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Abstract. In 1978 B. Y. Chen and T. Nagano obtained the local classification of the maximal totally geodesic
submanifolds in compact connected irreducible symmetric spaces of rank two. In this paper, we investigate their
global classification.

1. Introduction

Totally geodesic submanifolds in symmetric spaces are also symmetric spaces and they
are the so-called subspaces in the category of symmetric spaces. The classification of the
maximal totally geodesic submanifolds in compact symmetric spaces of rank one was ob-
tained by J. A. Wolf in [12]. In [4] B. Y. Chen and T. Nagano obtained the local classification
of the maximal totally geodesic submanifolds in compact symmetric spaces of rank two, but
table of them is defective. The main idea of their method is to make use of “polars” and
“meridians” of compact symmetric spaces. In the present paper we make the global classi-
fication of the maximal totally geodesic submanifolds in compact symmetric spaces of rank
two by inheriting Chen-Nagano’s method. There are some partial results for the case of higher
rank. Borel and Siebenthal [1] classified maximal Lie subgroups of maximal rank in compact
simple Lie groups and by using this result Ikawa and Tasaki [7] classified the maximal to-
tally geodesic submanifolds of maximal rank in compact symmetric spaces M = G/K with
rank M = rank G.

In Section 2, we review the basic concept of symmetric spaces and introduce certain
totally geodesic submanifolds in compact symmetric spaces which were defined by Chen-
Nagano ([4]), this is to say “polars” and “meridians”. In Section 3, we refer to known results
of maximal subspaces in compact symmetric spaces. In Section 4, we explain our method
which is an extension of Chen-Nagano’s method to a global one. In Section 5, by using the
method, we give the list of all maximal subspaces in compact symmetric spaces of rank two.
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2. Preliminaries

2.1. Basic concept of symmetric spaces. Let M and N be compact connected ir-
reducible Riemannian symmetric spaces and let f : M → N be a totally geodesic iso-
metric immersion. Then, M is a totally geodesic submanifold of N locally. It is clear that
rank M ≤ rank N , where the rank of a compact symmetric space is the dimension of its
maximal torus. Let GM and GN be the groups of isometries of M and N respectively, then
f : M → N induces the Lie algebra monomorphism gM → gN , where gM and gN are the
Lie algebras of GM and GN respectively.

We prepare some terminologies and notations. Let U be a compact connected semisimple
Lie group and let σ be an involutive automorphism of U . We put

Uσ = {u ∈ U | σ(u) = u}
and denote the identity component of Uσ by U0

σ .

If a closed Lie subgroup L of U satisfies U0
σ ⊂ L ⊂ Uσ , then (U,L) is called a sym-

metric pair of compact type. We can take a σ -invariant and bi-invariant Riemannian metric
on U , which naturally induces a U -invariant Riemannian metric on the homogeneous space
N = U/L, then N is a Riemannian symmetric space. Conversely, any compact semisimple
Riemannian symmetric space is constructed in this manner.

We denote by u and l the Lie algebras of U and L, respectively. The involutive automor-
phism σ of U induces an involutive automorphism of u, which we also denote by σ . A σ -
invariant and bi-invariant Riemannian metric on U induces a σ -invariant and Ad(U)-invariant
inner product 〈 , 〉 on u. The relation U0

σ ⊂ L ⊂ Uσ implies

l = {X ∈ u | σ(X) = X} .

If we put

p = {X ∈ u | σ(X) = −X} ,

we obtain the following orthogonal direct sum decomposition of u since σ is isometric and
involutive:

u = l + p

which we call the canonical decomposition of u with respect to (u, σ ) or canonical decompo-
sition of N .

We define a restricted root system of a Riemannian symmetric space.
Let N = U/L be an irreducible compact Riemannian symmetric space and let u = l + p

be the canonical decomposition of N . Let A be a maximal flat totally geodesic submanifold
through the origin o in N , so called a maximal torus, and we denote its dimension by r(N).
We call r(N) the rank of N . Under the identification between the tangent space ToN of N at
o and p, ToA is identified with a maximal abelian subspace a in p. Now, we identify a and a∗
with respect to the inner product 〈 , 〉 on p induced by the Riemannian metric of N .
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DEFINITION 2.1. Let α be a linear form on a, and let

u(α) := {X ∈ u | (adH)2X = −α(H)2X for all H ∈ a} .

A non-zero linear form α is said to be a restricted root of N with respected to a if u(α) �= 0.
The set R(N) of restricted roots is called the restricted root system of N with respect to a.

Let N be a Riemannian symmetric space. If we denote by U the identity component of
the isometry group of N and by L the isotropy subgroup at some point o in N , then N is a
homogeneous space U/L. Let u = l + p be the canonical decomposition of the Lie algebra u

of U and let a be a maximal abelian subspace of p.

DEFINITION 2.2 ([6]). We define the subset aL of a as follows:

aL = {H ∈ a | exp H ∈ L} .

aL is called the unit lattice in a.

THEOREM 2.1 ([6]). Let N = U/L be a compact simply connected irreducible Rie-
mannian symmetric space with rank N = r . Let u = l + p be the canonical decomposition of
the Lie algebra u of U and a be a maximal abelian subspace of p. Then the unit lattice aL in
a is spanned by Σ(N) = {α1, . . . , αr }, where Σ(N) is a fundamental root system of N . This
is to say,

aL = {α1, . . . , αr }Z .

LEMMA 2.1. Let M = G/K and N = U/L be compact simply connected irreducible
Riemannian symmetric spaces with R(M) = R(N). If M is a totally geodesic submanifold of
N , then aK = aL.

PROOF. Let g = k + m and u = l + p be the canonical decompositions of M and N

respectively and a be a maximal abelian subspace of p. By the assumption, we can assume
that m is a subspace of p which contains a. Thus aK = aL. �

EXAMPLE 2.1. Let M = SU(n+1)/SO(n+1) and N = SU(n+1)×SU(n+1)/	
where 	 is the diagonal subgroup of SU(n + 1) × SU(n + 1). Then M is a totally geodesic
submanifold of N with R(M) = R(N). In this case

aK =
{ n+1∑

i=1

xiεi

∣∣∣∣
n+1∑
i=1

xi = 0, xi ∈ Z, (1 ≤ i ≤ n + 1)

}
,

aL =
{

2
n+1∑
i=1

xiεi

∣∣∣∣
n+1∑
i=1

xi = 0, xi ∈ Z, (1 ≤ i ≤ n + 1)

}
,

where {εi |1 ≤ i ≤ n + 1} denotes the standard orthonormal basis of Rn+1 .
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2.2. Certain totally geodesic submanifolds in compact symmetric spaces. We in-
troduce a polar and the meridian in a compact symmetric space which were defined by Chen-
Nagano.

DEFINITION 2.3 ([4]). Let o be a point of a symmetric space N . Then we call a
connected component of the fixed point set of so, the symmetry at o, in N a polar of o. We
denote it by N+ or N+(p) if N+ contains a point p. We also call a connected component of
the fixed point set of sp ◦ so in N through p the meridian of N+(p) in N and denote it by

N−(p) or simply by N−. When a polar consists of a single point, we call it a pole.

REMARK 2.1. Polars and meridians are totally geodesic submanifolds in N ; they are
thus symmetric spaces. And they were determined for every compact connected irreducible
Riemannian symmetric space ([4], [9] and [10]). One of the most important properties of
these totally geodesic submanifolds is that N is determined by any pair of (N+(p),N−(p))

completely ([10]). We note that N− has the same rank as N .

DEFINITION 2.4 ([5]). Let N be a compact connected Riemannian symmetric space
and o be a point in N . And we suppose that there is a pole p of o in N . Then we call the set
consisting of the midpoints of the geodesic segments from o to p the centrosome and denote
it by C(o, p) or simply by C. Here, each connected component of the centrosome is a totally
geodesic submanifold of N .

DEFINITION 2.5. Let M be a totally geodesic submanifold of N and let p be a point
in M . We denote by T ⊥

p M the orthogonal complement of TpM in TpN . If there is a totally

geodesic submanifold M⊥ of N through p whose tangent space at p coincides with T ⊥
p M ,

then M⊥ is called the orthogonal complement to M in N at p.

REMARK 2.2. A polar N+(p) and the meridian N−(p) are the orthogonal comple-
ments to each other in N at p.

DEFINITION 2.6 ([8]). Let N be a Riemannian manifold and let M be a submanifold
in N . M is a reflective submanifold if M is a connected component of the fixed-point set of
some involutive isometry of N .

REMARK 2.3. Any reflective submanifold is a totally geodesic submanifold. In addi-
tion, if N is Riemannian symmetric space, then a reflective submanifold M in N is a Rie-
mannian symmetric space.

