TOKYO J. MATH.
VoL. 31, No. 2, 2008

On 2-Factors in r-Connected {K i, P4}-Free Graphs

Yoshimi EGAWA, Jun FUJISAWA*, Shinya FUJITAY
and Katsuhiro OTA

Tokyo University of Science, Nihon University, Gunma National College of Technology
and Keio University

(Communicated by M. Tsuchiya)

Abstract. In [3], Faudree et al. considered the proposition “Every {X, Y }-free graph of sufficiently large order
has a 2-factor,” and they determined those pairs {X, Y} which make this proposition true. Their result says that one of
them is {X, Y} = {K{ 4, P4}. In this paper, we investigate the existence of 2-factors in r-connected {Ky j, P4}-free
graphs. We prove thatif » > 1 and k > 2, and if G is an r-connected {K ;, P4}-free graph with minimum degree
at least kK — 1, then G has a 2-factor with at most max{k — r, 1} components unless (k — 1)Ko + (k —2)K1 € G <
(k —1)K7 + Ky _». The bound on the minimum degree is best possible.

1. Introduction

In this paper, all graphs considered are finite, undirected, and without loops or multiple
edges. Fora graph G, V(G), E(G) and §(G) denote the set of vertices and the set of edges and
the minimum degree of G, respectively. Also we let «(G) denote the independence number of
G and let k (G) denote the (vertex-)connectivity of G. For a subset M of V(G), we let G[M]
denote the subgraph induced by M in G. Let H be a set of connected graphs, each of which
has three or more vertices. A graph G is said to be H-free if no graph in A is an induced
subgraph of G. When |H| = 1, say, H = {X}, we use the term “X-free” to mean “H-free”.

In this paper, we study the relationship between forbidden subgraphs and the existence
of a 2-factor with few components. In the research field concerning forbidden subgraphs for
the existence of a 2-factor with one component, that is, the existence of a hamiltonian cycle,
there is a famous conjecture due to Matthews and Sumner [5].

CONJECTURE 1 (Matthews and Sumner [5]). Every 4-connected K1 3-free graph has
a hamiltonian cycle.

In [1], Broersma et al. showed that the above conjecture is true if we replace the as-
sumption “K 3-free” by “{K 3, K1 + 2K>}-free.” Along a slightly different line, there are
some results concerning minimum degree conditions for the existence of a hamiltonian cycle
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in K 3-free graphs. For example, Lai et al. ([4]) proved that if G is a 3-connected K 3-free
graph of order n > 196 with §(G) > (n + 6)/10, then G has a hamiltonian cycle. Apart
from the existence of a hamiltonian cycle, there are many results concerning forbidden sub-
graphs for the existence of 2-factors. It seems that most of the research has been done from
the following viewpoints:
e Consider the proposition “Every H-free graph of sufficiently large order has a 2-
factor”, and determine those families H which make the proposition true.
e For a given family H, determine the sharp degree condition for the existence of
2-factors in H-free graphs.
e What if we consider the above problems in highly connected graphs?
As an illustration of research done in the above directions, we mention some known results.
In [6], Ota and Tokuda showed that every connected K ,-free graph G (n > 3) with §(G) >
2(n — 1) has a 2-factor. Actually, they obtained a more general result, that is, they determined
the sharp degree condition for the existence of r-factors in K ,-free graphs. In [3], Faudree
et al. considered the proposition “Every {X, Y }-free graph of sufficiently large order has a
2-factor,” and they determined the pairs { X, Y} which make this proposition true.Their result
says that one of themis {X, Y} = {K 4, P4}. In connection with this result, they also obtained
the following theorem.

THEOREM 1 (Faudree etal. [3]). IfG isa2-connected {K 4, Ps}-free graph of order
at least 9, then G has a 2-factor with at most 2 components.

In this paper, we focus on the existence of 2-factors with few components in {K i, Ps}-
free graphs. Our purpose is to extend Theorem 1 to {K x, P4}-free graphs from the above
viewpoints. Our first result involves a degree condition:

THEOREM 2. Letr > landk > 2, and let G be an r-connected {K| i, Ps}-free graph
with §(G) > k — 1. Then either
a) G contains a 2-factor with at most max{k — r, 1} components, or
b) G is a graph which satisfies (k —1)K2+ (k—2)K1 € G C (k— 1)Ky + Ki—2 (so
[V(G)| =3k —4and §(G) =k — 1).

