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Hilbert-Schmidt Hankel Operators and Berezin Iteration

Wolfram BAUER* and Kenro FURUTANI"

Science University of Tokyo
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Abstract. Let H be a reproducing kernel Hilbert space contained in a wider space L2(X, u). We study the
Hilbert-Schmidt property of Hankel operators Hg on H with bounded symbol g by analyzing the behavior of the
iterated Berezin transform. We determine symbol classes S such that for g € S the Hilbert-Schmidt property of Hg
implies that Hy is a Hilbert-Schmidt operator as well and there is a norm estimate of the form || Hgllgs < C-||Hgllgs-
Finally, applications to the case of Bergman spaces over strictly pseudo convex domains in C”, the Fock space, the
pluri-harmonic Fock space and spaces of holomorphic functions on a quadric are given.

1. Introduction

Let X be a set with a measure u and H be a closed subspace of L?(X, ). For any
bounded measurable function g on X and the orthogonal projection P from L?(X, 1) onto H
the Hankel operator H; resp. the Toeplitz operator T; on H are define by:

Hyf :==( — P)(fg) and T,:=P(fg). (1.1)

Among a variety of examples the operators (1.1) have been treated intensively in the
case of Bergman and Hardy spaces and spaces of harmonic or pluri-harmonic functions. The
study of Toeplitz operators Ty or algebras generated by those require an analysis of the Hankel
operators Hy and Hg. In particular, the compactness or Schatten-p-properties of Hy and Hy
are of importance to obtain spectral results and to determine Fredholmness of Ty, c.f. [10],
[18], [21], [23], [24]. For a reproducing kernel Hilbert space H a general symbol calculus was
introduced by Berezin [8], [9] which can be regarded as an inverse quantization and frequently
has been applied to the analysis of the operators (1.1). In particular, the Berezin symbol g of T,
was used to introduce the notion of mean oscillation MO(g) of g. At least for Bergman spaces
over bounded symmetric domains or the Segal-Bargmann space there are characterizations
in terms of the function MO(g) for H,; and Hjy to belong to the ideals of Schatten-p-class or
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compact operators, c.f. [7], [10], [23]. As a matter of fact the assignment g — MO(g) is
invariant under complex conjugation such that these characterizations hold for H, and Hjy
simultaneously. In [24] the compactness of Hy and Hy was proved in the case of Bergman
spaces over strictly pseudo convex domains §2 in C" and smooth symbols g on §2 continuous
up to the boundary. An analog theorem for the case of weighted harmonic Bergman spaces
over the unit ball in R” can be found in [22]. Schatten-p-class properties of the Hankel
operators do not follow automatically, c.f. [22], [25]. On the one hand it was observed in
[10], [21] (resp. [4]) that for the Segal-Bargmann space H and bounded symbol g the operator
Hy is compact (resp. Hilbert-Schmidt) if and only if Hy is compact (resp. Hilbert-Schmidt).
On the other hand, the existence of non-constant bounded holomorphic functions implies that
such a result in general can not be true for Bergman spaces over bounded domains X C C",
c.f. [25]. Let £L2(H, H+) denote the Hilbert-Schmidt operators from H to its orthogonal
complement H+ in L2(X, 1) and with norm || - ||gs. Here, we determine spaces S of bounded
measurable symbols such that:

(P) For g € S and Hy € L2(H, HY) it follows that Hj € L2(H, HY) and there is a
constant C > 0 with ||Hg|lus < ClHgllns.

Following ideas in [4], we express || Hy|lus by integral conditions on g and g. No further
assumptions on X are required besides the existence of a reproducing kernel K. For a finite
measure u property (P) holds with S := L*(X, V) and C = 1 where the Berezin measure V
is defined by dV (z) = K (z, 2)d(z) (c.f. Proposition 4.1).

There is a natural metric d on X induced by K and equivalent to the Bergman distance in
the case of Bergman spaces H over bounded domains X C C". We assume that a priori there
is a second metric d on X related to d and turning the space C(X) of continuous functions on
X equipped with the compact-open topology into a Fréchet space. For symbols g € L (X)
such that ||Hgyllgs < oo the following can be said about the sequence of iterated Berezin
transforms. Theorem I is essential in the proof of the Theorems II and III.