PROPOSITION 2.2 ([8]). Let M be a submanifold of a Riemannian symmetric space
N , then M is a reflective submanifold if and only if M and M⊥ are totally geodesic submani-
folds.

Next, we give a necessary condition for that a totally geodesic submanifold in a Hermit-
ian symmetric space is totally real.
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LEMMA 2.2 ([4]). Let N = U/L be a compact Hermitian symmetric space and M

be a totally geodesic submanifold of N . Let g = k + m be the canonical decomposition

of M = G/K . Then M is a totally real submanifold if and only if [m,m] ⊂ l
′
, namely,

〈[m,m], so(2)〉 = 0, where the Lie algebra l of L is l = so(2) + l
′
.

THEOREM 2.3 ([4]). Let N be a Hermitian symmetric space and M an irreducible
non-Hermitian symmetric space. If M is a totally geodesic submanifold in N , then M is
totally real in N . In particular dim M ≤ (1/2) dim N .

2.3. Maximality of totally geodesic submanifolds in compact symmetric spaces.
In the subsection we refer to some known results of maximal totally geodesic submanifolds in
compact symmetric spaces. In our classification we consider only the case where the ambient
symmetric space is simply connected because of Lemma 2.4.

DEFINITION 2.7 ([9]). Let M and N be Riemannian symmetric spaces. A smooth
map f : M → N is called a morphism if f satisfies f ◦ sp = sf (p) ◦ f for any p ∈ M .

LEMMA 2.3 ([11]). Let M and N be Riemannian symmetric spaces. Then a morphism
f : M → N satisfies the following conditions:

(1) The image f (M) is a totally geodesic submanifold of N .

(2) For any q ∈ f (M), f −1(q) is a totally geodesic submanifold of M.
(3) f : M → f (M) is a submersion.

LEMMA 2.4. Let Ñ and M̃ be compact connected Riemannian symmetric spaces and
let f : Ñ → N be a covering morphism. If M̃ is a maximal totally geodesic submanifold of
Ñ , then f (M̃) is a maximal totally geodesic submanifold of N . And if M is a maximal totally

geodesic submanifold of N , then each connected component of f −1(M) is a maximal totally
geodesic submanifold of Ñ .

PROOF. If f (M̃) is not maximal, there exists a totally geodesic submanifold X of N

such that f (M̃) � X � N . Then each connected component of f −1(X) is a totally geodesic

submanifold of Ñ by Lemma 2.3 (2). Hence it contradicts the maximality of M̃ which is
contained in f −1(X).

If f −1(M) is not maximal, there exists a totally geodesic submanifold X̃ of Ñ such that

f −1(M) � X̃ � Ñ . Then f (X̃) is a totally geodesic submanifold of N by Lemma 2.3 (1).

Hence it contradicts the maximality of M which is contained in f (X̃). �

LEMMA 2.5. Let N = U/L be a compact simply connected irreducible symmetric
space. Then L is a maximal connected Lie subgroup of U .

PROOF. Since N is simply connected, L is connected. If L is not maximal, then there
is a connected Lie subgroup H of U such that L � H � U . Let h, l and u be the Lie algebras
of H,L and U respectively. Then we have:

l � h � u .
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Let B be the killing form of u, then we obtain the orthogonal decomposition of u with respect
to B:

u = h + h⊥ .

And we also obtain the orthogonal decomposition of u with respect to B|h×h:

h = l + l⊥ .

The fact h �= l follows l⊥ �= {0}. Let u = l + p be the canonical decomposition, then
p = h⊥ + l⊥. Also, we obtain [l, l⊥] ⊂ h ∩ p = l⊥. By the assumption that l acts on p

irreducibly, this is a contradiction. �

3. Known results

3.1. Maximal totally geodesic submanifolds of maximal rank in compact symmet-
ric spaces associated with normal real form. In this subsection we refer to the result in
[7] which makes use of the result in [1].

DEFINITION 3.1. A compact symmetric space N = U/L is associated with normal
real form if r(N) = r(U).

THEOREM 3.1 ([7]). Let N = U/L be a compact symmetric space associated with

normal real form, and U
′
be a maximal Lie subgroup of maximal rank in U . Then U

′
/U

′ ∩L

is a maximal totally geodesic submanifold of maximal rank in N. Conversely, any maximal
totally geodesic submanifold of maximal rank in N is obtained in this manner. The totally

geodesic submanifold U
′
/U

′ ∩ L mentioned above is also a compact symmetric space as-
sociated with normal real form or locally isomorphic to the product of a compact symmetric

space associated with normal real form and S1.

THEOREM 3.2 ([7]). A necessary and sufficient condition that a totally geodesic sub-
manifold U in a compact connected simple Lie group is maximal is that U is a Cartan em-
bedding or a maximal Lie subgroup.

COROLLARY 3.3 ([7]). A necessary and sufficient condition that a totally geodesic
submanifold U of maximal rank in a compact connected simple Lie group is maximal is that
U is a Cartan embedding of a compact symmetric space corresponding to a normal real form
or a maximal Lie subgroup of maximal rank.

3.2. Maximal totally geodesic submanifolds in compact symmetric spaces of rank
one. There is the classification of totally geodesic submanifolds in compact symmetric
spaces of rank one, which was given by J. A. Wolf.

THEOREM 3.4 ([12]). Let N be a compact symmetric space of rank one. If M is a
totally geodesic submanifold of N , then M is one of the followings:

(1) N = Sn, M = Sr(1 ≤ r ≤ n)
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(2) N = RPn, M = RP r (1 ≤ r ≤ n)

(3) N = CPn, M = RP r , CP r (1 ≤ r ≤ n)

(4) N = HPn, M = RP r, CP r, HP r , (1 ≤ r ≤ n)

(5) N = OP 2, M = RP r , CP r, HP r (1 ≤ r ≤ 2), OP 1

REMARK 3.1. Here, we note that RP 1 = S1, CP 1 = S2, HP 1 = S4 and OP 1 = S8.

We give the following Table 1 by [4].

TABLE 1. Polars and the corresponding meridians
in compact symmetric spaces of rank one

M M+ M−

Sn {a pole} Sn

RPn RPn−1 S1

CPn CPn−1 S2

HPn HPn−1 S4

OP 2 S8 S8

4. A global extension of Chen-Nagano’s method

In this section, firstly we introduce Chen-Nagano’s method, then we extend this method
to a global one.

PROPOSITION 4.1 ([4]). Let M and N be compact irreducible symmetric spaces. If
M+ and N+ are polars of M and N respectively and M− and N− are the corresponding
meridians respectively, then the pairs of a polar and the corresponding meridian of M × N

are (N+,M × N−), (M+,M− × N) and (M+ × N+,M− × N−).

By Proposition 4.1, we have Table 2 for products of compact symmetric spaces of rank
one.

LEMMA 4.1. Let M · N denote {M × N}/Z2. Then the pairs of a polar and the
corresponding meridian

(
(M · N)+, (M · N)−

)
are (M+·N+,M−·N−) and (CM(oM, pM) ·

CN(oN, pN ),C⊥
M(oM, pM) · C⊥

N(oN, pN)), where oM and oN are origins of M and N and
pM and pN are poles of oM and oN , respectively.

PROOF. It follows Theorem 4.1 immediately. �

COROLLARY 4.2. The pairs of a polar and the corresponding meridian of Sn ·Sm are

({the pole}, Sn · Sm) and (Sn−1 · Sm−1, S1 · S1).

The following theorem is very useful for the classification.

THEOREM 4.3 ([4]). Let oN and oM be the origins of N and M respectively. Let cN

(resp. cM) be a closed geodesic in N (resp. M) and let pN (resp. pM) be the antipodal point
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TABLE 2. Polars and the corresponding meridians in products of compact symmetric spaces of rank one

M M+ M− Remark

Sn × Sm {(p, p′)} Sn × Sm A point o (resp. o′) is a origin of Sn (resp. Sm).
{(o, p′)} Sn × Sm A point p is a pole of o.
{(p, o′)} Sn × Sm A point p′ is a pole of o′.

Sn × RPm RPm−1 × {o} Sn × S1 A point o (resp. o′) is a origin of Sn (resp. RPm).
{(p, o′)} Sn × RPm A point p is a pole of o.

RPm−1 × {p} Sn × S1

Sn × CPm CPm−1 × {o} Sn × S2 A point o (resp. o′) is a origin of Sn (resp. CPm).
{(p, o′)} Sn × CPm A point p is a pole of o.

CPm−1 × {p} Sn × S2

Sn × HPm HPm−1 × {o} Sn × S4 A point o (resp. o′) is a origin of Sn (resp. HPm).
{(p, o′)} Sn × HPm A point p is a pole of o.

