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Abstract. The finiteness of non-symmetric and symmetric cohomologies associated with Jackson integrals
of type BCy, is studied. The explicit bases of the cohomologies are also given. These bases determine parameter-
dependent Jackson integral, and it is shown that they satisfy holonomic systems of linear g-difference equations with
respect to the parameters.

1. Introduction

q-hypergeometric Jackson integrals are defined as an infinite sum over a lattice of a
g-multiplicative function @ (z) defined on the n-dimensional algebraic torus (C*)". Jackson
integrals with Weyl group symmetry are especially interesting. In particular, such integrals
with symmetry associated with A-type root system have already been investigated by several
authors, and they have found important applications in product formulae, g-KZ equations,
Yang-Baxter equations, orthogonal polynomials, etc (see [10, 25, 27, 34]). However, very
little is known about BCj-type integrals.

One of us has developed the rational g-de Rham cohomology theory for studying Jack-
son integrals giving general g-hypergeometric functions (see [2, 3, 4, 5]). The purpose of this
paper is to show the finite dimensionality of non-symmetric and symmetric cohomologies
HY(X,®,V,), HS"ym(X, @, V,) associated with Jackson integrals of type BC,, and to find
their explicit bases. Futhermore, we show that the parameter-dependent integrals determined
by these bases satisfy linear holonomic g-difference equations with respect to the parame-
ters (see Theorems 1.6-1.9). For the generic case, finite dimensionality was proved in full
generality in [9, 31].

The symmetric cohomology Hs"ym(X , @, V), which has a basis represented by symplec-
tic Schur functions, is particularly important. When the dimension x = dim Hs”ym(X , D, V)
is equal to 1, the BC,-type Jackson integrals (or Gustafson—-Macdonald type sums) are ex-
pressible as an infinite product of ¢g-gamma functions and theta functions (see [14, 15, 21, 22,
26]).
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At present, the explicit form of g-difference equations arising from BC,-type Jackson
integrals has not been found except for the BC| case (see (45) and (46)). Instead, using the
definition (1) of Jackson integral below, we can evaluate the determinants of the pairings of
the cohomology H, ym(X @, V,) and the corresponding nth homology (represented by lattice
orbits in (C*)"). Some of these results are given in Section 4 without proof. Further details
are discussed in [7, 8, 24, 23]. Finally, in the appendix we prove the dimension formula for
k = dim H"(X, @, V,) in a purely analytic way, using generating functions for counting the
number of special tree-like graphs.

To explain the main theorems we first introduce the Jackson integrals and their coho-
mologies.

1.1. Jackson integral. Throughout this paper, g is a real number such that0 < g < 1

and we use the symbols (a; ¢)ec = ]_[f-’io(l — aqi) and (a; q)x = (a; q)oo/(aqk; q)oo for
kel.

Let m be an even positive integer defined by m = 2s + 2, s = —1,0,1,2,3, ...
and aj,as,...,am,t,1,..., 0 be arbitrary constants in C*. We denote by &(z) =
®(z1,22, ..., 2,) the g-multiplicative function of B, type

n
m s (n—r)(I—27) Qo zr; oo "2 @)oo
D(z)=
H H H (@kzr; q)oo

r=1

gty 2i/25 Doolqty ' 2izjs oo
x H [1

(txzi/2js @) oo(tkZiZj5 q)oo

k=11<i<j<n

defined on X = (C*)", where ¢° = ajaz---a, and ¢g° = 111> ---1; (see [18, 19]). For
an arbitrary z = (21,22, ...,2n) € X, we define the g-shift z — zg" by the lattice point
v= Wi, v2,...,v,) € Z" as

=(z194"", 229", ..., z0q¢"") € X .

The set A; := {zq" € X ; v € Z"} forms an orbit of the lattice Z" in X.

DEFINITION 1.1. For a function ¢(z) on X and an arbitrary point & =
(61,82, ...,8,) € X, the Jackson integral over Ag is defined as the pairing of difference
n-forms and lattice orbits

Zn.

=(1—q)" ) PEq"eE) (1)

n
veZ"

d d
/ q)(z)(p(z)q_m/\.../\ q
Ag 21 Z

provided this sum exists. The left-hand side of (1) is simply denoted by (¢, &).

REMARK 1.1.1. If m is an odd integer, i.e., m = 2s + 1, then it is sufficient to take
axsy2 = ,/q in the case m = 25 + 2. The main results at the end of this section are not
changed by this substitution.
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By definition, the Jackson integral (@, &) is invariant under the g-shift&§ — &g, v € Z".
Since (1, &) is convergent if

. m : 1
laras - am(tity - 1)" 772 > g2t DT for i=1,2,....n, )
and
arér & g% for 1 <r<n, 1<k=<m,
nEi /&, &ikj ¢qf for 1<i<j<n 1<k<I,
we assume the above conditions for aj, as, ..., an, t1, 12, ..., and &€ € X.
Let {e1, &2, ..., &,} be the standard basis of R" satisfying (g;, ¢;) = §;; forall i, j =
1,2, ..., n, where §;; denotes the Kronecker delta. The Weyl group W of type C, is generated
by the reflections o¢,_¢,, Oey—e3, - - - » Og,_;—g,» O2¢,, Where

o, x)
o
(o, )

The scalar product (-, -) is uniquely extended linearly to C". For the variable z € X, if we

for x e R".

ou(x) =x—2

put z = (g, ..., g®*)), then the transformation of z by ¢ € W is defined by oz :=

£1,0X)

(¢ yeesq
are given by

{n,0x)) " For instance, the transformations of z € X by the generators of W

O’E,‘*&prlzzi < Zi+1 (1 El S n— 1)7

. -1
02, 2n <> 2, -

The group W acts on a space of functions on X:

o(€eW): fQR)— of(2):=flo""2).
Let @ (z) be the function on X defined by
(1 _ q)n n s+1—=8+n—r)(—-27)

r=1%r
3)
[Tr=i [T/ 9 (anzrs @) Hi:l [Ti<icj<n P Wzi/zj5 @0 (zizj; )

where 9 (z; q) is the Jacobi theta function (z; ¢)oo(q/2; 4)00(q; q)co- Since the theta function
has the property 9 (qz; q) = —9(z; q)/z, if we put
0O (2)
O(2)
then U, (z) is the cocycle of pseudo-constants, i.e., a constant with respect to the g-shifts

z — zq", v € Z"". More precisely, by definition of @ (z), it follows that the function o @ (z) is
equal to @ (z) up to the pseudo-constant U, (z) as follows:

o®(() =DP()Us(2) . 5)

O(2) =

Us(2) := for c e W, 4)