THEOREM 1. The sequence (BJ 9)jeN C C(X, d), where B denotes the Berezin trans-
form, has cluster points h € C(X, d) with Bh = h.

We observe that S := L2(X, V) is an invariant space for the Berezin transform. More-
over, for any symbol g € S the invariance ¢ = g implies that ¢ = 0 (see example 3.1). In fact
this observation can be used to obtain a defining property for S in (P):

THEOREM II. Let Sg C L°°(X) such that:

(i) So is asymptotically invariant under the Berezin transform (c.f- Definition 3.2).
(i) Forh € Sy the equality h = h implies that Hj =0.

Then (P) holds with S := Sy and C := 2.

In the case of the Segal-Bargmann space H}, assumptions (i) and (ii) of Theorem II are

fulfilled with Sy := L°°(C"). Here Sy is invariant under complex conjugation and (P) holds
in a symmetric way, c.f. [4] (for invariance under Berezin transform [1], [15]). In our analysis
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iteration of the Berezin transform B plays a crucial role. Let 2 C C" be a strictly pseudo
convex domain with C3-boundary and H = H?(£2, i) a weighted Bergman space over £2
with K (x,x) > 0. For f € C(£2) the sequence of iterated Berezin transforms converges
uniformly on the closure £2 to a unique fix point fy € C(£2) of B preserving the boundary
values of f, c.f. [2]. Let Co($§2) denote the space of continuous functions on 2 vanishing at
the boundary.

THEOREM III. Sy := Co(82) fulfills the condition (i) and (ii) of Theorem 11.
To give an example of a non-symmetric situation we consider the Banach algebra:
Aan(2) = { fec): f, is anti-holomorphic}

and set Sy := Co(2) @ A ($2). This choice again leads to a solution of (P) whereas the
symbol space Sp.. = {g : ¢ € So} in general does not. This can be seen by the fact that
there are no non-zero Hilbert-Schmidt Hankel operators on the Bergman space of the open
unit ball in C* with anti-holomorphic symbols when n > 2, c.f. [25]. We examine the
pluri-harmonic Fock space Hp, on C". With ¢ € L°°(C") and the pluri-harmonic Hankel

operator th it holds ||H§h||Hs < V2. ||H§h||Hs and the Hilbert-Schmidt property of the
corresponding Hankel operators H;‘ on the Fock space Hy and th on Hyy, are related. As an

application of Theorem II we show that H;’ € L2(Hy, Hy) implies that th and th are of
Hilbert-Schmidt type as well and

H2 ) =[5 -min {22y

It was remarked in [20] that H} arises naturally by pairing of polarizations from the
real and Kiler polarization on the cotangent bundle 7*(R") = C". The Euclidean space R"

ma || B2 .|

Hg||is}. (1.2)

can be replaced with the n-dimensional sphere S" in R"*! or the complex projective space
PC". Then this method leads to a family of reproducing kernel Hilbert spaces of holomorphic
functions on a quadric in crl resp. on a space of (n + 1) x (n + 1) complex matrices
parametrized by two real parameters. Several aspects of the analysis on these spaces are
treated in [5]. In the final part of this paper we are interested in the asymptotic behavior of
the Berezin measure in these examples. As an application of the general theory we determine
a class of Hilbert-Schmidt Hankel operators in the sphere and complex projective space case.

2. Preliminaries

Let L?(X, ) denote the classes of p-square integrable functions on a measure space
(X, F, n). We write (-, -) (resp. || - ||) for the inner product (resp. norm) of LZ(X, 11).

A linear space H of u-square integrable functions on X is said to be closed in L2(X, )
iff the canonical projection p : H — L*(X, ) is injective with closed range and H is
identified with p(H). We write P : L%(X,u) — H and Q := I — P for the orthogonal
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projection onto H and its orthogonal complement H respectively. Assume, that H admits a
reproducing kernel function, i.e. there is a 7 ® F-measurable function K : X x X — C such
that X > x — K (x, x) € (0, 0o) is measurable and for all x, y € X:
(i) K(,x)eH,
(i) K(x,y)=K(©,x),
(iii) Reproducing property: Forall f € H itholds f(x) = (f, K (-, x)).
By (i) and for any x € X the normalized kernel is given by

ke=K(C.x)-|[KC.0)|™" e H 2.0
where by (i), (iii): | K (-, x)|| = K (x, x)% > (0. We define a symbol space:
TX):={f:L* X, ) : fkee L*(X, ), Vx € X}.