We here discuss the sharpness of bounds in Theorem 2. For that purpose, assume that
1 < r < k —2. Then the graph (k — 1)K,, + K, shows that in the conclusion of the
theorem, the upper bound k — r on the number of components of a 2-factor of G is best
possible in the sense that there exists an r-connected {K x, P4}-free graph G with arbitrary
large minimum degree such that G has no 2-factor with strictly fewer than k — r components.
We now turn our attention to the lower bound & — 1 on §(G) in the assumption. Note that the
graph ((k —2)K2 U K,,) + Ki—3 shows that there exists a (k — 3)-connected {K i, Ps}-free
graph G with arbitrary large order such that §(G) = k — 2 and G has no 2-factor. Thus if
1 <r <k—3,thebound k — 1 is best possible. Butif r = k —2 > 2, the situation is different
(if r = k —2 =1, the bound k — 1 is clearly best possible). In fact, the following theorem
holds:
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THEOREM 3. Letr > 2andk > 2 be integers withr > k—2. Let G be an r-connected
{K1.k, Ps}-free graph. Then either
a) G contains a 2-factor with at most max{k — r, 1} components, or
b) k> 4,and G is a graph which satisfies (K1 U(k—1—¢q)K2)+(k—2)K; € G C
(gK1U(k—1—q)K7)+ Ki—> for some g with0 < g <k—1(so |V(G)| <3k—4
and k(G) =k — 2).

Note that if we let » = 2 and k = 4 in Theorem 3, then we obtain Theorem 1.
In the proof of these theorems, we use the following theorem.

THEOREM 4 (Chvatal and Erd6s [2]). Let G be an r-connected graph with at least
three vertices. If r > a(G), then G contains a hamiltonian cycle.

Also we use the following lemma.

LEMMA 1. Let G be a non-complete Py-free graph and let S be a minimum cutset of
G. Then for every two vertices u, v withu € S andv € V(G) \ S, uv € E(G).

The proof of this lemma is implicit in [3, Theorem 3]. The following lemma immediately
follows from Lemma 1.

LEMMA 2. Letk > 2, and let G be a connected P4-free graph. Then G is K y-free if
andonly ifa(G) <k — 1.

2. Proof of Theorem 2

Note that in view of Lemma 2, the assumption that G is {K , P4}-free is equivalent to
the statement that G is Ps-free and «(G) < k — 1.

Now we proceed by induction on k. First let k = 2. Then G is a complete graph. If
|V(G)| > 3, then G contains a hamiltonian cycle, and hence a) holds. Otherwise, G must be
K>, which satisfies b). Let now k > 3, and assume that the theorem holds for smaller value of
k. We may assume that G is not a complete graph, because otherwise a) holds.

Note that |[V(G)| > 3 because §(G) > k—1 > 2. If x(G) > k — 1, then since
a(G) < k — 1, Theorem 4 implies that G contains a hamiltonian cycle, and hence a) holds.
Thus we may assume that k (G) < k — 2.

Let S be a minimum cutset of G. Since G is r-connected, k — 2 > |S| = «(G) > r. Let
Hy, Hy, ..., H; be the components of G — §, and let o; = «(H;) foreveryi with 1 <i <.
By Lemma 1,

uv € E(G) foreveryu € Sandv € V(G) \ S. @)

Moreover, for every v € V(G) \ S, dg—s(v) = dg(v) — |S| = k —1—|S| > 1. Hence
|H;| > 2foreveryi with1 <i <.

If (G) < k — 2, then by the induction hypothesis, G contains a 2-factor with at most
max{k — 1 — r, 1} components (note that if G satisfies b) for k — 1, then by the parenthetic
remark in the statement of b), we have §(G) = (k — 1) — 1, which contradicts the assumption
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that 6(G) > k — 1), and hence a) holds. Thus we may assume that «(G) = k — 1. Let I be

a maximum independent subset of V (G) with |/| = «(G) = k — 1. Thenby (1), I < S or

I C V(G)\S. Since |S| < k—2,itfollowsthat I € V(G)\S, which implies Zle o =k—1.
We consider two cases.

CASE 1. There exists i with 1 < i <[ such that o; < |S].

Take i so that |[H;| =max{|H;| |1 < j <!, aj <|S|}. Note thatk —o; > k —|S| > 2.
Let S’ be a subset of § with cardinality o; — 1. Let $* = S\ 8’ and H* = G — (S U V(H))).
Moreover, let G’ = G[S" U V(H;)] and G* = G[S* U V(H™)].

Now [S*| = S| =S| <k—-2—(; — 1) =k —a; — l and a(H*) = k —a; — 1.
Hence it follows from (1) that «(G*) = k — «; — 1. Further |H*| > a(H*) +1 > k — ¢;
because |H;| > 2 and H; is connected for every j with 1 < j < [ and j # i. Hence for
every v € S*, we have dg+(v) > |H*| > k — «; by (1). On the other hand, for every v € H*,
dgx(v) =dg() —|S'| > k—1—(a; — 1) = k — ;. Therefore §(G*) > k — ;. Moreover, it
follows from (1) that  (G*) > min{|S*|, |H*|} = |S*| = |S| —«; + 1. Since G* is an induced
subgraph of G, G* is Ps-free. Consequently, by the induction hypothesis, G* contains a 2-
factor F* with at most max{k — o; — (|S| —a; + 1), 1} = k — | S| — 1 components (see the
parenthetic remark in b) of the statement of the theorem).

Assume for the moment that |H;| > 3. Since |S'| = o; — 1 and «(H;) = «;, it follows
from (1) that @(G’) = ;. Moreover, by (1) and the fact that H; is connected, we have
k(G") = |§'| + 1 = «;. Therefore we obtain a hamiltonian cycle F’ of G’ by Theorem 4.
Now F’ U F* is a 2-factor with at most k — |S| < k — r components, and hence a) holds.