In this sense, we regard the function @ (z) as symmetric with respect to W, and both @ (z) and
o @ (z) satisfy the same g-difference equations with respect to the g-shift z — zg", v € Z".
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From (1) and (5), we immediately have the following lemma:
LEMMA 1.2. Ifo € W, then
0(p.§) =Us(§){op, §). (6)
In particular, if ¢ (z) is skew-symmetric under the action of W, i.e.,
o9(2) = sgn(0) p(2) |
then
o{p,§) =sgn(0)Us (§) (@, §) . @)

1.2. Rational de Rham cohomology of BC, type. We denote by L the ring of Lau-
rent polynomials C[z1, ..., zx, zfl, R z;l] over C. Let R be the L-module generated by
the following set of rational functions of z:

U{l—[ﬁ (akzj Q) l—[ l—[ (tk_Zli/Zj;Q)fh (thiijQ)fh }

0 Uizl j= L @ag 2 O Vi<i<j<n @l 2i/2j5 @D (@l 2i2j5 @n

and Ry be the part of R consisting of the elements which are skew-symmetric under the
action of W, i.e.,

Ryt :={9(@) € R; 0¢(z) =sgn(o) ¢(z) foroc € W}.
LEMMA 1.3. Foro(z) € Rand§ € X, the Jackson integral (¢, §) is written as

(9.8) = fp(5)O&)

where f,(2) is a holomorphic function on X. Moreover, if ¢(z) € Ray, then there exists a
holomorphic function g,(z) on X such that

(9. 8) = gp(5)O(E)ban(§)

where

any T 9 o VO (2
Ba1t(2) :=HM I @j/2: 9@k 9)

o1 Y <j<k=n <

Note that the function 6,)¢(z) is obviously skew-symmetric, i.e.,
00a1t(z) = sgn(o) Oat(z) . (8)
We denote by T, and T, the shift operators on a parameter # — ug and u — ug™!
respectively. The cocycle function associated with @ (z) is defined by

by(z) == ®(2q") /P () =T --- T ®(2)/P(z) for vel",

which is the so-called b-function. The b-function b, (z) satisfies the relation

oby(2) =byy(z) for o eW. ©9)
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In particular, if v =¢,,r = 1,2, ..., n, we have

m
b, (2) —qz —8+(n—r)(I— ZI)Hﬂ
k= 11 qa; " Zr

XH(H 1—r;1z;/zr)(1—rijzr) y - (1 =tz /2)(1 = trzjzr) )

=1 (1 — q_lthj/Zr)(l - qtk Z}Zr) j=r+1 (1 - ql‘k_IZr/Zj)(l - qtk_lzjz”)

which is simply denoted by b, (z).
Let V; be the n-dimensional covariant g-difference operator defined by
n
Vet (1), ¥20). ... Y (@) € R — YV, j¥ri(2) € R
j=1

where V, j¥(z) == ¥ (2) — b; (z)TZ/. ¥ (z). We denote by A the alternation

A: fz) — Z sgn(o) o f(z)

oeW
for a function f(z) on X. Then we have
Rar= AR, (10)
AV, (R") = V4 (R™) N Ryt - (11)

DEFINITION 1.4. The quotients H = R/V,(R") and Hegym = Ra/AV,(R") de-
fine the n-dimensional non-symmetric and symmetric rational de Rham cohomologies
HY(X,®,V,), Sym(X , @,V,) associated with the Jackson integrals (1) respectively. They
are isomorphic (see also [5, 9] for the definitions of these cohomologies).

It should be remarked that here we call the symmetric cohomology for “cohomology
consisting of skew-symmetric elements.” The reader should not be confused by this in the
sequel.

REMARK 1.4.1. By symmetry, it follows that
AV, (R") C V;(R"),
and AV, ; = AV, ; foralli, j € {1,2,...,n}, so that we have
AV, (R") = AV, ,R.

This implies that Hyp, is identified with the linear subspace of H consisting of the elements
which are skew-symmetric under the Weyl group W.

LEMMA 1.5. Suppose ¢(z) € V;(R"). Then {(p, &) = 0 and (Ap, &) = 0 if they are
summable.
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This lemma shows that the integral (¢, &) for ¢(z) € R and that for ¢(z) € Ry depend
only on the quotients H and Hgym respectively.

1.3. Main results. For a sequence of integers A = (A1, 12,..., ;) € Z" we set

Mk A . L
=z f 1 122. .. Z," and denote the skew-symmetric Laurent polynomials in z

Az = Z sgn(o) o (z),

oceW

. . . . Aj A L. .
which are equal to the n x n determinant with (k, j)-entry z,’ — z, . It is obvious that the

set of skew-symmetric Laurent polynomials is spanned by {Az"; A; > A2 > --- > A, > 0}.
In the sequel we assume that

(C) all the parameters ay, a, ..., ay and t1, t2, ..., t; are generic.

The purpose of this paper is to prove the following four theorems:

THEOREM 1.6. Let Q be the set defined by

(A, M) €2 —s—1—m—DI<r <s+m—-1I forl1 <i <n}. (12)
Under the condition (C), H" (X, @, V) has dimension k := {m 4 2(n — 1)I}"* and is spanned
by the basis {z*; 1 € Q).

THEOREM 1.7. Let Qsym be the set defined by

{1, 2, .. A €Z s s+ m—DI=A >dy> > Ay > 1. (13)

Under the condition (C), Hs’;m(X’ ®,V,) has dimension k := (H(';l)l) and is spanned by
the basis {AzZ"; A e Qsym}-

We obtain the following holonomic g-difference equations for (z*, &) and (Az*, ), with
respect to the g-shift of the parameters ay, ..., a, and tq, ..., 1:

.. . . . i
THEOREM 1.8. There exist invertible matrices Vg, , )},j whose entries nia’;), ni "v) are

rational functions of ay, ..., an and ty, ..., 1] respectively, such that

To (% 8) =Y 0™ (", 8),

veQ
@)
T (" &)=Y n (2" &)
veQ

where ) runs over the set Q satisfying (12).
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.. . . . t
THEOREM 1.9. There exist invertible matrices Yy, Yt/ whose entries y)(\ {j), yi ’v) are

rational functions of ay, . ..,an andty, ..., t; respectively, such that
Ty (A E) = Yy (A £), (14)
VEQsym
(t5)
T (A &)= Yy (A (15)
VEQsym

where A runs over the set Qgsym satisfying (13).

REMARK 1.9.1. If (m,l) = (2n+2,0) or (4, 1) in Theorem 1.7, then ¥ = 1 and hence
the matrices Y,, and Y;, in Theorem 1.9 reduce to scalars which are explicitly expressible as
a ratio of product of g-gamma functions. These coincide with some results in [19, 13, 5, 20,
21, 22, 25, etc]. See also Theorems 4.1 and 4.2 in Section 4.