DEFINITION 2.1 (Berezin transform). For f € 7 (X) the Berezin transform (BT) f:
X — Cis defined by:

FO) = (fku. ks). 2.2)

Naturally (2.2) extends to operators on H such that f and f;v coincide and it can be

regarded as an inverse quantization. If Ty is bounded f clearly is bounded by IT¢]l. On
functions (BT) is an integral operator with positive kernel and commutes with the complex

conjugation: f = f . We write M for the multiplication with a symbol g and £(V, W) for
the continuous operators between topological vector spaces V and W. We also use the shorter
notation L(V) := L(V, V).

DEFINITION 2.2 (Hankel and Toeplitz operators). For g € L°°(X) the Hankel opera-
tor Hy and the Toeplitz operator Ty with symbols g are given by Hy := QM € E(H . H J-)
and Ty :== PMy € L(H).

Definition 2.2 can be generalized to classes of unbounded symbols. Then Hy and Ty will
be unbounded in general. On X we consider the Berezin measure V:

dV(x) = K (x, x)dpu(x). (2.3)

There is a trace formula for positive operators on H which leads to a characterization of
the Hilbert-Schmidt Hankel operators by an integral condition with respect to V. We write
I - las for the Hilbert-Schmidt norm.

LEMMA 2.1. Let g be a measurable function on X such that My P is a bounded oper-
ator on LZ(X, W), then (a) and (b) below are equivalent:
(a) Hy:H— H* is a Hilbert-Schmidt operator (we write Hy e L2(H, HY)).
2
(b) I:=[y|Hgk:| dV(x) < oo.
If (a) and (b) are valid, then VI = | Hg lls-
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PROOF. Fix an orthonormal basis (ONB) [e; : j € No] in H. Because QM,P is
bounded, there is T € L(H) such that (QM 4 P)*(QMyP) = T*T on H. Hence

1= [ gk Paveo = [ (1K e TR 0)dut).

From (i)—(iii) we obtain for all x € X:

TK(,x) = Z(TK(-, x),ej)ej = Z [TFe;1(x) e; . (2.4)

j=0 j=0

By inserting (2.4) into the integral above and using the monotone convergence theorem
together with || 7*|lgs = ||T ||us one obtains that:

1= [ Slrelolduw = Y 7% = 3 e -
j=0 j=0 j=0

Hence the equivalence of (a) and (b) and VI = |Hgllzs are proved. O

REMARK 2.1. The analogous result of Lemma 2.1 holds if we replace H, by the
Toeplitz operator T in (a) and (b) above. Note that Tg* = T in Lemma 2.1.

By a further decomposition of the integral expression in Lemma 2.1 (b), the Berezin
symbol of g naturally appears.

LEMMA 2.2. For g € L*°(X) and with I defined as in Lemma 2.1 (b), it holds:

f =/X{||P[§kz]—%kz||2+ |9 = 3 Jav @), 2.5)

The right hand side of (2.5) is finite if and only if the left hand side is finite.

PROOF. By Fubini’s theorem and using (2.3):

I= /X | HyK () |Pdpn) 6
= [ [ sk Lok ml Panern)

= fx fx [9@K (0, 2) — P[GK (., D] dudu ().
In the last equality we have used (ii) as well as
P[gK (-, M)]() = P[gK (-, 2)]() 2.7
which can be deduced from (i)—(iii) by a straightforward calculation. Using § = 5 we have:

(P[gK (2] K(.2)) = (3K (. 2), K(,2)) = (7@K (-, 2), K(, 2))
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which can be written as (P[EK(-, z)] — 9K, 2), K(, z)) = 0. From the Pythagorean
theorem we obtain for the inner integral on the right hand side of (2.6) and fixed z € X:

/X (9@ K (. 2) = P[GK (. 0] 0 du)
TN T [— 2
= /;{ HQ(Z) - !}(Z)}K(A,z) — iP[!}K(.,Z)]()L) _ §(Z)K()»,z)” Ay
_ 2
=/ H!](D-fl(z)}K(k,z)‘ du ()
X
JE— 2
+/X‘P[§K(-,Z)](A)—§(z)K(A,z)‘ di(r)

= K 2{[s@ - 5@ + | PLak] - Gk}

Finally, by inserting this expression into (2.6) the assertion follows. a

COROLLARY 2.1. Let ¢ € L®(X) such that Hy € L*(H,H% ), then g — § €
L%(X, V).

