]2 = 22g(n) . �
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REMARK A.7.1. The graphical figures G0 for small n are given below.

Theorem A.6 can be derived from the following proposition. Indeed, it is a standard fact
that the generating function Ĝ(t) of all admissible graphs is obtained from that of connected
admissible graphs as follows (see [16, Theorem 1.2]):

Ĝ(t) = exp

[ ∞∑
k=2

g(k)
k! 22tk

]
. (48)

PROPOSITION A.8.

Ĝ(t) = 1+
∞∑
n=2

2n(n− 1)n

n! tn .

PROOF. w satisfying the functional equation w = zew has the power series expansion
in z

w =
∞∑
n=1

nn−2

(n− 1)!z
n (49)
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or equivalently ew has the expansion

ew =
∞∑
k=0

(k + 1)k−1

k! zk .

(See [30, Part 3, Problem 209].) Moreover we have

wk = k
∞∑
n=k

nn−k−1

(n− k)!z
n, k = 1, 2, 3, . . .

eλw =
∞∑
n=0

λ(n+ λ)n−1

n! zn

(50)

for an arbitrary λ ∈ R.

Let L be a differential operator of infinite order relative to λ, i.e., L :=∑∞r=1
dr

dλr
. Then

from (50) we have

L

[
eλw − 1

λ

]
λ=0

=
∞∑
n=2

n−1∑
r=1

nn−r−1

n(n− r − 1)!z
n =

∞∑
k=2

g(k)
k! 22−kzk .

On the other hand, the left-hand side equals

−w − log(1− w) =
∞∑
n=2

wn

n
.

Hence we have

exp

[ ∞∑
k=2

g(k)
k! 22−kzk

]
= e−w(1−w)−1 .

One can see further that

e−w(1−w)−1 = e−w(1− zew)−1 =
∞∑
k=0

zke(k−1)w

=
∞∑
k=0

∞∑
h=0

(k − 1)(h+ k − 1)h−1

h! zh+k

=
∞∑
n=0

zn
n∑
k=0

(k − 1)(n− 1)n−k−1

(n− k)!

=
∞∑
n=0

zn
(n− 1)n

n! .

By the substitution z = 2t and using (48), we conclude Proposition A.8. �
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Thus Theorem A.6 is proved for the case m = 0, l = 1.

A.3. General case. Suppose first that G+ has r + 1 vertices including {0} and j ad-
jacent vertices to 0 for r ≥ j ≥ 1 respectively so that G0 has n − r vertices and edges. By

applying Cayley counting formula for trees, the sum of [µ̄(1), . . . , µ̄(n)]2 over the set of such
graphs G+ equals

r∑
j=1

mj(2l)r−j
∑
ν

( j∏
i=1

ν
νi−1
i

νi !
)

where the sum of ν = (ν1, ν2, . . . , νj ) is taken over the set

ν1 + · · · + νj = r , r ≥ ν1 ≥ ν2 ≥ · · · ≥ νj ≥ 1 .

This is equal to the coefficient of the term tr in wj by substitution z = 2lt

r∑
j=1

mj(2l)r−j w
j

j ! ,

i.e., the coefficient of the term tr in e
m
2l w where w is defined as in (49).

On the other hand, as is obtained in the preceding section, we have

e−w(1−w)−1 =
∞∑
n=r

(n− r − 1)n−r

(n− r)! zn−r =
∞∑
n=r

{2(n− r − 1)l}n−r
(n− r)! tn−r

if we put z = 2lt . Note that the sum of [µ̄(1), . . . , µ̄(n)]2 over the set of graphs G0 is equal to
{2(n− r − 1)l}n−r , since each edge of G0 admits l choices of linear functions 〈εi ± εj , x〉 −
τk, (1 ≤ k ≤ l).

Finally we have n!
r !(n−r)! choices of vertices of G+,G0. Hence by putting z = 2lt , we

have

Ĝ(t)= e( m2l−1)w(1−w)−1 = e( m2l−1)w(1− zew)−1 =
∞∑
r=0

zre(
m
2l+r−1)w

=
∞∑
r=0

zr
r∑
j=0

(m2l + j − 1)(m2l + r − 1)r−j−1

(r − j)!

=
∞∑
r=0

tr
{m+ 2(r − 1)l}r

r! .

Theorem A.6 is completely proved.
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