The proofs of Theorems 1.6-1.9 will be given in the next two sections, based on the
results in [4, 9].

2. The dimension of H" (X, @, V)

In this section, we prove Theorems 1.6 and 1.8 for non-symmetric case.

2.1. Proof of dim H"(X,®,V,) > k. Let A be the set of positive roots of type By,

relative to the simple root {e] — €2, &2 — €3, ..., E4—1 — €n, &n}. The set AT is written as
+ +
At Ashort U Along

where Ashm {ei; 1 <i <n}and Along {eixtej; 1 <i<j<n} LetR be theset
defined by

R:={(B,x) —ax; ’BGAShm’] <k=<m}U {{B,x) — ; ,BEAlong l<k=<li}, (16)
which consists of all affine forms of x = (xq, x2, ..., x,) € C" corresponding to each factor
in the numerator of @(z) where a; = q%,f, = q’k and z; = q'%*). We express by /i

and —uo the homogeneous part and the constant term of u € R respectlvely, i.e., we have
w(x) = (u, x) — pno. Let R be the set defined by

Re={u, o on®y R 12D, 2 # 0}

where [V, ..., 1] denotes the determinant det((i", 8]‘))151.)]5”, e, a®, ..., a™ are
linearly independent if {1, ..., u™} e R.
LEMMA 2.1.
K= D AL} o (17)

(... um)eR
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REMARK 2.1.1. Thesystem {1, ..., u™} is associated with a special graph with n
edges, and the identity (17) can be explained in a graphical sense. See [4, 9] and the Appendix
for more details.

PROOF. Let M be the positive definite symmetric matrix of degree n such that
M= ( > <;1,s,~><;z,s,~>)
HER 1<i,j<n

The matrix M is written as M = mA + [ B where

n

A=( > </3,ei></3,ej>> = (Z(ww»(ek,eﬂ) :

ﬂEA:Imn 1<i,j<n k=1 1<i,j<n

B=( > </3,ei></3,e,->)

+
ﬁEAlong

= ( Z (ek — ek, &i)(ek — €k, 8.1'>>

I1<k<k'<n 1<i,j<n

1<i,j<n

+< Z (£k+8k’,8i)<8k+8k/’8.i>>

I<k<k'<n 1<i,j<n
Since B =2(n — 1)A (see [17, Lemma 4.6]) and A is the identity matrix, we have
detM = det((m +2(n — NDA) ={m +2(n— DI}" =k . (18)
On the other hand, we have the following identity of Gram determinant:
detM = > ar (19)
(O, umeR
From (18) and (19), we obtain (17). This completes the proof. O
Using Lemma 1.3, for ¢(x) € R the Jackson integral (¢, z) is written as

(9, 2) = fo(2)O(2) (20)

where f,,(z) denotes a holomorphic function on X. Since the integral (¢, z) is invariant under
the g-shift z — zq", v € Z", calculating the quasi-periodicity of ® (z) explicitly from (3), we
see the function fy, (z) satisfies the following functional equation:

T, f(2) = (=1)y"g= 3~ 0=Digm=20=Dl ey for  1<i<n. 1)

We denote by H the linear space of holomorphic functions f(z) on X satisfying (21). H has
dimension « and its basis consists of the theta functions

n
. _ L m2m—=1)l
l_[ Z?t 'l?( _ (_1)mz:"l+2(” l)lq)tl"r%; qm+2(n—l)l) (22)

i=1
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where A = (A1, A3, ..., A,) runs over the set Q.

REMARK 2.1.2. This fact follows from a general result on theta functions of several
variables (see for example, [32, Theorem 12A] or [12, §35, p91-94]). In fact the space H,;
of holomorphic functions depending on the single variable z; satisfying (21) has dimension
m + 2(n — 1)I and the basis consisting of the functions

. _ L m+2m=Dl _
Z?lﬁ( _ (_1)n1Z;n+2(n l)lqk,+—2 ;qm+2(n ])1) )

Then H is isomorphic to the tensor product of H; (1 <i < n).
From (20), the following map M is well-defined:

M: R — H

.2 (23)
9(2) —> Mop(z) = 00

The following is a key lemma for the proof:

LEMMA 2.2. There exist ¢i(z) € L (1 < i < k) such that M@;(z)’s are linearly
independent in H.

PROOF. The outline of proof is quite similar to that in [9, §3]. (See also [9, Proposition
4].)

We fix a vector n = (1,12, ..., 1n) € Z" such that n; > --- > n, > 0. The signs
€1,€, ..., € {+1, —1} for {/,L(l), e, u(”)} € R relative to n are uniquely determined as
follows:

e +1 if (n,x) >0,
Tl =1 if (g, x) <0

where x € R" is a vector satisfying (i), x) > 0 and
O xy=0,..., @V, x)=0, "V xy=0,..., (", x) =0.
Note that, for all {u(l), R u(”)} € R we have
v) 20 if (2P v) 20, (g™, v) 2 0. (24)
Moreover, we set

en® ) = (e, x) = pg’ for p D) = (@?, x) .

For {uV, ..., u™} e R, we also consider the solutions z = q”* to the following n equations
in (C*)"

qeu“)(X) —g", qeu(z)(x) —q",..., qeu(”)(X) — g™ (25)
for given integers v; € Z (i = 1, 2, ..., n). The set of all solutions

{z=¢q" € (C")"; qél‘“)(") =qg", ..., qél‘(n)(") =g"andv = (v,...,v) € Z"}
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is divided into [e; 2", ..., €, ? disjoint parts modulo the translation by the group ¢Z".
Thus the set of all solutions is written as the union of lattice orbits. (See [9, Lemmas 3.2 and
3.3].) Since [e1 iV, ..., e, 7™ = [, ..., @712, the set

(z=¢q" € (C*; qGM(”(X) =q", ..., qeu(m(x) =g andv = (vy,...,v,) € Z;O}

is also divided into [V, ..., 2]? disjoint parts. We may take £ as the point in each disjoint
parts such that |z7| is maximum there, and the each disjoint part is written as the fan

Af =1&q"; (eanV ) =0, (en™, v) > 0).

We call such a point & the critical point relative to the function |z7|. From Lemma 2.1 we
have in total the « critical points, all of which are different from each other. We denoted by
Cp the set of all critical points. By (24), in spite of the choice of {uV, ..., u™} R, each
critical point £ € Cg is the maximum point in A; of the function |z"| = |£7|¢{"") for the
common fixed 7.