PROOF. Lemma 2.1 (b) holds and the assertion directly follows from Lemma 2.2. O
In order to derive some further decomposition of the integral I we prove:

LEMMA 2.3. Let g € L®°(X), then:

I= fx | Pk — 5k |2aV (o) = fx | Pok] — g PaV ().

The right hand side is finite if and only if the left hand side is finite.

PROOF. By using Fubini’s theorem and (2.7) again one concludes that:
I = fx fx PLIK G, 9100 — F@K G, ) di(dp )
= /X /X |PLgK (. M@ — 3@ K (2. V)| du@du)
Z/X | PLgki] — G| *av ) . O

Combinings Lemmas 2.1, 2.2 and 2.3 we can prove a decomposition formula for the
Hilbert-Schmidt norm of Hankel operators:

PROPOSITION 2.4. Let g € L*°(X) such that Hy is a Hilbert-Schmidt operator. Then
Hg, Ty_g and Hy_g are of Hilbert-Schmidt type as well and:

I g s = 1 7o-a s + 1 g s + 19 = 3132 .0, - 2:8)
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PROOF. From Lemma 2.1, 2.2 and 2.3 we have:

g = 9 = 3020, = [ [Pl = 5k Paveo

— /x | P[gki] — Gki|?avn) .
After decomposing the integrand into an orthogonal sum:
| PLgk] = 3 |* = | Ty-gha|* + | Hgha |
and using Lemma 2.1 and Remark 2.1 we conclude that:
|Hglis = 9 = 317200, = /X {1Tg—gh* + | Hgho | Jav )

= | To—sllns + 1 Ha 5 a

3. Iteration of the Berezin transform

For A € X we consider the rank one projection Py, := (-, ky )k on L*(X, j1) where k),
denotes the normalized kernel (2.1), c.f. [11], [12]. With this notation the Berezin transform
f of a symbols f € L°°(X) can be expressed as an operator trace:

FO) = (fk, k) = (Mg Piks, k) = trace(M ;s Py) . (3.1)

In particular, it was observed in [11], [12] that f has some Lipschitz property. Recall

that the trace norm || - ||trace 1S defined by || A|lirace = traces/ A* A where / A* A is the unique
square root of A*A. By a standard estimate it follows from (3.1):

| £0) = £ < 1 f lloo | Pry = P |
Motivated by (3.2) we consider the functiond : X x X — R given by:

(3.2)

trace *

d(h, 22) i= | Py, — Pa ||

trace

The following formula was proved in [11], THEOREM 1 and the case of any reproducing
kernel Hilbert space H C L2(X, ) of the type we are considering here:

PROPOSITION 3.1 ([11]). Fora,b € X it holds:

|K(a, b }
K(a,a)K (b, b)
COROLLARY 3.1. disametriciffora,b € X thereish € H with h(a) = 0 # h(b).

PROOF. We only show that [d(a, b) = 0] = [a = b]. (3.3) vanishes iff [(k,, kp)| = 1
and by the Cauchy-Schwartz inequality together with ||k, || = ||kp]| = 1 it follows that k, =

d(a,b)=2{1—|(ka,kb)|2}% =2{1— (3.3)
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A - kp where |A| = 1. Fora # blet h € H with h(a) = 0 # h(b). Applying the reproducing
property of K and K (b, b) > 0 we obtain the contradiction 0 = h(b) - A - K (b, b)_%. O

Hence d is a metric in the case where H is “big enough”. From now on we assume
that H satisfies the condition of Corollary 3.1 such that (X, d) becomes a metric space. In
our applications X a priori will be a metric space carrying a second metric d and we also

assume this in general. Both metrics d and d should be related through the assumption that
the embedding

(X.d) = (X.d) (3.4)
is continuous, c.f. Corollary 3.2. Further, let (X, d) fulfill (P1)—(P3):

(P1) (X, d) is hemi-compact, i.e.there is a fundamental sequence (K, ),eN of compact sets
in (X, d) such that K, C K,41 and X = |, on Kan-

(P2) (X, d) is ak-space, i.e.a functions f on (X, d) is continuous if and only if its restric-
tion to any compact subset K C X is continuous.