HPm−1 × {p} Sn × S4

Sn × OP 2 S8 × {o} Sn × S8 A point o (resp. o′) is a origin of Sn (resp. OP 2).
{(p, o′)} Sn × OP 2 A point p is a pole of o.
S8 × {p} Sn × S8

RPn × RPm RPm−1 × {o} RPn × S1 A point o is a origin of RPn.
RPn−1 × {o′} S1 × RPm A point o′ is a origin of RPm.

RPn−1 × RPm−1 S1 × S1

RPn × CPm CPm−1 × {o} RPn × S2 A point o is a origin of RPn.
RPn−1 × {o′} S1 × CPm A point o′ is a origin of CPm.

RPn−1 × CPm−1 S1 × S2

RPn × HPm HPm−1 × {o} RPn × S4 A point o is a origin of RPn.
RPn−1 × {o′} S1 × HPm A point o′ is a origin of HPm.

RPn−1 × HPm−1 S1 × S4

RPn × OP 2 S8 × {o} RPn × S8 A point o is a origin of RPn.
RPn−1 × {o′} S1 × OP 2 A point o′ is a origin of OP 2.
RPn−1 × S8 S1 × S8

CPn × CPm CPm−1 × {o} CPn × S2 A point o is a origin of CPn.
CPn−1 × {o′} S2 × CPm A point o′ is a origin of CPm.

CPn−1 × CPm−1 S2 × S2

CPn × HPm HPm−1 × {o} CPn × S4 A point o is a origin of CPn.
CPn−1 × {o′} S2 × HPm A point o′ is a origin of HPm.

CPn−1 × HPm−1 S2 × S4

CPn × OP 2 S8 × {o} CPn × S8 A point o is a origin of CPn.
CPn−1 × {o′} S2 × OP 2 A point o′ is a origin of OP 2.
CPn−1 × S8 S2 × S8

HPn × HPm HPm−1 × {o} HPn × S4 A point o is a origin of HPn.
HPn−1 × {o′} S4 × HPm A point o′ is a origin of HPm.

HPn−1 × HPm−1 S4 × S4

HPn × OP 2 S8 × {o} HPn × S8 A point o is a origin of HPn.
HPn−1 × {o′} S4 × OP 2 A point o′ is a origin of OP 2.
HPn−1 × S8 S4 × S8

OP 2 × OP 2 S8 × {o} OP 2 × S8 A point o is a origin of OP 2.
S8 × {o′} S8 × OP 2 A point o′ is a origin of OP 2.
S8 × S8 S8 × S8
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of oN (resp. oM) in cN (resp. cM). Let f : M → N be a totally geodesic immersion such that
f (oM) = oN (so f (pM) = pN). Then f induces the following totally geodesic immersions:

f + : M+(pM) → N+(pN)

f − : M−(pM) → N−(pN) .

Theorem 4.3 implies that a necessary condition for that M is a totally geodesic subman-
ifold in N .

THEOREM 4.4 ([4]). Let M and N be compact Riemannian symmetric spaces with
r(M) = r(N) and let f : M → N be a totally geodesic imbedding. We denote by P(M) and
P(N) the sets of pairs of a polar and the corresponding meridian of M and N respectively.
Then f ± induced by f give rise to a mapping P(f ) : P(M) → P(N) and P(f ) is a
surjection.

COROLLARY 4.5. Let N = U/L be a compact irreducible symmetric space of rank
two with a pole and let N+ be a polar which is not a pole. If f : Sn · Sm → N is a
totally geodesic imbedding, then f ±

i (i = 1, 2) induced by f give rise to totally geodesic
imbeddings:

f ±
1 : ({the pole}, Sn · Sm) → ({a pole}, N)

f ±
2 : (Sn−1 · Sm−1, S1 · S1) → (N+, N−) .

PROOF. It follows Theorem 4.4 immediately. �

LEMMA 4.2. Let N = U/L be a compact irreducible symmetric space whose rank is
greater than two and N has no pole. If f : Sn · Sm → N (2 ≤ n, 0 ≤ m) is a totally geodesic
imbedding, then f ±

i (i = 1, 2) are the following:
f ±

1 : ({the pole}, Sn · Sm) → (N+
i , N−

i )

f ±
2 : (Sn−1 · Sm−1, S1 · S1) → (N+

j , N−
j ) ,

where (N+
i , N−

i ) and (N+
j , N−

j ) are pairs of a polar and the meridian in N . In particular,

Sn · Sm is not maximal in N .

PROOF. It follows Theorem 4.4 immediately. �

LEMMA 4.3. Let oM and oN be the origins of M and N respectively. Let pM and
pN their poles be respectively. We assume r(M) = r(N). If a totally geodesic imbedding
f : M → N satisfies f (oM) = oN and f (pM) = pN , then f induces totally geodesic
imbedding fc and f ⊥

c :
fc : CM(oM, pM) → CN(oN, pN )
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f ⊥
c : C⊥

M(oM, pM) → C⊥
N(oN, pN) ,

where C⊥
M(oM, pM) and C⊥

N(oN, pN) denote the orthogonal complements to CM(oM, pM)

in M and that to CN(oN, pN) in N respectively.

PROOF. It follows Theorem 4.3 and Theorem 4.4 immediately. �

PROPOSITION 4.6. Let N = Sp × Sq(1 ≤ p, 2 ≤ q). If M is a maximal totally
geodesic submanifold of N , then M is isomorphic to one of Sp × Sq−1, Sp−1 × Sq and
	Sp(p = q), where 	Sp denotes the diagonal of Sp × Sp.

PROOF. Clearly, Sp × Sq−1 and Sp−1 × Sq are maximal totally geodesic submanifolds
of Sp × Sq . When p = q , we assume that there is a compact symmetric space N satisfies,

	Sp ⊂ N ⊂ Sp × Sp .

Now, by r(Sp) = 1 and Theorem 4.3, N is of rank one and has a pole. Hence N = Sm

for some natural number m ≥ p. Since Sm → Sp × Sp is a totally geodesic imbedding, by
Theorem 4.3 the pole of Sm coincides with the furthest pole of Sp×Sp. Hence the centrosome

Sm−1 of Sm is a totally geodesic submanifold of centrosome Sp−1 × Sp−1 of Sp × Sp . Thus

we have the totally geodesic imbedding Sm−1 → Sp−1 × Sp−1. By the similar discussion we

obtain Sm−p+1 ⊂ S1 × S1. Since the pole of Sm−p+1 is the furthest pole of S1 × S1, Sm−p+1

is isomorphic to 	S1. Namely m = p. �

COROLLARY 4.7. Let N = Sp ·Sq(1 ≤ p, 2 ≤ q). If M is a maximal totally geodesic

submanifold in N , then M is isomorphic to one of Sp · Sq−1, Sp−1 · Sq and RPp(p = q).

We obtain another proof of Theorem 4.8 by using Proposition 4.6 and Corollary 4.7.

THEOREM 4.8 ([3]). Any maximal totally geodesic submanifold of Go
2(R

n+2)(n ≥ 3)

is isomorphic to one of Go
2(R

n+1), CP [ n
2 ] and Sp · Sq(p + q = n).

We have Table 3 which gives the list all polars and the corresponding meridians in com-
pact irreducible symmetric spaces of rank two by [9].

5. Maximal subspaces in compact symmetric spaces of rank two

PROPOSITION 5.1. Any maximal totally geodesic submanifold M of AI(3) is isomor-

phic to RP 2 or S1 · S2.

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.
There is no compact symmetric space of rank two whose dimension is less than 5 =

dim AI(5).
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.
By Theorem 4.3 a necessary condition for that Sn ×Sm is a totally geodesic submanifold

of AI(3) is m = n = 1. Now, S1 × S1 is isomorphic to S1 · S1. Since S1 · S1 is a totally
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TABLE 3. Polars and the corresponding meridians in com-
pact irreducible symmetric spaces of rank two

M M+ M− dim M

AI (3) RP 2 T · S2 5

AI (3)/Z3 RP 2 T /Z3 · S2 5

AII (3) HP 2 T · S5 14

AII (3)/Z3 HP 2 T /Z3 · S5 14

SU(3) CP 2 T · S3 8

SU(3)/Z3 CP 2 T /Z3 · S3 8

EIV OP 2 T · S9 26

EIV/Z3 OP 2 T /Z3 · S9 26

Go
2(Rn+2) { a pole } Go

2(Rn+2) 2n

(2 ≤ n) Go
2(Rn) Go

2(R4)

G2(Rn+2) G2(Rn) G2(R4) 2n

(2 ≤ n) S1 × RPn−1 S1 × RPn−1

Sp(2) { a pole } Sp(2) 10
S4 Sp(1) × Sp(1)

Sp(2)/Z2 RP 4 Sp(1) · Sp(1) 10
G2(R5) S1 × RP 3

G2(Cn+2) G2(Cn) G2(C4) 4n

(2 ≤ n) S2 × CPn−1 S2 × CPn−1

G2(Hn+2) G2(Hn) G2(H4) 8n

(3 ≤ n) S4 × HPn−1 S4 × HPn−1

G2(H4) { a pole } G2(H4) 16
S4 × S4 S4 × S4

G2(H4)/Z2 Sp(2)/Z2 S1 × RP 5 16
S4 · S4 S4 · S4

DIII (5) G2(C5) S2 × CP 3 20
CP 4 Go

2(R8)

GI S2 · S2 S2 · S2 8

G2 GI SO(4) 14

EIII Go
2(R10) Go

2(R10) 32
DIII (5) S2 × CP 5

geodesic submanifold of S1 · S2, which is the meridian of AI(3), S1 × S1 is not maximal.
For the cases of M = RPn × RPm(m, n ≥ 2) and M = RPn × Sm (n ≥ 2,m ≥ 1), we
obtain the conclusion that there is no totally geodesic submanifold of AI(3), because of the
dimensions and Theorem 4.3.