For example, in case where n = 2, the choices of (e, €2) for (,EL(I), ,11(2)) are given as
follows:

@V, 1) [ @, e) 120, 2322 @V,a®) | @, e) @b a?p

(¢1,€2) 1,1 1 (er,e1+¢e) | (1D 1
(e1,e1—&)| (1, 1) 1 (62,61 +&) | (=1.1)
(62,61 —&2)| (LD 1 (e1—e2, 81+82)| (I 1) 4

Corresponding to these choices, we can define

Af =1{gq"; v 20, m =0} &= (a4q)),
Af =1{8¢"; vi 20, vi —v2 <0} & = (ak, axt)),
A =1{5¢"; 120, v — v 20} & = (at), ax),
Af ={8¢"; v =0, vi+m =0} &= (a tja ),
Af ={6q": <0, v+ 1220} £ = (atj.a; ).
A =1{8q" s vi— =0, vi+w =0} £ =%(/utj\/tji; ),
Af =1{8¢"; vi— =0, v+ =0} & =%(/qul), /a1 ")
Though the Jackson integral (¢, &) over Ag diverges for & € Cr with

(e1,€2,...,6x) (1, 1,..., 1)
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because @ (z) has poles in A7, the function Mg(z) is still well-defined at z = & by analytic
continuation. Since the function

@) = (i)
ﬁ(qﬂo zH ;q) (z’_‘(i))z"g)_l

0 -
9(q' 0 21 g)
is invariant under the g-shift z — ¢"z, v € Z", we have the relation

(p.2) _ reglp,z)

— (26)
O(z) reg®(z)
where
d,;z1 d,z
reg(p, &) := f @) Preg(2) = Ao A -T2 27)
Ag 21 Zn
=(1—q)" ) Pree(D)e(0),
§6A5
9" 2 q) o0
Preg(2) i =P() [| ———— )0~ (28)
i suihtl;nat ﬁ(ql_llo Z’u(t); q)
and

O G)
D(gho E" 5 q) a0,
reg@ &) = 0&) [] %(E“ -1
i such that ﬂ(q17M0 %'li(l); q)

6=—1

Note that for the critical point £ € Cg the function reg(yp, &) is the sum over the fan A;
instead of Az because Pree(¢) = 01if & € Ag \ A;. Thus the poles of (¢, z) and O (z) lying
in A;, & € CR, are cancelled out at z = & in (26), and the value of the function Mg(z) at
z = £ is written as

reg(p, §)

reg® (§)

For &£ € Cr with (e1,€2,...,€,) = (1,1, ..., 1), the regularizations reg(yp, £) and reg® (£)
coincide with the ordinary (¢, &) and ® (£) respectively. When we labelled the points in C

Mo(€) =

as Cr = {EMW @ @)} we have the following claim which is elementary to prove:

Claim. There exist k polynomials ¢;(2) in z1, 22, - . . , Zn Such that

i =8 for 1<i,j<k.

We define the functions ¢;(z) € L by

$i(2) == ¢i(0)z""
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where N is an integer and 7V = zf]".‘. .z,llvn". From (27) and (28), the sum reg(¢;, £/)) over

the fan A, for a large integer N has the asymptotic form

g()
reg(gi, ) = (1 — q)" Preg (V) EYN T (D) (1 + O(g)) .

This means that det (reg(qﬁi, é(j ))) does not vanish identically, so that

1<i,j<n

det (M@ (EV)), _, ;, = det (reg(ei, §7)),, ., / ]"[reg@(s“’)

does not vanish identically. Hence M¢;(z) € H, 1 < i < k are linearly independent. This
completes the proof. a

PROPOSITION 2.3. The map M is surjective. In particular, dim H > k

PROOF. From dim’H = «x and Lemma 2.2, the map M is surjective. From Lemma 1.5,
the kernel of the map M includes V, (R"), so that

dim H = dim R/V,(R") > dim R /kerM = dimH = &
This completes the proof. |

REMARK 2.3.1. Since kerM D V, (R"), M naturally induces the map from H to H,
which is surjective. We denote it by M : H — H. At the end of this section, we will see that
M gives the isomorphism H — H and that kerM = V; (R™).

2.2. Proof of dim H"(X,®,V,) < k. The b-function b,(z) can be written as b, (z) =
b (2)/b; (z) for bf(z) € L. In particular, for v = ¢1 we have b1(z) = bf (2)/b (z) where

by =z;"""170" 1)ll_[(a —m)xHH( ——>(tk —2125) (29)

k=1 j=2
by (@)= (gz1) 710" 1”1‘[(1 H]‘[(l—t‘l‘fl)(l—tk gz12)) . (30)
k=1 k=1j=2

Similarly the symmetry (9) gives the identity
bi(z) =b1(zi, 22, -+, %i-1, 21, Zi+1s--->2n) Tor i=2,3,...,n. (€2))
The Newton polyhedron A(bl.i) of the function bii (z) is the convex polyhedron defined by
(G, oo xn) €RYS il + 0+ xnl S s+ 1+ (= DI il <1k #0)}
in the sense of theory of torus embeddings [28]. We define the map D; : L — L by

0(2) =Y e Dipx) =Y Dt
s

A
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where
Dz =Ny (TS b (2))2"} = (T b ()" — b (2) T, 2

= (1767 () - bf (g™ € L. (32)

The Newton polyhedron of D;z” is written as A + A(bl.i), which is translation of A (bii) by A.
Let K, r =0,1,2,...,be the convex polyhedra
Kr i ={(x1,....x,) € R"; |x1| + -+ |xn| <rn}
and (/C,) denote the linear subspace of L such that
(Kr) = @ C7.
relC,.NZ"

Suppose r > s + 1 + (n — 1)I. Consider the convex polyhedron

Xt 4+ -+ |xp <rnm—s—1—m—-1),
K. = s cR";
{(’” ) Wil <7 for k=1,....i—Li+1,...n

and the linear space

(K).;) = @ C*.

)LEIC’m.ﬁZ”

If A e IC;J. NZ", then A + A(b,.i) C K, so that we have the finite map

D : () — ()
where the domain L of D; is restricted to (IC;J.). When a; ! tj_1 — 0 for all k, j, from (29),
(30), (31) and (32), D;z* is expressed as

lim DiZA _ Z)L (Zfsflf(nfl)l . (_l)mqkizf"’l‘i’("*l)l) ) (33)

i

This implies that for an arbitrary element ¢(z) € (IC,), there exist ¥;(z) € (IC;J.) such that
the Newton polyhedron of

0(x) — > Diyi(2)

i=1
contained in a subdomain of /C, such that
—s—1—-m—-DI<xi<s+m—-1] for i=1,2,...,n,

so that

9()— Y Divi(z) € B

i=1
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where B is the linear subspace defined by
5=
reQ
Therefore, we obtain the following:

LEMMA 2.4. The finite map
n
Ba Pk,,) — (k)
i=1

(@(2), ¥1(2)s - . ., Yu(2)) > @(2) + D1¥r1(2) + - - - + Dp (2)

is a surjection, provided a; ! t;l all are sufficiently close to 0, a fortiori provided they are

generic.