(P3) All open set in (X, d) have strictly positive volume with respect to 1.

COROLLARY 3.2. Let K : X x X — C be continuous in the product topology with
respect to the metric d on X. Then there is a continuous embedding (3.4).

We remark that the assumption of Corollary 3.2 typically holds for reproducing kernel
Hilbert spaces H := N N L?(X, ) where A is nuclear in the F-space C(X, d). In the case
of a bounded domain X C C" and with the usual Bergman space H over X, the function d
induces the Euclidean topology d(a, b) := |a — b|. Some relation between d and the Bergman
distance are discussed in [19].

LEMMA 3.1. Let f € L®(X), then f is continuous in the topology of (X, d).

PROOF. By (3.4) both d and d induce the same topology on compact sets K C (X, d).
From (3.2) we conclude that the restriction of f to K is continuous with respect to d and from
(P2) it follows that f € C(X, d). O

Let us also write Bf := f for the Berezin transform, when it is considered as an operator.
From (3.2) it follows that B can be regarded as bounded operator:

B:L®(X) > BC(X,d), and |B| <1

where BC(X, d) (resp. BC(X, d)) are the bounded functions in C(X, d) (resp. in C(X, d))
equipped with the sup-norm. From (3.4) one has continuous embeddings:

C(X,d) — C(X,d) and BC(X,d)— BC(X.,d). (3.5)

Here C (X, d) is a Fréchet space (F-space) with respect to the compact-open topology by
assumptions (P1) and (P2) on the metric d.
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LEMMA 3.2. Let (g4)n C BC(X,d) be a norm-bounded sequence converging in
C(X,d) to ¢ € BC(X,d). Then it follows that lim,—~ Bg, = Bg in C(X,d) and
Bg € BC(X, d).

PROOF. Fix ¢ > O such that ||g,|lcc < cforalln € Nandlet T C (X, d) be compact.
Forn € N and x € X one has:

K (07

(Bou = B9)0)] =< [ o=
Let (K;,)m denote the sequence of compact sets in (P1) and fix m € N, then:

IK (-, x)]?

du =: Cym .
K0 2 m(X)

() < supgn — | +ch
Km X\Km

For fixed x € T and m — oo the sequence (¢ )m C C(X, d) given by:

_ KCoPF
qm(x) = /X\Km mdﬂ = XX\Km(x)

is monotonely decreasing to 0. By Dini’s Lemma the convergence is uniform on 7. For any
e > 0 fix mo € N with sup, .7 |gm(x)| < ¢ for all m > mg. Finally, we can choose ny € N
with SUpk,, lgn — gl < & forn > ng. Uniformly on T this leads to Cp,,.»(x) < &(1 + 2c) for

n > ng. Because ¢ is bounded it follows that Bg € BC(X, d). O

DEFINITION 3.1. (Iterated Berezin transform). For f € L°(X) we define the Berezin
transforms inductively by:

fOi=f and fUY =0, jxo0.

COROLLARY 3.3. Let g € L™(X) such that Hy is a Hilbert-Schmidt operator, then
all the operators H g(m for m € N are Hilbert-Schmidt operators with:

| Hgon s = [1Hg s - (3.6)
Moreover:
Z |9 - g(]+])||L2(X,V) < || Hgl s < o0 G.7
j=0
PROOF. Both, (3.6) and (3.7) follow by iteration of (2.8). O

For S € C(X,d) we write Fix (S) :={f € § : Bf = f} for the fix points of B in S.
Further, let S be the closure of S in the F-space C (X, d). For g € L°(X), we define

Sgi={gV:jeNlccx, d (3.8)

for the B-invariant space of iterated Berezin transforms of g. Combining Corollary 3.3 with
general properties of B we can prove:
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PROPOSITION 3.2. Let g € L*(X) such that the Hankel operator H is of Hilbert-
Schmidt type, then Fix (S—g) # (. Moreover, S_g \Sy C Fix (S—g).