Case 3. M = Sm · Sn (m, n ≥ 1).
By Theorem 4.3 a necessary condition for that Sn · Sm is a totally geodesic submanifold

of AI(3) is n = 1 and 1 ≤ m ≤ 2. Then S1 · S2 is isomorphic to the meridian of AI(3).

S1 · S2 is maximal. since in the remaining case, case 4, r(M) = 1.
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Case 4. M is a compact symmetric space of rank one.

By the comparison of dimension, OP 2 is not a totally geodesic submanifold of AI(3).
By Theorem 4.3 a necessary condition for that Sn is a totally geodesic submanifold of AI(3)

is n = 2. Then S2 is a totally geodesic submanifold of S1 · S2. Thus S2 is not maximal. From
Table 1 a polar of CPn is CPn−1. When n ≥ 2, CPn−1 is not a totally geodesic submanifold

of RP 2. Thus CPn is not in AI(3). Since CPn is a totally geodesic submanifold of HPn,
HPn is not in AI(3). By the above discussion, when n ≥ 4, RPn is not a totally geodesic

submanifold of AI(3). In the case of RP 3, the isometry group of RP 3 is SO(4) and if RP 3

is a totally geodesic submanifold of AI(3), then SO(4) is a Lie subgroup of SU(3) locally
which is an isometry group of AI(3). This is a contradiction since a maximal Lie subgroup

of SU(3) is isomorphic to T · SU(2). Hence RP 3 is not in AI(3). RP 2 is isomorphic to a
polar of AI(3). RP 2 is maximal, since RP 2 is not contained in S1 · S2 by Corollary 4.7. �

For the other cases we can argue in a similar fashion. So we only refer to the following
three steps:

(i) Pick up the possible totally geodesic submanifolds of N by Theorem 4.3
(ii) Investigate whether each totally geodesic submanifold in (i) is really totally geo-

desic submanifold or not.
(iii) Investigate whether each totally geodesic submanifold in (ii) is maximal or not.

PROPOSITION 5.2. Any maximal totally geodesic submanifold M of SU(3) is isomor-

phic to one of AI(3), CP 2, RP 3 and S1 · S3.

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.
(i) M is isomorphic to AI(3).

(ii) From [5] AI(3) is a totally geodesic submanifold of SU(3).
(iii) AI(3) is maximal in SU(3), because there is no other irreducible compact sym-

metric space of rank two in SU(3).
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one

(i) There is no such M in SU(3).
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to S1 · S3.

(ii) From Table 3 S1 · S3 is isomorphic to the meridian T · S3 of SU(3).

(iii) From [1] T · S3 ∼= T · SU(2) is a maximal Lie subgroup of SU(3). Thus S1 · S3

is maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of S3, RP 3 and CPn(2 ≤ n ≤ 3).

(ii) Since S3 is a totally geodesic submanifold of S1 · S3 which is the meridian of
SU(3). In the case of RP 3, RP 3 is isomorphic to SO(3) and since SO(3) is a

Lie subgroup of SU(3), RP 3 is a totally geodesic submanifold of SU(3). In the

case of CP 3, a isometry group of CP 3 is SU(4). SU(4) is not a totally geodesic

submanifold of SU(3)×SU(3) which is the isometry group of SU(3). Thus CP 3

is not in SU(3). From Table 3 CP 2 is isomorphic to the meridian of SU(3).
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(iii) By (ii) S3 is not maximal. By Proposition 5.1 CP 2 and RP 3 are not totally ge-

odesic submanifold of AI(3). Also, by Corollary 4.7 CP 2 and RP 3 are not in

S1 · S3. Thus CP 2 and RP 3 are maximal. �

PROPOSITION 5.3. Any maximal totally geodesic submanifold M of AII (3) is iso-

morphic to one of SU(3), CP 3, HP 2 and S1 · S5.

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.
(i) M is isomorphic to one of AI(3), AI (3)/Z3, SU(3) and SU(3)/Z3.

(ii) By Theorem 2.1 AI(3)/Z3 and SU(3)/Z3 are not totally geodesic submanifolds
of AII (3). From [5] SU(3) is a totally geodesic submanifold of AII (3). Also by
Proposition 5.2 AI(3) is a totally geodesic submanifold of AII (3).

(iii) By Proposition 5.2 AI(3) is a totally geodesic submanifold of SU(3), thus SU(3)

is an irreducible maximal totally geodesic submanifold of rank two of AII (3).
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.

(i) M is isomorphic to S1 × S1

(ii) S1 × S1 is isomorphic to S1 · S1, also S1 · S1 is a totally geodesic submanifold of

S1 · S5 which is the meridian of AII (3).
(iii) By Lemma 4.2 S1 × S1 is not maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to S1 · S5.

(ii) S1 · S5 is isomorphic to the meridian of AII (3).

(iii) By Proposition 5.2 S1 · S5 is not a totally geodesic submanifold of SU(3). Thus

S1 · S5 is maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of S5, RPn, CPn and HPn(2 ≤ n ≤ 3).

(ii) In the case of HP 3, if HP 3 is a totally geodesic submanifold of AII (3), then the
isometry group Sp(4) of HP 3 is a Lie subgroup of the isometry group SU(6) of
AII (3). This is a contradiction because Sp(4) is not a Lie subgroup of SU(6).

HP 2 is isomorphic to the polar of AII (3). CP 3 is the orthogonal complement to

SU(3), i.e., a reflective submanifold. Thus CP 3 is a totally geodesic submanifold

of AII (3). Also RP 3 is a totally geodesic submanifold of AII (3).

(iii) By Corollary 4.7 HP 2 and CP 3 are not totally geodesic submanifolds of S1 · S5.
Also, by Proposition 5.2 HP 2 and CP 3 are not in SU(3). Thus HP 2 and CP 3 are
maximal. �

PROPOSITION 5.4. Any maximal totally geodesic submanifold M of EIV is isomor-

phic to one of AII (3), HP 3, S1 · S9 and OP 2.

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.
(i) M is isomorphic to one of AI(3), AI (3)/Z3, SU(3), SU(3)/Z3, AII (3) and

AII (3)/Z3.



434 TARO KIMURA AND MAKIKO SUMI TANAKA

(ii) By Theorem 2.1 AI(3)/Z3, SU(3)/Z3 and AII (3)/Z3 are not totally geodesic
submanifolds of EIV . From [5] AII (3) is a totally geodesic submanifold of
EIV . Also by Proposition 5.2 and Proposition 5.3 AI(3) and SU(3) are totally
geodesic submanifolds of EIV .

(iii) By Proposition 5.3 AII (3) is maximal.
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.

(i) M is isomorphic to S1 × S1.

(ii) S1 ×S1 is a totally geodesic submanifold of S1 ·S9 which is the meridian of EIV ,
since S1 × S1 is isomorphic to S1 · S1.

(iii) By Lemma 4.2 S1 × S1 is not maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to S1 · S9.

(ii) S1 · S9 is isomorphic to the meridian of EIV .

(iii) By Proposition 5.3 S1 · S9 is maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of S9, OP 2, RPn, CPn and HPn(2 ≤ n ≤ 3).

(ii) S9 is a totally geodesic submanifold of S1 · S9. OP 2 is isomorphic to the polar of
EIV . HP 3 is a totally geodesic submanifold of EIV , since HP 3 is the orthog-

onal complement to AII (3) in EIV . Thus RP 3 and CP 3 are totally geodesic
submanifolds of EIV .

(iii) Since HP 3 is a totally geodesic submanifold of EIV , RP 3 and CP 3 are not max-

imal. By Corollary 4.7, HP 3 and OP 2 are not totally geodesic submanifolds of

S1 · S9. Also by Proposition 5.3, HP 3 and OP 2 are not in AII (3). Hence both

HP 3 and OP 2 are maximal. �

PROPOSITION 5.5. Any maximal totally geodesic submanifold M of Sp(2) is isomor-

phic to one of Go
2(R

5), S4, S1 · S3 and S3 × S3.