Since L = (J, >0 K, we have the following as an immediate consequence of Lemma
2.4.

LEMMA 2.5. Themap B® L" — L,

(9(2), ¥1(2), ..., ¥n(2)) > ¢(2) + D1Y1(z) + - - - + D ¥ (2)

is surjective. In other words the following map is surjective:
N: B —L/(Di{L+ -+ D,L)
() — @p(z)mod(DiL +---+ D,L).
In particular, dimL/(D1L+---+ D,L) <k.

PROPOSITION 2.6. The map N gives the canonical isomorphism

BS L/)(DIL+---+ D,L).

PROOF. We want to prove that the map A is bijective. In order to prove it, it is sufficient
to showdim L/(DiL + --- 4+ D, L) = k. We consider the map M| : L — H by restricting
the map M to L, where M is defined by (23). From dim’H = & and Lemma 2.2, M| is
surjective. From Lemma 1.5, the subspace DL + --- + D, L of L is included in the kernel
of the map M|, so that

dimL/(D1L +---+ D,L) > dim L/kertM|, =dimH =k .
This completes the proof. a

REMARK 2.6.1. By Proposition 2.6, we have dim B = dimH. This means that the
composition of the surjective maps

B — H My

¢(z) > @(z)modV,(R") —> Mo(2)
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gives the canonical isomorphism B — H, and B is embedded in H. We will see B = H later.

Since

TP (2)

) l_[(l a;'z)( —azi)/zi €L, (34)
T;;2(2) _ _

o0 [1 a-t7'z/zn0=tjz/200 =17 2z A =1jziz0) /2] €L, (35)

1<i<i’<n

the g-shifts ay — arq, t; — tjq give rise to the following maps from L into L and hence
from R into R:

) T4, P(2) = T;;®(2)
To 9 = ~4 S Ta9@, Ty 0@ > —2 S Th0() (36)
over the coefficients of rational functions of ay, az, ..., am, t1, t2, ..., t;. Let us number, as

a basis of B, the set of monomials z*, A € Q. Then, from Proposition 2.6, we have the
following unique expressions on L/(D1L + ---+ D,L).

Ty =Y "n{® mod (DIL+ -+ D,L) 1<k<m, (37)
veQ
T,2=>" 2" mod (DIL+---+DyL) 1<j<I, (38)
veQ
where ), = (n(ak)) Vi, = (nA ) denote square matrices of degree k whose entries are
rational functions of ay, az, ..., an, t1, t2, . . ., t; respectively.

LEMMA 2.7. Y. )},j are all invertible.

PROOF. Consider the asymptotic behaviours of the matrices ), , yt_, for ai, tj — +o00
for all k, j. Since

Ta/\¢(z) (_l)nan , 7}]¢(Z) ~ t”l(”l*]) ,
P (2) D(z) y

from (34) and (35), we have

(tj) -1
B ~ (D, )~ Vs,

respectively where §;, denotes the Kronecker delta. This implies that neither det),, nor
det )y : vanishes identically, i.e., the matrices YV, , Vs ; are invertible. d

PROPOSITION 2.8. R is written as R = B + V,;(R"). In particular, dim H < k.

PROOF. We can define 7~ T from R into itself as

ag’
_ T o) _ T, ®()
T, ¢ = WT[,,{QO(Z), T @(2) = T)th @(2).
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From Lemma 2.7 and the identities
TV =VT, ., T, Vy=VI,,

o~ o~

T,.. T, are uniquely representable as

ag

W=y (39)

veQ
F=3 ) (40)

veQ
respectively for certain rational functions ni“f)), ﬁ)\ ) of ai,az, ...,am,t, 0, ..., 1. Since we

have
K I h
R=U{HTa;]_[T,j‘}L, (1)
>0 Yk=1  j=1

Proposition 2.8 holds. O

2.3. Proof of Theorems 1.6 and 1.8. Propositions 2.3 and 2.8 show that
dmH =«
and that {z* ; A € Q}, which is a set of generators of 13, is a basis of H, i.e.,
B=L/(Di{L+---+D,L)=H

Thus Theorem 1.6 is proved. Theorem 1.8 is an immediate consequence of (37) and (38) in
view of Lemma 1.5.

REMARK. Moreover, (39) and (40) show that there exist matrices y;k (ni“f))) y,/ =

(ﬁ; v)) which represent the shift operators 7, : ax — arg~ " and T,j_ it —>tq”

as

! respectively

yﬁ;( = (Ta;yak)71 and yfj = (Tt;yfj)il ) (42)

3. The dimension of H ym(X D, V)

In this section, we prove Theorems 1.7 and 1.9 for symmetric cohomology case. We first
remark that

LEMMA 3.1. Let Hyy be the linear subspace of H consisting of the functions f(z)

s+(1;7])1)

satisfying o f (z) = sgn(o) f(z). Then Hay has dimension k = ( and has a basis

consisting of

n
. _ L m+2m—=1)l _
Al_[Zl)wﬁ( _ (_1)mZ;’ﬂ+2(n l)lqkl+72 : qm+2(n l)l) (43)
i=1
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where A runs over the set Qgsym.

PROOF. Since A is the projection from H onto Haye, Hay is identified with AH, i.e.,
Haie coincides with the set of functions A f(z) where f(z) € H. Hence H,y is spanned by
(43). On the other hand, for each A € Qgym, (43) contains the monomial term corresponding
to A

n

Ai m_mA2n—1)1 p;4mt20=DL o 1)l
[Tz0(- s gt g e
i=1

but not any monomial term corresponding to other ;t € Qsym. These monomials are linearly
independent in view of Remark 2.1.2. This means (43) are also linearly independent. a

The following is an immediate consequence of (4), (6), (7) and the definition of the map
M in (23):
LEMMA 3.2. Ifo € W, then c My(z) = Mo ¢(z). In particular,
AMep(z) = MAp(2) .

Moreover, if 9(z) € Ray, then M@(z) € Har.

3.1. Proof of Theorem 1.7. Let M|g, be the map restricting the domain R to Ry.
From Lemma 3.2, we regard M|g,, as the map from Ry to Ha. The map Mg, : Rax —
Ha is surjective, because the image of Ry by M|g,, coincides with Hay:

MR = MAR (by (10))
=AMR (by Lemma 3.2)
=AH (by Proposition 2.3)
= Hait -

From Remark 2.3.1 and (11), the kernel of M| g, coincides with AV, (R") as follows:

alt

kerM|g,, = kerM N Rar = V;(R") N Ry = AV, (R").

alt

Thus we have the canonical isomorphism

Hyym = Rat/ AV, (R") = Ryi/ketM| g, — MR = Ha

alt

and we therefore obtain dim Hgyy = dim H, = « from Lemma 3.1.
Next we show that we can take the alternating sums Az", v € Qgynm as a basis of Hgyp,.