PROOF. Forany k € Nit is clear that || g% |lo0 < |lglloo and with A1, A2 € X it holds:

l9® ) = g0 (2)] < llglloed (21, 22) -

This shows that S; C C(X, d) is bounded and equi-continuous. Hence there is a subse-
quence (¢")); which is uniformly compact convergent to some / € S_g. We show next that
h € Fix (S_g). First let us note that by Lemma 3.2:

lim 900 (x) = i (x) (3.9)

where the convergence in (3.9) is uniformly compact on (X, d). From our assumption on H,

and (3.7) we conclude that limy_ o || g% — g() ;2 = 0. Hence there is A C X with

(X,V)
V(X \ A) = 0 and a subsequence of (¢"¥)); (which we denote by (¢"¥)); again) such that
forall x € A:

lim {g®) (x) — g0 (x)} =0. (3.10)
k—o00

By the definition of £, (3.9) and (3.10) it follows for x € A that:
h(x) = lim ¢ (x) = lim g0 (x) = (x) . G.11)
k— o0 k— 00

Because of K(x,x) > O for all x € X we obtain that u(X \ A) = 0 and by (P3) the
complement X \ A cannot contain an open subset of (X, d). Thus A must be dense in (X, d).
Finally, the continuity of % together with (3.11) imply that # € Fix (S_g).

The second assertion follows by the same argument and the fact that the functions in the
complement S_g \ 8y are limit points of a subsequences of (¢ c C(X, d). O

We remark that in contrary to Fix(S_g) the set S_g \ Sy might be empty.

DEFINITION 3.2. We call a subspace S C L*°(X) asymptotically invariant under B
iff for any f € S the inclusion S; C S holds.

By our results above it follows that symbols of Hilbert-Schmidt Hankel operators gener-
ate spaces asymptotically invariant under B:

COROLLARY 3.3. Let g € L°°(X) such that Hy is a Hilbert-Schmidt operator, then

S_g is asymptotically invariant under B.

PROOF. Let f € S_gbe arbitrary. For f € Sy itis clear thatS_f C S_g. In the case where
f €84\ Sy CFix (Sy) it follows that Sy = Sy = {f} C Sy. O
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Further examples of spaces asymptotically invariant under B are obviously given by the
fix point set Fix (S) of any subspace S C L°°(X) or by the “eventually fix points™:

{f€8:3 jeN suchthat W) = fU+Dy,

EXAMPLE 3.1. Let u be a finite measure on X and fix ¢ € L?(X, V). By a straight-
forward calculation one obtains that:

/ 1 k) Tka()]?
x3 K(y,y) K, u) K(x, 1)

dV(»)dVW)AdV ) = u(X) < 00.

By Tonelli’s theorem, the function:

1
K(@,y)

is finite for a.e. (u, y) € X? with respect to the product measure V ® V. Moreover,

LGt y) = /X lew OO Pl () P (1)

30220, = /X3 9@ k@) [Pk Pd e @)d e ()d v ()
= /X3 990 [k [l ) [P dp()aV dpa(y)

=/ gW)g()L(u, y)dV @ V(u, y).
XxX

By Cauchy-Schwartz inequality and [y L(u, y)dV (u) = [y L(u, y)dV (y) = 1:

2 2
”9”L2(X,V) = H9||L2(x,\/)' (3.12)

Equality in (3.12) only holds if Gi(u, y) := ¢g(u) and G2(u,y) := g¢(y) are linear
dependent showing that g is constant. By an easy consequence of Remark 2.1 together with
T, = id the measure V cannot be finite whenever H is infinite dimensional. In this case
g = 0 and there are no non-trivial functions in L2(X, V) invariant under B.