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.

(i) M is isomorphic to Go
2(R

5) or G2(R5).

(ii) By Theorem 2.1 G2(R5) is not a totally geodesic submanifold of Sp(2). Go
2(R

5)

is a totally geodesic submanifold of Sp(2), since Go
2(R

5) is isomorphic to the
centrosome of Sp(2) (see [5]).

(iii) Go
2(R

5) is maximal in Sp(2), because there is no other irreducible compact sym-
metric space of rank two in Sp(2).

Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.

(i) M is isomorphic to one of S3 × S3, Sn × RP 2 and Sn × CP 2(1 ≤ n ≤ 3).

(ii) S3 × S3 is isomorphic to the meridian of Sp(2). If S1 × RP 2 is a totally geodesic
submanifold of Sp(2), then the isometry group SO(2) × SO(3) of S1 × RP 2 is a
Lie subgroup of the isometry group Sp(2)×Sp(2) of Sp(2). This is a contradiction
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because SO(2)×SO(3) is not a Lie subgroup of Sp(2)×Sp(2). Thus Sn ×RPm

and Sn×CPm(1 ≤ n ≤ 3,m = 2) are not totally geodesic submanifolds of Sp(2).

(iii) By Theorem 4.8 S3 × S3 is not a totally geodesic submanifold of Go
2(R

5). Thus

S3 × S3 is maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to S1 · Sm(2 ≤ m ≤ 5).

(ii) Now, S1 · S3 is a totally geodesic submanifold of S1 · S4 and S1 · S3 is isomorphic
to T ·SU(2). This is a contradiction because T ·SU(2) is a maximal Lie subgroup

of Sp(2). Therefore S1 · S4 is not a totally geodesic submanifold of Sp(2) ([1]).

(iii) Since T · SU(2) is a maximal Lie subgroup of Sp(2), S1 · S3 is maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of Sn(1 ≤ n ≤ 5), RP 2 and CP 2.

(ii) If S5 is a totally geodesic submanifold of Sp(2), the isometry group of SO(6) of
S5 is a Lie subgroup of the isometry group Sp(2) × Sp(2) of Sp(2). This is a

contradiction because r(SO(6)) = 3 ≤ r(Sp(2)) = 2. Thus S5 is not a totally

geodesic submanifold of Sp(2). S4 is isomorphic to the polar of Sp(2). By the

similar discussion if RP 2 is a totally geodesic submanifold of Sp(2), SO(3) is a

Lie subgroup of Sp(2). This is a contradiction. Therefore RP 2 and CP 2 are not
totally geodesic submanifolds of Sp(2).

(iii) By Theorem 4.8, Proposition 4.6 and Corollary 4.7 S4 is not a totally geodesic

submanifold of Go
2(R

5), S1 · S3 and S3 × S3. Thus S4 is maximal. �

PROPOSITION 5.6. Any maximal totally geodesic submanifold M of G2(H4) is iso-

morphic to one of Sp(2), HP 2, S1 · S5, S4 × S4 and G2(C4).

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.

(i) M is isomorphic to one of Sp(2),G2(H3) and Go
2(R

n+2)(2 ≤ n ≤ 4).

(ii) From [5] Sp(2) is isomorphic to a centrosome of G2(H4). Since G2(H3) is a

compact symmetric space of rank one, we will discuss it in the case 4. Go
2(R

6) is

isomorphic to G2(C4). Since G2(C4) is a totally geodesic submanifold of G2(H4),

so is Go
2(R

6).

(iii) By Proposition 5.5 Go
2(R

6) is not a totally geodesic submanifold of Sp(2). Also

by Theorem 4.8 Sp(2) is not in Go
2(R

6). Thus Go
2(R

6) and Sp(2) are maximal.
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.

(i) M is isomorphic to one of Sn × Sm, Sn × RPm, Sn × CPm and Sn × HPm.

(ii) If S1 × RP 2 is a totally geodesic submanifold of G2(H4), by Theorem 4.3 and
Theorem 4.4, we obtain

f ±
1 : ({the pole}, S1 · RP 2) → ({the pole},G2(H4))

f ±
2 : (S1, S1 × S1) → (S4 × S4, S4 × S4) .
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Then a pole of S1 × RP 2 corresponds to the pole of G2(H4), by Lemma 4.3

a centrosome of S1 × RP 2 is a totally geodesic submanifold of the centrosome

of G2(H4), the orthogonal complement of centrosome of S1 × RP 2 is a totally

geodesic submanifold of the orthogonal complement of the centrosome of G2(H4).
This is to say:

C(o, p) � C(o′, p′) ⊂ Sp(2) , C⊥(o, p) � C⊥(o′, p′) ⊂ S1 · S5 ,

where C(o, p) = {a point}, C(o′, p′) = {a point}, C⊥(o, p) = S1, C⊥(o′, p′) =
RP 2. This is a contradiction, by Corollary 4.7. Thus Sn × RPm, Sn × CPm and

Sn×HPm are not totally geodesic submanifolds of G2(H4). S4×S4 is isomorphic

to one of a polar and the corresponding meridian of G2(H4).

(iii) By Theorem 4.8 and Proposition 5.5, S4 × S4 is maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to S1 · Sm(1 ≤ m ≤ 5).

(ii) From [5] S1 ·S5 is isomorphic to the orthogonal complement of the centrosome of

G2(H4).
(iii) By Theorem 4.8, Proposition 4.6, Corollary 4.7 and Proposition 5.5, S1 · S5 is

maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of Sn(1 ≤ n ≤ 4), RP 2, CP 2 and HP 2.

(ii) HP 2 is isomorphic to G2(H3) and a totally geodesic submanifold of G2(H4).

Thus RP 2 and CP 2 are not maximal. S4 is a totally geodesic submanifold of

S4 × S4 which is the meridian of G2(H4).
(iii) By Lemma 4.2 S4 is not maximal. Also by Theorem 4.8, Proposition 4.6, Corol-

lary 4.7 and Proposition 5.5, HP 2 is maximal. �

From now on, we use Theorem 4.4 in the step (i).

PROPOSITION 5.7. Any maximal totally geodesic submanifold M of G2(C5) is iso-

morphic to one of G2(C4),G2(R5), S2 × CP 2 and CP 3.

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.

(i) M is isomorphic to one of Go
2(R

n+2)(2 ≤ n ≤ 4) , G2(Rn+2)(2 ≤ n ≤ 5) and

G2(C4).
(ii) Clearly, G2(C4) is a totally geodesic submanifold of G2(C5). Go

2(R
6) is isomor-

phic to G2(C4). If G2(Rn+2) is a totally geodesic submanifold of G2(C5), then

G2(Rn+2) is totally real. By Theorem 2.3 n = 2 or 3. G2(R5) is a totally real

totally geodesic submanifold of G2(C5).

(iii) By Theorem 4.8 G2(R5) is not a totally geodesic submanifold of Go
2(R

6). Thus

G2(R5) and G2(C4) are maximal.
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.
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(i) M is isomorphic to one of Sn ×Sm(1 ≤ n,m ≤ 2), Sn × RP 2 and Sn × CP 2(1 ≤
n ≤ 2).

(ii) S2 ×CP 2 is isomorphic to a polar of G2(C5) from Table 3. S2 ×S2 and S2 ×RP 2

are totally geodesic submanifolds of S2 × CP 2.

(iii) S2 × S2 and S2 × RP 2 are not maximal. By Theorem 4.8 S2 × CP 2 is maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to Sm · Sn (1 ≤ m,n ≤ 2).

(ii) By Theorem 4.8 S2 · S2 is a totally geodesic submanifold of G2(C4) ∼= Go
2(R

6).

(iii) By (ii), S2 · S2 is not maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of Sn(1 ≤ n ≤ 4), RPn(2 ≤ n ≤ 3) and CPn(2 ≤ n ≤ 3).

(ii) By Theorem 4.8 S4 is a totally geodesic submanifold of G2(C4) ∼= Go
2(R

6). Also

RP 3 is a totally geodesic submanifold of G2(R5). We will show that CP 3 is a

totally geodesic submanifold of G2(C5) in Proposition 5.8.

(iii) By (ii), S4 and RP 3 are not maximal. From Theorem 4.8 CP 3 is not in both

G2(C4) and G2(R5). Clearly CP 3 is not in S2 × CP 2. Thus CP 3 is maximal. �

PROPOSITION 5.8. Any maximal totally geodesic submanifold M of G2(Cn+2) is iso-

morphic to one of G2(Cn+1),G2(Rn+2), CPk × CP l(k + l = n) and HP [ n
2 ].

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.

(i) M is isomorphic to one of G2(Cn+1),Go
2(R

m+2)(3 ≤ m ≤ 4) and G2(Rm+2)(2 ≤
m ≤ n).