Indeed, when a; 1, tj_1 — 0, from (33) we have by alternation,

lim  ADiz" = A[ (2, T = (gt )]
a; 7' =0

—s—1—m—=1D)I4+1 _X\ 1 —DI+r _A
=AZ18 (n—1)I+ IZZZ"'Zﬁ" _qA]AZ§+ +(n—Di+ IZZZ"'Z,);" (44)
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provided that s + 1 + (n — 1)l + A1, A2, ..., A, are different from each other and that they
satisfy

[A2], ooy (A S Us+ 14+ (m— DI+ Aq].
The highest terms on the right-hand side of (44) are

l+(n—=1)I+A; _A I+(n—1)I—A; _A I+(n—=1)1 _A
q)”AZT’_ +n=1)i+ ... Z,);" ’ Azi—i_ +(n=1) 1752 Z,);" , 2AZ§+ +(n=1) 22 -Zﬁ" ,
according as A1 > 0,A; < 0,A; = O respectively. Hence an arbitrary skew-symmetric

Laurent polynomial reduces to Az", v € Qsym modulo A(D{L + - - -+ D, L). Thus Theorem
1.7 is proved.

3.2. Proof of Theorem 1.9. /T\ak, ﬁj, /T;: /T\,]_ preserve Ry, and we have the g-

difference equations with respect to the basis Az", v € QOsym- Hence Theorem 1.9 holds.
REMARK 3.2.1. Y, Yy being restrictions of Y, , )),j to Hgym respectively, neither

det Yy, nor det Yy, vanishes identically. In other words, ¥, and Y are all non-singular and
Y- Y,; can be defined similarly as in (39), (40) or (42).

ax’

4. Special symmetric cases

Let Hgym be the linear space of holomorphic functions f(z) on X satisfying o f(z) =
@ and Ty, f(z) = (—1yng~ 3~ 0= Ditntlmm=20=DI20HD ey for | < i < n. Since
an arbitrary f(z) € Hay has the factor 8,¢(z), Ha and Hsym are isomorphic by the map
Oatt : Hsym — Haie; f(x) > f(x)bai(z). We consider the map

Msym3 Rait —> 7'[sym
(. 2)

@(2) — Moyme(2) == O(2)0a(z)

which is well-defined by (4), (7), (8) and Lemma 1.3. Since My, is regarded as composition
of the maps

—1
M Oa
Rat —> Haie = Hsym s
we see that Mgym naturally induces the isomorphism Hsym = Hsym.

Let ¢;.(z) := Az" throughout this section. The set {¢;(z); A € QOsym} is a basis of
Hgym = HS"ym(X, @, V). Using the map Mym, Eqs. (14) and (15) in Theorem 1.9 are rewrit-
ten as the equations in Hgyp, as follows:

Tak Msym¢)» (f) = Z yicjﬁ)Msym(ﬁv (é) s

VEQsym
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Tt,- Msymﬁbk (é) = Z y)(LiJBMsquﬁu (f)

VEQsym
v o (s v . (5D . _ (s+(n=DI
and Y, = (yA " ) Yy, = (y)\ v) denote square matrices of degree x = ( " ) whose
entries are rational functions of a1, az, ..., am, t1, t2, . . ., 1] respectively.

As we have seen in the proof of the isomorphism H = H, the following two facts are
also essential for the proof of isomorphism Hgym = Hsym. One is that Yy, , Y; ; are invertible,
i.e., det Yak’ det?,j do not vanish identically. The other is that Mgym$3 (z), A € Qgym are lin-
early independent in Hgym, i.e., there exist « points ¢(, in X such that det(/\/l sym®a (§(M)))

At
does not vanish identically.

In this section, we mention more concrete results about them when/ = 0 and 1.

4.1. Symmetric case where / = 0. In this case, Hg,

(X, @, V,) has dimension k =
(}). We have already seen in Remark 3.2.1 that det Y,, does not vanish identically, and the

explicit form of det Y, is actually given in [7] as follows:

2542 (::1)

s 1-— n—1

detY,, = (—al)—”(n)( =2 ( aldk)) .
1 _a1a2"‘a25+2

The parameters ay, az, .. ., axs+2 can be replaced symmetrically in the above formula. Ac-

cording to the following theorem, we see directly that det ¥,, and det(/\/lsym(pk(gw)))k . do

not vanish identically:

THEOREM 4.1. The explicit form of det 7[“ is given by

2542 ¢zh
= — (I —aiar) \"
detY, = ( i ) .
1l —ajaz---axs42
The parameters ay, az, . . ., axs+2 can be replaced symmetrically in the above formula. More-

over, the k X k determinant with (A, ) entry Msymy.(¢()) is evaluated as

s—1

s l_[l < i<Ds z(qa.fla.fl;q)oo G
det (Msymm(;(u)))k)ﬂ=(q;q)2<(>”)( SK_jf S_+1 — >
(qay "ay ...ay; 5 @)oo

8 ( l_[ Dai/aj; q)0(aiaj; 11))(;‘%)
leicies W (GO

where £ = (au,, Au,, ..., ap,) € X for p = (1, u2, ..., un) € Osym.
PROOF. See [7, 23]. See also [24] for another simple proof. O

REMARK 4.1.1. Whenm = 2n + 2, 1.e., s = n, the above determinant, whose matrix
size (fl) equals 1, becomes nothing but the formula investigated by Gustafson [15]. See also
[22].
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4.2. Symmetric case where/ = 1. 'We shall simply write ¢ in place of ¢;. In this case,
HY,\ (X, @, V) has dimension « = (S+Z_l). The explicit form of det Yy, is given in [8] as
follows:

2542 s+i2y

s+n—1 " (1 - tn_jalak) ( =1
det ¥y, = (—ap ™" O T ( — ) :
j=1

1 —t"*+i2ajay -+ - ax42

so that we have the following which implies that det Y, does not vanish identically:

THEOREM 4.2. The explicit form ofdetyak is given by

J

n 2542 n—j Q)|
_ 2421 — i
det Ya] - | | ( k=2 ( alak) > .

o= mHi"2ajay - - - azein

The parameters ay, az, . . ., azsya can be replaced symmetrically in the above formula.
PROOF. See [8]. g

Next we show the explicit form of det(Msyms.(¢(w))), , for some & points ¢, in X.