Thus we may assume that |H;| = 2. Since dg(v) > k — 1 for every v € V(H;), we have
|S| =k —2. Now forevery jwithl < j <[, a; < Zé;:ﬂxh —1<k—-—2=1S5|. Hence
forevery j with 1 < j <[, we obtain H; = K> by the choice of i and the fact that |H;| > 2.
Since lezl aj =k—1,1 =k—1. With (1) and the assumption that | S| = k — 2, we see that
b) holds.

CASE 2. Foreveryiwithl <i <[, a; >|S|+ 1.

Leti, j be distinctintegers with 1 <7, j </. Theno; <k—1—a; <k—1—(|S|+1) =
k—2—|S|. Hence 6(H;) > §(G) — |S| = k —1—|S| > a; + 1. Note that H; is P4-free and
k(H;j) = 1. Consequently, by the induction hypothesis, H; contains a 2-factor with at most
i + 1 — 1 = o; components.

Applying the above argument to every component of G — S, we see that G — S contains a

2-factor F with at most Zf: 1 & = k—1 components. Let Cy, C3, ..., C;, be the components
of F. Forevery i with 1 <i <m, take u;v; € E(C;) and let P; = C; — u;v;.
Write S = {wy, wa, ..., ws} (s = «(G)). Recall that we have (1). In the case where

m > s, let C = vi Piuywiva Puywovy P3us - - - vg Psugwgvy. Then (Ufnzs-i-l CiHYUCisa
2-factor of G withm — s + 1 < k — s < k — r components, and hence a) holds. In the case
where m < s, let C = vy Piujywiva Poaupwov3 P3us - -+ vy Pty wi,vy. Since |V(G — S)| >
a(G — §) = k — 1, F has at least k — 1 edges. Hence there are at least k — 1 — m edges
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in E(C) N E(F). Choose s — m edges from E(C) N E(F), say u| v}, ujv, ... u}_,v;_,
(note that s —m < k —2 — m). Let C’ be the cycle obtained from C by replacing uv; by
ugwm_H vlf forevery 1 <i <s —m. Then C’ is a hamiltonian cycle of G, and hence a) holds.
This completes the proof of Theorem 2. a

3. Proof of Theorem 3

First, note that G has at least three vertices because G is 2-connected. As in the proof of
Theorem 2, we may assume that k > 3 and G is not a complete graph.

As in the proof of Theorem 2, we may also assume «(G) < k — 2. Then k(G) =r =
k —2. Since r > 2, this implies k > 4. Let S be a cutset with |S| = k —2. Let Hy, Ha, ..., H;
be the components of G — S, and let ; = a(H;) forevery i with 1 <i <[. By Lemma 1,

uv € E(G) forevery ueS and veV(G)\S. )

If «(G) < k — 2, then by Theorem 4, G contains a hamiltonian cycle and hence a)
holds. Thus we may assume that «(G) = k — 1. As in the proof of Theorem 2, this implies

Zle a; = k—1. Sincea; > 1foreveryi with1 <i </, itfollowsthate; < k—1-1=k-2
forevery j with1 < j <.

Take i so that |H;| is as large as possible. Note that k — o; — 1 > 0. Let S’ be a subset
of S with cardinality o; — 1. Let $* = S\ 8 and H* = G — (§ U V(H;)). Moreover, let
G' = G[S’UV(H;)] and G* = G[S*UV (H*)]. Now |S*| = |S| = |S'| = k-2 —(a; — 1) =
k—oa; —1and a(H*) = k — a; — 1. Hence by (2), we obtain «(G*) = k — o; — 1 and
k(G*) > min{|S*|, |[H*|} = |S*| = k — a; — 1. Consequently it follows from Theorem 4 that
G* contains a Hamiltonian cycle F* or G* >~ Kj.

We first consider the case where |H;| > 3. Since |S'| = o; — 1 and o(H;) = o;, it
follows from (2) that «(G’) = «;, Moreover, by (2) and the fact that H; is connected, we have
k(G") > |8'| + 1 = a;. Hence we obtain a hamiltonian cycle F’ of G’ by Theorem 4. If G*
contains a hamiltonian cycle, then F’U F* is a 2-factor with 2 = k — r components, and hence
a) holds. Thus we may assume G* =~ K. Then |S*| = |H*| = 1. Write $* = {wg} and
V(H*) = {vp}. Since |S| = r > 2, we have S’ # ¢4, and hence F’ contains an edge wv with
w € §"and v € V(H;). In view of (2), we can replace wv by wvgwov, to get a hamiltonian
cycle of G, which implies a).

We now consider the case where |H;| < 2. By the choice of i, |Hj| < 2 for every j with
1 < j <. Thisimplies! = lezl aj =k — 1. With the fact | S| = k — 2 and (2), we see that
b) holds. This completes the proof of Theorem 3. a
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