(ii) Clearly G2(Cn+1) and G2(Rn+2) are totally geodesic submanifolds of G2(Cn+2).

Go
2(R

6) is isomorphic to G2(C4) which is a totally geodesic submanifold of

G2(Cn+1).
(iii) By the comparison of dimension G2(Cn+1) is not a totally geodesic submanifold

of G2(Rn+2). Also if G2(Rn+2) is a totally geodesic submanifold of G2(Cn+1),
then Theorem 2.3 holds. This is a contradiction because the only totally real totally

geodesic submanifold in G2(Cn+1) is G2(Rn+1).
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.

(i) M is isomorphic to one of Sk×Sl(1 ≤ k, l ≤ 2), Sk×RP l , Sk×CP l , RPk×RP l ,

RPk × CP l and CPk × CP l(1 ≤ k ≤ 2, 2 ≤ l ≤ n − 1).
(ii) If RPk × RP l is a totally geodesic submanifold of G2(Cn+2), then by Theorem

4.3 a polar RPk−1 × RP l−1 of RPk × RP l is a totally geodesic submanifold

of G2(Cn) which is a polar of G2(Cn+2). We repeat the discussion. When n is

odd, RPk− n−3
2 × RP l− n−3

2 is a totally geodesic submanifold of G2(C5). When

n is even, RPk− n
2 +1 × RP l− n

2 +1 is a totally geodesic submanifold of G2(C4).
Thus the necessary condition is k + l ≤ n by Theorem 4.8 and Proposition 5.7.
Similarly, the necessary condition is k + l ≤ n for RPk × CP l and CPk × CP l .
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We will show that CPk × CP l(k + l = n) is a totally geodesic submanifold of

G2(Cn+2). Let g = k + m be the canonical decomposition of CPk × CP l and let

u = l + p be the canonical decomposition of G2(Cn+2), where u := su(n + 2),

l := R + su(2) + su(n), g := su(k + 1) + su(l + 1), k := R2 + su(k) + su(l),

m :=
{(

0 −t z̄1

z1 0

) ∣∣∣∣z1 ∈ Ck

}
+

{(
0 −t z̄2

z2 0

) ∣∣∣∣z2 ∈ Cl

}
,

and

p :=
{(

0 −t z̄

z 0

) ∣∣∣∣z ∈ M(n, 2 : C)

}
.

Here the inclusion m ↪→ p is:

((
0 −t z̄1

z1 0

)
,

(
0 −t z̄2

z2 0

))
�→




0 0 −t z̄1 0 · · · 0
0 0 0 · · · 0 −t z̄2

0 0 · · · 0 0 · · · 0

z1
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
... z2

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0




.

Then we find that m satisfies [[m,m],m] ⊂ m. Thus CPk × CP l(k + l = n) is a
totally geodesic submanifold of G2(Cn+2).

(iii) From the construction of m, CPk × CP l(k + l = n) is maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to Sk · Sl(1 ≤ k, l ≤ 2).

(ii) By Theorem 4.8 S2 · S2 is a totally geodesic submanifold of Go
2(R

6) ∼= G2(C4).

(iii) By Lemma 4.2 S2 · S2 is not maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of RPm, CPm(2 ≤ m ≤ n) and HPm(2 ≤ m ≤ [ n
2 ]).

(ii) By Case 2, CPn is a totally geodesic submanifold of G2(Cn+2). RPn is a totally

geodesic submanifold of CPn. Now, we show that HP [ n
2 ] is a totally geodesic

submanifold of G2(Cn+2). Let g = k + m be the canonical decomposition of

HP [ n
2 ] and let u = l + p be the canonical decomposition of G2(Cn+2), where

u := su(n + 2), l := R + su(2) + su(n), g := sp([ n
2 ] + 1), k := sp(1) + sp([ n

2 ])
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and

m :=







0 −t z 0 −tw

z 0 −w 0
0 tw 0 −t z

w 0 z 0




∣∣∣∣z,w ∈ Cm


 .

When n is even, the inclusion m ↪→ p is:


0 −t z 0 −tw

z 0 −w 0
0 tw 0 −t z

w 0 z 0


 �→




0 0 −t z −tw

0 0 tw −t z

z −w 0 0
w z 0 0


 .

When n is odd, the inclusion m ↪→ p is:




0 −t z 0 −tw

z 0 −w 0
0 tw 0 −t z

w 0 z 0


 �→




0 0 −t z −tw 0
0 0 tw −t z 0
z −w 0 0 0
w z 0 0 0
0 0 0 0 0


 .

Then we find that m satisfies [[m,m],m] ⊂ m. Thus HP [ n
2 ] is a totally geodesic

submanifold of G2(Cn+2).

(iii) Clearly HP [ n
2 ] is not a totally geodesic submanifold of G2(Cn+1) and CPk ×

CP l(k + l = n). Thus HP [ n
2 ] is maximal. �

PROPOSITION 5.9. Any maximal totally geodesic submanifold M of DIII (5) is iso-

morphic to one of Go
2(R

8),G2(C5), SO(5), S2 × CP 3 and CP 4.

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.

(i) M is isomorphic to one of Go
2(R

n+2)(2 ≤ n ≤ 6),G2(Rn+2)(2 ≤ n ≤
3),G2(Cn+2)(2 ≤ n ≤ 3), Sp(2)/Z2,G2(H4) and G2(H4)/Z2.

(ii) From Table 3 Go
2(R

8) is isomorphic to a meridian of DIII (5). G2(R5) is a to-

tally geodesic submanifold of G2(C5) which is a polar of DIII (5). G2(C5) is
isomorphic to a polar of DIII (5). From [5] Sp(2)/Z2 ∼= SO(5) is a totally

geodesic submanifold of DIII (5). If G2(H4) is a totally geodesic submanifold
of DIII (5), then from Proposition 5.6 Sp(2) is a totally geodesic submanifold

of DIII (5). This is a contradiction because of (i). Therefore G2(H4) is not in
DIII (5). If G2(H4)/Z2 is a totally geodesic submanifold of DIII (5), then The-

orem 2.3 holds, which is a contradiction. Thus G2(H4)/Z2 is not in DIII (5).

(iii) By Proposition 5.7 and Proposition 5.5 Go
2(R

8) is not a totally geodesic submani-

fold of both G2(C5) and SO(5). Similarly from Theorem 4.8 G2(C5) and SO(5)
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are not totally geodesic submanifolds of Go
2(R

8). G2(C5) and SO(5) are not to-

tally geodesic submanifolds of each other. Thus Go
2(R

8), G2(C5) and SO(5) are
maximal.

Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.
(i) M is isomorphic to one of Sn ×Sm(1 ≤ n,m ≤ 2), Sn ×RPm and Sn ×CPm(1 ≤

n ≤ 2, 2 ≤ m ≤ 3).
(ii) S2 × S2 and S2 × RP 3 are totally geodesic submanifolds of S2 × CP 3 which is a

polar of DIII (5). From Table 3 S2 × CP 3 is isomorphic to a polar of DIII (5).

(iii) By Theorem 4.8, Proposition 5.5 and Proposition 5.7 S2 × CP 3 is maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to Sn · Sm(1 ≤ n,m ≤ 3).

(ii) S3 · S3 is a totally geodesic submanifold of Go
2(R

8).

(iii) By (ii) S3 · S3 is not maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of Sn(1 ≤ n ≤ 6), RPn(2 ≤ n ≤ 5) and CPn(2 ≤ n ≤ 5).

(ii) S6 is a totally geodesic submanifold of Go
2(R

8). If RPn is a totally geodesic
submanifold of DIII (5), then Theorem 2.3 holds, so 2 ≤ n ≤ 4. Thus for CPn

n must be 2 ≤ n ≤ 4. RP 4 is a totally geodesic submanifold of CP 4 which is

isomorphic to a polar of DIII (5). CP 4 is isomorphic to a polar of DIII (5).

(iii) By (ii) S6 and RP 4 are not maximal in DIII (5). Also by Theorem 4.8, Propo-
sition 5.5, Proposition 5.7 and the fact that CP 4 is not in S2 × CP 3, CP 4 is
maximal. �

PROPOSITION 5.10. Any maximal totally geodesic submanifold M of EIII is iso-

morphic to one of G2(H4)/Z2, OP 2, S2 × CP 5,DIII (5),Go
2(R10) and G2(C6).

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.

(i) M is isomorphic to one of G2(H4)/Z2,DIII (5),Go
2(R

n+2)(3 ≤ n ≤ 8),

G2(Rn+2)(3 ≤ n ≤ 4) and G2(Cn+2)(3 ≤ n ≤ 4).
(ii) From [5] G2(H4)/Z2 and G2(C6) are totally geodesic submanifolds of EIII .