In order to explain this, we choose special critical points ¢, for the Jackson integrals (1) in
the following manner.
Let Z be the set of all compositions of n defined by

Z:={(n1, 2, ..., us) €L’ 1+ p2+---+pug=n, u1 =0,..., 15 >0},

The number of elements in Z is equal to . For compositions u = (w1, U2, ..., hs), V =
(v1, v2, ..., Vs) € Z, we define the ordering <, v on Z if there exists i such that

U1 =V, MU2=V2, ..., Uji—1 =Vi-1, Mi <Vj.
Corresponding to the composition u = (w1, 42,...,Us) € Z, we take the point

(Z1, 82, ..., ¢n) € X satisfying
{g,:ai if i€ {pr, oy e F 2+ )
Ciltirr =1t if j&{m, w1+ po, .o, 1+ po+ -+ ps)
or equivalently
aptti i if 1<i<up,

g = a1t i<+ ue,
| =

agt"~ if w4+ +us g +1<i<n.

We denote such a point by &) = (01, Sw2s - - -5 $gon) € X. For the point {,) € X, we
denote by Az:m the fan with the vertex ¢, such that

v >0 if i e{uwr, 1+ pa, .., 1+ po+ o+ pgl,
{g(u)qvex§ l o

vi —vjy1 >0 if j & {ur, pwr+po, o+ pa 4+ gl
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Since @(§) = 0if § € Ag, \ AZM, the Jackson integral (1) over Ay, is defined only over
the fan A;‘ .
()

For A = (A1, 22,...,A0), v = (v1,V2,...,V) € Qsym, We also define the reverse
lexicographic ordering A < v on Qgym if A = v1, A2 = v2, ..., A1 = Vi1, A < v; for
somei € {1,2,...,n}.

THEOREM 4.3. The k x k determinant with (A, (1) entry Msym®x (&) is evaluated
as

_ +k—2

—(n— —1 1 s
(q q)n(:+;:71) n ((q[_(n_k+l); q)SOO H1§i<j§2s+2(qt (n k)a[ a.] 7q)00>( 1
) o0 1. — — — — —
@l 9% (g Darla - ap L )e

T1(T 11

r=01<i<j<s

P Paa " )0 (" Faiay: q))(%s)
tai (45 % ’

where the rows A € Qgsym and the columns w € Z of the matrix (ngmcbx (C(u)))A L are

arranged in decreasing orders of < and <, respectively.
PROOF. See [8]. O

As a corollary, we see det (Msquﬁx ¢ (M))) " does not vanish identically.

REMARK 4.3.1. In the special case where (m,[) = (4, 1), ie., (s,]) = (1, 1), k is
equal to 1, and the determinant reduces to Jackson integral itself which is explicitly evaluated
by van Diejen [13]. See also [11, 20, 21, etc].

4.3. q-difference equations in case where n = 1. In the special case where n = 1,
we have k = 5. One can write explicitly g-difference equations (14) as follows. We denote
by ex the kth elementary symmetric polynomials in ajy, ..., axs+2. We simply write z = 73
and A = A;. The g-multiplicative function @ (z) is written as

2542

-1_.
®(2) qu+l_5 1—[ (qa; "7:9)o
el (akz; 4) oo

Further we put u;, = (z* — z7, £). Then (14) can be written as

Toup =u)—1 — (ak +1/apuy +up1p (1 <A =<s—1), (45)
N
. Cs— —e
Tatts = ug—1 — (a + apug + Y (= 1) H 2L D0 (46)
=’ I — ez

where ug = 0. In particular when s = 1, the Jackson integrals of @ (z) give Askey—Wilson
integrals (see [20]), while when s = 2 they give, as a special case, the Stieltjes transform of
Askey—Wilson polynomials (the so-called 2nd solutions). See [6].
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A. Appendix

In this appendix we prove the identity (17) by counting the number of graphs associated
with {u@, ..., u™}.

A.1. Admissible graphs. Let R be the set defined by (16) which consists of linear
functions associated with the function @(z). We shall call a system of n-tuple of functions
{(uD, ..., u™} C R admissible if their homogeneous parts i1, ..., 1 are linearly inde-
pendent.

An admissible system represents a graph G with n + 1 vertices {0, 1,2,3,...,n} and n
coloured (white or red) edges in the following sense:

e The form (g;, x) — oy represents a white edge with the vertices {0, i}.
e The form (¢; — ¢, x) — 11 or {&; + &}, x) — 7 represents a white or a red edge with
the vertices i, j.
In this case we call G admissible. We shall denote by V (G), E(G) the set of vertices and the
set of edges of G respectively. Below we use the terminologies in [33].

PROPOSITION A.l. An admissible graph G is characterized as having the following
properties.
(1) G consists of two disjoint subgraphs G+, Go such that 0 € V(Gy) and 0 ¢ V(Gp).
(i) G+ is a routed tree at the root 0.
(iii) Each connected component of Gy has only one circuit.
(iv) Any circuit contains an odd number of red edges.

We also call G4, Gy admissible. In this case, the absolute value of the determinant
|[;1(1), . ﬁ(”)]| equals 2" where r denotes the number of connected components of Gy.

Proposition A.1 is an immediate consequence of Lemmas A.2—-A.S, which we present
below. By assumption, all the homogeneous linear functions /& corresponding to the edges in
E(G) are linearly independent and different from each other. Hence, by abuse of notation, we
may identify an edge {0, i} or {i, j} with the corresponding homogeneous linear function &;
or & £ ¢;. For the set of edges E(S) of a subgraph S we denote by (E(S)) the linear space
spanned by the edges in E(S).

First note that G has no loop (with one vertex and one edge).

LEMMA A.2. Every connected subgraph of G is admissible. Every connected graph S
obtained from G is admissible by deleting some edges.

LEMMA A.3. Assume that S is a circuit in G. S is admissible if and only if the number
of red edges are odd.

PROOF. Let S be a circuit with p vertices iy, i2,...,i, and p edges {i1,i2},...,
{ip—1,ip}, {ip,i1}(p = 2). Then the homogeneous functions {i1,i2},...,{ip—1,ip} are
linearly independent. For any point satisfying

{ik,ixg1} =0 (A <k=<p-1
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the function {ip, i1} is equal to O or +2¢;, accordingly as the number of red edges being
even or odd. The former case implies that the edges are linearly dependent. The latter case
implies that the edges are linearly independent and ¢;, (1 < k < p) is a linear combination of
{i i1} A <=l <p—1)and{ip, i1}

e, =0 mod (E(S)). (47)

Lemma A.3 is proved. a

LEMMA A.4. IfG. isa connected component of G including the vertex 0, then G has
no circuit.

PROOF. Suppose on the contrary that G, has a circuit S. From Lemma A.3 we may
assume that £ (S) has an odd number of red edges. Then there exists a vertex i of S and a path
S’ connecting 0 and i such that E(S) N E(S") = #. We have

i =0 mod (E(S)).
From (47), we have
g =0 mod (E(S)).
These two equalities imply that the edges in E(S U §’) are linearly dependent. This is a
contradiction. Lemma A.4 is proved. O
LEMMA A.5. Every connected component of Go has only one circuit.

PROOF. Suppose that a connected component of Gy has no circuit, i.e., it is a tree. Then
the number of vertices would be greater than the number of edges. Therefore the same would
be true for Gp, which is a contradiction, because the cardinality of V(Gp) is equal to the
cardinality of E(Gop).

Next we suppose that Gy has two circuits, say S, S’. We may assume that each circuit has
an odd number of red edges. We consider the following three cases.

Case 1: the case where the cardinality |V (§) NV (S")| > 2. Let i, j be two vertices in
V(S) N V(S). Both S, S’ are divided into two disjoint paths Si, S> and S, S/, respectively
which connect i and j. Then we may assume

ei+e;=0 mod (E(S1)), & —¢; =0 mod (E(S2)),
because one of Sy, S» has odd red edges and the other has even red edges. Likewise we have
gi+e;=0 mod (E(S)), & —¢&; =0 mod (E(S))).

This means that neither £(S; U S}) nor E(Sz U S}) is admissible. This is a contradiction.
Case 2: the case where |V(S) N V(S)| = 1. Leti € V(S) N V(S"). Then E(S) N
E(S") = and

gi=0 mod (E(S)), & =0 mod (E(S)).

Hence S U S’ is not admissible, which is a contradiction.
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Case 3: the case where V(S) N V(S') = @. There exist two vertices i € V(S), j €
V(8’) and a path §” connecting i, j such that E(S) N E(S”) = E(S")NE(S”) = @. Then we
have

&i=0 mod (E(S)), & =0 mod(E(S)), e +ejorei—e;j=0 mod (E(S"))

respectively. Then S U S" U S” is not admissible. This is again a contradiction. Lemma A.5 is
proved. O

We denote by G (n) the number
Gmy= Y (a0 a"P.
G:admissible
THEOREM A.6. G(n)={m+2mn—-1I}", n=0,1,2,...
We put G(0) = 1 and consider the generating function
o
~ G ,
GH=1+) —
n=1
Theorem A.6 is then equivalent to

Gy =y 2= DI,

!
= n!
A.2. Case wherem =0,/ =1. First we assume thatm = 0,/ = 1 so that V(G) =
{0}, E(G+) = @ and E(G) = E(Gp). Remark that in this case G(0) = 1, G(1) = 0.

We denote by g(n) the number of all connected admissible graphs Gy with n white or red
edges and n vertices such that |[z", ..., Z™]| = 2. Then

LEMMA A.7.
gn) =2" -1y —.

PROOF. We can apply to this case Cayley formula for counting trees with labelled
vertices and prove that, for n > r > 2, the number of connected admissible graphs with one
r-polygon and n vertices equals

22— —2)---(n—r+ Hn"".

Hence we have

Yo AP aTP =2 =

Go: connected
admissible
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REMARK A.7.1. The graphical figures Gg for small n are given below.

n=2 n=23
2 1
1/2 / 3 i t
1 2 3
(a) (b)
n=4
2 4 JEN 3 4
3 4 / \
1 3 / 1 2

4 3
() 2 e ® ®

Theorem A.6 can be derived from the following proposition. Indeed, it is a standard fact
that the generating function G (¢) of all admissible graphs is obtained from that of connected
admissible graphs as follows (see [16, Theorem 1.2]):

o g(k)
o Z 2k
G(t) = eXp |: 72 t :| . (48)
k=2
PROPOSITION A.8.
o0
A 2'1(1’1 _ 1)n
Git)y=1+ E Ti".

n=2

PROOF. w satisfying the functional equation w = ze™ has the power series expansion
inz
n—2

- n n
w = Zl mz (49)
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or equivalently e" has the expansion

= (k+1>k‘
=)

k=0
(See [30, Part 3, Problem 209].) Moreover we have

X n—k—1

k n n
=k —7" k=1,2,3,...
v Zk n—k)°
- 1 (50)
A(m+ )"
Aw n
e _'E: n! 2
n=0
for an arbitrary A € R.
Let L be a differential operator of infinite order relative to A, i.e., L := Zfo 1 dk, Then

from (50) we have

oo n—1 —r—1

e)»w_l _ n'tr g(k)2kk
L[ A L=o_,;§ (n—r—l)' Z T2

On the other hand, the left-hand side equals

o0 wn
w —log(l — w) E "
n=2
Hence we have

[Z !J(k)22 k k:| e —w)~L.

One can see further that

e—IU(l_w) l_ w(l_Ze sz (k l)w

i k 1><h+k D" b

Mo "

k=0 h=0

o e (k=D — 11
= Zzn k |

n=0 k=0 (n — k!

a (= n-
nl

M

3
Il
o

By the substitution z = 2¢ and using (48), we conclude Proposition A.8. a
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Thus Theorem A.6 is proved for the case m = 0,1 = 1.

A.3. General case. Suppose first that G has r + 1 vertices including {0} and j ad-
jacent vertices to O for r > j > 1 respectively so that Gy has n — r vertices and edges. By
applying Cayley counting formula for trees, the sum of [V, ..., 2]? over the set of such
graphs G equals

r U,fl
zm«w-fz(n -)
j=l1 v =1

where the sum of v = (v1, v2, ..., v;) is taken over the set

Vit vi=r, rzvi=zmz-=v;

> > 1.

This is equal to the coefficient of the term ¢ in w/ by substitution z = 2/t
, 4
. w/
Y omi@y T —,
j=1 J!

i.e., the coefficient of the term ¢” in e where w is defined as in (49).
On the other hand, as is obtained in the preceding section, we have

eA—w)y =) (’l‘(’;l)wzn—r =S Re—r—y .,

n—r)! (n—r)!

n=r

if we put z = 2It. Note that the sum of [V, ..., 1% over the set of graphs Gy is equal to
{2(n —r — 1)I}"7", since each edge of Gy admits [ choices of linear functions (&; £ &, x) —
w, (1 <k<l.

Finally we have ( 1 choices of vertices of G, Go. Hence by putting z = 2I¢t, we
have

oo
Git) =BV — )=l = eB—Dw(q — zew)~1 = ere(%ﬂq)w

oo

Z Z(z[+] 1)(%+r_1)r7j71
2L -7

i C{m+ 2(r — 1)1}

r=0

Theorem A.6 is completely proved.
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