DIII (5) and Go
2(R

10) are isomorphic to polars of EIII . G2(R6) is a totally

geodesic submanifold of G2(C6).

(iii) By (ii) G2(R6) is not maximal in EIII . By Theorem 4.8, Proposition 5.6, Propo-

sition 5.8 and Proposition 5.9 G2(H4)/Z2,DIII (5),Go
2(R10) and G2(C6) are

maximal in EIII .
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.

(i) M is isomorphic to one of Sn × Sm(1 ≤ n,m ≤ 2), Sn × RPm, Sn × CPm(1 ≤
n ≤ 2, 2 ≤ m ≤ 5), RP 2 × RP 2, RP 2 × CP 2 and CP 2 × CP 2.

(ii) S2 × CP 5 is isomorphic to a meridian of EIII . By Proposition 5.8 CP 2 × CP 2

is a totally geodesic submanifold of G2(C6) which is a reflective submanifold of
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EIII . S2×S2 and S2×RP 5 are totally geodesic submanifolds of S2×CP 5. Also

RP 2 × RP 2 and RP 2 × CP 2 are totally geodesic submanifolds of CP 2 × CP 2.

(iii) By (ii) S2 × S2, S2 × RP 5, RP 2 × RP 2, RP 2 × CP 2 and CP 2 × CP 2 are not
maximal in EIII . Also from Theorem 4.8, Proposition 5.6, Proposition 5.8 and

Proposition 5.9 S2 × CP 5 is maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to Sm · Sn(1 ≤ n,m ≤ 4).

(ii) By Theorem 4.8 S4 · S4 is a totally geodesic submanifold of Go
2(R

10) which is a
polar of EIII .

(iii) By Lemma 4.2 S4 · S4 is not maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of Sn(1 ≤ n ≤ 8), RPn, CPn(2 ≤ n ≤ 5), HP 2 and

OP 2.
(ii) By Theorem 4.8 S8 is a totally geodesic submanifold of Go

2(R
10) which is a polar

of EIII . From [5] OP 2 is a totally geodesic submanifold of EIII . HP 2 is a

totally geodesic submanifold of OP 2. CP 5 is a totally geodesic submanifold of

S2 × CP 5 which is a meridian of EIII .
(iii) By (ii), S8, RP 5, CP 5 and HP 2 are not maximal in EIII . Also from Theorem

4.8, Proposition 5.6, Proposition 5.8 and Proposition 5.9 OP 2 is maximal. �

PROPOSITION 5.11. Any maximal totally geodesic submanifold M of G2(H5) is iso-

morphic to one of G2(H4),G2(C5), S4 × HP 2 and HP 3.

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.

(i) M is isomorphic to one of Go
2(R

n+2)(2 ≤ n ≤ 4),G2(Rn+2)(2 ≤ n ≤
3), Sp(2),G2(Cn+2)(2 ≤ n ≤ 3) and G2(H4).

(ii) Clearly G2(H4) and G2(C5) are totally geodesic submanifolds of G2(H5). By

Proposition 5.6 Sp(2) is a totally geodesic submanifold of G2(H4). Since Go
2(R

6)

is isomorphic to G2(C4), Go
2(R

6) is a totally geodesic submanifold of G2(C5).

Also G2(R5) is a totally geodesic submanifold of G2(C5).

(iii) By (ii), Sp(2), Go
2(R

6) and G2(R5) are not maximal in G2(H5). From Proposition

5.6 and Proposition 5.7 G2(H4) and G2(C5) are maximal.
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.

(i) M is isomorphic to one of Sk × Sl(1 ≤ k, l ≤ 4), Sk × RP 2, Sk × CP 2 and

Sk × HP 2(1 ≤ k ≤ 4).
(ii) S4 × HP 2 is isomorphic to a polar of G2(H5). Clearly S4 × S4, S4 × RP 2 and

S4 × CP 2 are totally geodesic submanifolds of S4 × HP 2.

(iii) By (ii) S4 × S4, S4 × RP 2 and S4 × CP 2 are not maximal in G2(H5). From

Proposition 5.6 and Proposition 5.7 S4 × HP 2 is maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).
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(i) M is isomorphic to S1 · Sl(1 ≤ l ≤ 5).

(ii) S1 · S5 is a totally geodesic submanifold of G2(H4).
(iii) By Lemma 4.2 S1 · S5 is not maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of Sn(1 ≤ n ≤ 5), RPn, CPn and HPn(2 ≤ n ≤ 3).

(ii) By Proposition 5.6 S5 is a totally geodesic submanifold of G2(H4). After we will

show that HP 3 is a totally geodesic submanifold of G2(H5) in Proposition 5.12.

RP 3 and CP 3 are totally geodesic submanifolds of HP 3.

(iii) By (ii) S5, RP 3 and CP 3 are not maximal in G2(H5). Also by Proposition
5.6 and Proposition 5.7, and the fact that HP 3 is not in S4 × HP 2, HP 3 is
maximal. �

PROPOSITION 5.12. Any maximal totally geodesic submanifold M of G2(Hn+2) is

isomorphic to one of G2(Hn+1),G2(Cn+2) and HPk × HP l(k + l = n).

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.

(i) M is isomorphic to one of Sp(2), G2(Hn+1),Go
2(R

m+2)(3 ≤ m ≤ 4)

G2(Rm+2)(2 ≤ m ≤ n) and G2(Cm+2)(2 ≤ m ≤ n).
(ii) Clearly G2(Hn+1) and G2(Cn+2) are totally geodesic submanifolds of G2(Hn+2).

Go
2(R

6) is isomorphic to G2(C4) which is a totally geodesic submanifold of

G2(Cn+2). By Proposition 5.6 Sp(2) is a totally geodesic submanifold of G2(H4)

which is a totally geodesic submanifold of G2(Hn+1).

(iii) By the comparison of dimension G2(Hn+1) is not a totally geodesic submanifold

of G2(Cn+2). Also by Theorem 4.3 G2(Cn+2) is not a totally geodesic submani-

fold of G2(Hn+1). Thus G2(Hn+1) and G2(Cn+2) are maximal.
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.

(i) M is isomorphic to one of Sk × Sl(1 ≤ k, l ≤ 4), Sk × RP l , Sk × CP l , Sk ×
HP l(1 ≤ k ≤ 4, 2 ≤ l ≤ n − 1), RPk × RP l , RPk × CP l , RPk × HP l ,
CPk × CP l , CPk × HP l and HPk × HP l(2 ≤ k ≤ n − 1, 2 ≤ l ≤ n − 1).

(ii) If RPk × RP l is a totally geodesic submanifold of G2(Hn+2), then by Theorem

4.3 a polar RPk−1 × RP l−1 of RPk × RP l is a totally geodesic submanifold

of G2(Hn) which is a polar of G2(Hn+2). We repeat the discussion. When n is

odd, RPk− n−3
2 × RP l− n−3

2 is a totally geodesic submanifold of G2(H5). When

n is even, RPk− n
2 +1 × RP l− n

2 +1 is a totally geodesic submanifold of G2(H4).
Thus the necessary condition is k + l ≤ n by Proposition 5.6 and Proposition 5.11.
Similarly, the necessary condition is k+ l ≤ n for RPk ×CP l , CPk ×CP l and the
others. Now we show that HPk×HP l(k+l = n) is a totally geodesic submanifold

of G2(Hn+2). Let g = k + m be the canonical decomposition of HPk × HP l and

let u = l+ p be the canonical decomposition of G2(Hn+2), where u := sp(n+ 2),
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l := sp(2)+ sp(n), g := sp(k+1)+ sp(l +1), k := sp(1)+ sp(k)+ sp(1)+ sp(l),

m :=







0 −t x̄ 0 −t ȳ

x 0 −ȳ 0
0 t y 0 −t x

y 0 x̄ 0




∣∣∣∣x, y ∈ Ck


 +







0 −t z̄ 0 −t w̄

z 0 −w̄ 0
0 tw 0 −t z

w 0 z̄ 0




∣∣∣∣z,w ∈ Cl




and

p :=







0 −tC 0 −tD

C 0 −D 0
0 tD 0 −tC

D 0 C 0




∣∣∣∣C,D ∈ M(2, n : C)


 .

Here the inclusion m ↪→ p is:


0 −t x̄ 0 −t ȳ

x 0 −ȳ 0
0 t y 0 −t x

y 0 x̄ 0


 +




0 −t z̄ 0 −t w̄

z 0 −w̄ 0
0 tw 0 −t z

w 0 z̄ 0


 �→




0 0 −t x̄ 0 0 0 −t ȳ 0
0 0 0 −t z̄ 0 0 0 −t w̄

x 0 0 0 −ȳ 0 0 0
0 z 0 0 0 −w̄ 0 0
0 0 t y 0 0 0 −t x 0
0 0 0 tw 0 0 0 −t z

y 0 0 0 x̄ 0 0 0
0 w 0 0 0 z̄ 0 0




.

Then we find that m satisfies [[m,m],m] ⊂ m. Thus HPk × HP l(k + l = n) is a
totally geodesic submanifold of G2(Hn+2). S4 × S4, S4 × RPn−1, S4 × CPn−1,

S4 × HPn−1, RPk × RP l , RPk × CP l , RPk × HP l , CPk × CP l and CPk ×
HP l(k + l = n) are totally geodesic submanifolds of HPk × HP l .

(iii) By Proposition 5.8 and by the construction of m, HPk × HP l(k + l = n) is
maximal.

Case 3. M = Sm · Sn (m, n ≥ 1).
(i) M is isomorphic to Sk · Sl(1 ≤ k, l ≤ 2).

(ii) By Theorem 4.8 S2 · S2 is a totally geodesic submanifold of Go
2(R

6) ∼= G2(C4).

(iii) By Lemma 4.2 S2 · S2 is not maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of RPm, CPm(2 ≤ m ≤ n) and HPm(2 ≤ m ≤ n).

(ii) By Case 2, HPn is a totally geodesic submanifold of G2(Hn+2). RPn and CPn

are totally geodesic submanifolds of HPn.
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(iii) By (ii) in Case 2, HPn is maximal. �

PROPOSITION 5.13. Any maximal totally geodesic submanifold M of GI is isomor-

phic to one of AI(3), CP 2 and S2 · S2.

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.
(i) M is isomorphic to AI(3) or AI(3)/Z3.

(ii) Let u = l + p be the canonical decomposition of GI , where u = g2, l = so(4)

and p ∼= ToGI . We take a maximal abelian subspace a of p. Then we have the
restricted root decomposition of g2 with respect to a:

u =
∑

α∈R+(GI)

lα ⊕ a ⊕
∑

α∈R+(GI)

pα ,

where R+(GI) = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2} is a positive
restricted root system of GI . We take a subset D+ of R+(GI):

D+ = {α2, 3α1 + α2, 3α1 + 2α2} .

Put

g :=
∑

α∈D+
lα ⊕ a ⊕

∑
α∈D+

pα .

Then g is isomorphic to su(3) and g∩l ∼= so(3). Thus (g, g∩l) is a symmetric pair
and g/g ∩ l is locally isomorphic to AI(3). Let R+(AI (3)) = {β1, β2, β1 + β2}
be a positive restricted root system of AI(3). Then we have D+ ∼= R+(AI (3)).
Clearly the unit lattice aK coincides with aL. Therefore M is globally isomorphic
to AI(3).

(iii) By (ii), AI(3) is maximal.
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.

(i) M is isomorphic to S1 × S1.

(ii) S1 × S1 is isomorphic to S1 · S1 and S1 · S1 is a totally geodesic submanifold of

S2 · S2 which is a polar of GI .
(iii) By Lemma 4.2 S1 × S1 is not maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to Sn · Sm (1 ≤ m,n ≤ 2).

(ii) From Table 3 S2 · S2 is isomorphic to a polar of GI .

(iii) By Proposition 5.1 S2 · S2 is maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to one of Sn(1 ≤ n ≤ 2), RPn(2 ≤ n ≤ 3) and CP 2.

(ii) S2 is a totally geodesic submanifold in a polar S2 ·S2 of GI . Now f : RP 3 → GI

be a totally geodesic imbedding. SO(4)-action on RP 3 is the restriction of G2-

action on GI . In particular, at a point o ∈ RP 3 the isotropy subgroup S(O(1) ×
O(3)) at o acts on ToRP 3 by the restriction of the isotropy action of SO(4) on
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ToGI . The canonical decomposition of GI is g2 = so(4) + p. Now, the highest
weight of the isotropy representation of so(4) ∼= su(2) + su(2) on p is �1(A1) +
3�1(A

′
1), here we denote the former su(2) by A1 and the latter su(2) by A′

1.
When we restrict this representation to so(3), we obtain the decomposition p =
V4�1(A1) + V2�1(A1), where V4�1(A1) (resp. V2�1(A1)) is isomorphic to ToAI (3)

(resp. ToRP 3) as so(3)-module. Since AI(3) is not a reflective submanifold, RP 3

is not a totally geodesic submanifold of GI . We take a Cartan subalgebra h in g2.
Then we have the root decomposition of g2 with respect to h:

g2 = h ⊕
∑

α∈R+(G2)

gα ,

where R+(G2) = R+(GI). We take the subset D+ of R+(G2):

D+ = {α2, 3α1 + α2, 3α1 + 2α2} .

Put

g := h ⊕
∑

α∈D+
gα

and

g′ := h ⊕ gα1 ⊕ g3α1+2α2 .

Then we have g ∼= su(3), g′ ∼= so(4) and g ∩ g′ ∼= u(2). Thus (g, g ∩ g′) is a
symmetric pair and g/g ∩ g′ is isomorphic to CP 2.

(iii) By Proposition 5.1 and Corollary 4.7, CP 2 is maximal. �

PROPOSITION 5.14. Any maximal totally geodesic submanifold M of G2 is isomor-

phic to one of GI, SU(3) and S3 · S3.

PROOF. Case 1. M is an irreducible compact symmetric space of rank two.
(i) M is isomorphic to one of GI , AI(3), AI(3)/Z3,SU(3) and SU(3)/Z3.

(ii) From Table 3 GI is isomorphic to a polar of G2. By Case 4 in Proposition 5.13,
g = h ⊕ ∑

α∈D+ gα is locally isomorphic to SU(3) or SU(3)/Z3. Also the unit
lattice aG coincides with aU by the similar discussion in Case 4 in Proposition
5.13. Thus G is isomorphic to SU(3). By Proposition 5.2 AI(3) (resp. AI(3)/Z3)
is a totally geodesic submanifold of SU(3) (resp. SU(3)/Z3).

(iii) By Proposition 5.2 and Proposition 5.13, SU(3) and GI are maximal.
Case 2. M = M1 × M2, M1 and M2 are compact symmetric spaces of rank one.

(i) M is isomorphic to S1 × S1.

(ii) S1 × S1 is isomorphic to S1 · S1 and S1 · S1 is a totally geodesic submanifold of

SO(4) ∼= S3 · S3.
(iii) By Lemma 4.2 S1 × S1 is not maximal.
Case 3. M = Sm · Sn (m, n ≥ 1).

(i) M is isomorphic to Sn · Sm(1 ≤ n,m ≤ 3).
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(ii) S3 · S3 is isomorphic to SO(4).

(iii) By Lemma 2.5 S3 · S3 is maximal.
Case 4. M is a compact symmetric space of rank one.

(i) M is isomorphic to Sn(1 ≤ n ≤ 3), RPn and CPn(2 ≤ n ≤ 3).

(ii) S3 is a totally geodesic submanifold of SO(4). By Corollary 4.7 RP 3 is a totally
geodesic submanifold of S3 · S3. If CP 3 is a totally geodesic submanifold of G2,

then the isometry group SU(4) of CP 3 is a Lie subgroup of the isometry group
G2 × G2 of G2. This is a contradiction because SU(3) is a maximal Lie subgroup

of G2([1]). Thus CP 3 is not in G2. From Proposition 5.13 CP 2 is a totally
geodesic submanifold of GI .

(iii) By (ii), there is no maximal compact symmetric space of rank one. �

THEOREM 5.15. All the maximal totally geodesic submanifolds in compact simply
connected irreducible symmetric spaces of rank two are given by the following Table 4.

TABLE 4. Maximal totally geodesic submanifolds in compact symmetric spaces of rank two

N Maximal totally geodesic submanifolds in N

AI (3) RP 2, S1 · S2

SU(3) AI (3), SO(3) ,CP 2, S1 · S3

AII (3) SU(3), CP 3, HP 2, S1 · S5

EIV AII (3), HP 3, S1 · S9, OP 2

Go
2(Rn+2) (n ≥ 3) Go

2(Rn+1), Sp · Sq (p + q = n), CP
[ n

2 ]

Sp(2) Go
2(R5), S1 · S3, S3 × S3, S4

G2(H4) Sp(2), HP 2, S1 · S5, S4 × S4, G2(C4)

GI AI (3), CP 2, S2 · S2

G2 GI , SU(3), S3 · S3

G2(Cn+2) (n ≥ 3) G2(Cn+1), G2(Rn+2), CPk × CP l (k + l = n), HP
[ n

2 ]

G2(Hn+2) (n ≥ 3) G2(Hn+1), G2(Cn+2), HPk × HP l (k + l = n)

DIII (5) Go
2(R8), G2(C5), SO(5), S2 × CP 3, CP 4

EIII G2(H4)/Z2, OP 2, S2 × CP 5, DIII (5), G2(C6), Go
2(R10)
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