4. Hilbert-Schmidt Hankel operators

We apply our previous results to prove Theorem II of the Introduction:

PROPOSITION 4.1. For g € L*(X,V), the operator Hy is of Hilbert-Schmidt type
and:

HHQHHS: HHEJ”HSS lgliL2x.v) - 4.1

PROOE. For f € L3(X, ) it follows from [[Pf1(u)|? < ||Pf||* - K (u, u) that:

M Pr| < | PfIIZ/X 19K @, wdp@) < 1F 17190175y, -
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Hence My P is a bounded operator on L%(X, ) and by Lemma 2.1 it is sufficient to
prove Lemma 2.1, (b).

HHg||§sf/XHgK(.,nllzdu(x)

=/X|g(k)|2/X|K()»,X)|2du(X)du()»)=IIQIIiz(x,V)<OO-

By Remark 2.1 and using the same calculation it also follows that the Toeplitz operator
T, is a Hilbert-Schmidt operator. From T| g = H ;Hg + 13Ty we derive that T‘ g2 T3T, and
H ;Hg are of trace class. Hence
| Ho s = trace(T, — T5Ty)
= trace(Tlg‘z) — trace(Tg Tg)
O

= trace(7,2) — trace(TTy) = trace(H; Hy) = | H3 Hl2-[S

LEMMA 4.1. Let (gn)m € L°°(X) be a bounded sequence and point wise convergent
to g. Then (Hg, ) converges to Hg in the strong operator topology.

PROOF. Let f € H, then by Lebesgue’s convergence theorem it follows that:

m—0o0

HHgm—ng25fx|9m—9|2|f|2du — 0. O

Let ./\/Sym = {h € L*°(X) : H; = 0} be the kernel of the symbol map h — Hj,. Then
we consider the space S of symbols defined by:

S:={g€L®X): Sy N Nym # 0} 4.2)

THEOREM 4.1. Let g € S such that Hy is a Hilbert-Schmidt operator, then Hy is a
Hilbert-Schmidt operator as well and ||Hg||us < 2||Hgllus.

PROOF. Because H, is a Hilbert-Schmidt operator and by applying Corollary 3.3 it
follows that g™~ — ¢ ¢ L2(X, V) for all m € N. Hence one concludes that:

g—9" ={g—gV}+-+{g" P - g™} e P, V).
By Proposition 4.1 and Corollary 3.3 again one has for all m € N:

| H5-50m

HS — ” Hy_gm HHS = H Hy ”HS + ” Hgom ”HS =2 H Hy ”HS' (4.3)

Choose h € Eg N Nym # ¥ and assume that & belongs to S,. Then there is ip € N
such that b = ") and for i > i it follows from (3.6) that: 0 < [|[Hyw llus < [ Hjllus = 0

showing that Hgm = 0. In particular, for f € H:

lim IHyzo fIl = 0. 4.4)
11— 00
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Forh € S_g\Sg there is a sequence (my)x C N such that limy_, g('"k) = h with respect

to the Fréchet topology of C(X, d). Because of || ¢ ||oo < ||¢lco and Lemma 4.1 we obtain
for f € H that:

fim [ Hyw 7] = | Hif]| = 0. @)

Let[e; : j € N] be an ONB of H and fix / € N. Then by (4.3) we conclude:
: 2 : 2
X el = i 321t s

. 2 2
= limsup | Hy g [[s = 4] Hg s -
k— 00
in both cases (4.4) and (4.5). For Il — oo the assertion follows. O

PROPOSITION 4.2. Let Sy C L% (X) be asymptotically invariant under Berezin trans-
form such that Fix(Sp) C Mym. Then S in Theorem 4.1 can be replaced by Sy.

PROOF. Fix g € & and let || Hy|lus < oo. It is sufficient to show g € S defined in
(4.2). By assumption it follows that S_g C So. Moreover, as a consequence of Proposition 3.2
one obtains that J # Fix (S_g) C Fix (So) C Ngym. Hence S_g NNym #@and g € S. |

Let IC be the ideal of compact operators on H and denote by o, (T') the essential spectrum
of T € L(H). For the following result and with the reproducing kernel K we assume that the
assignment

Xoxm K(x,x) e (0,00) (4.6)
is continuous. Then we can prove (c.f. [10], [21]):
PROPOSITION 4.3. Let u(K) < oo for all compact K C X and g € L®(X) such that

Hg and Hg are compact. With a sequence (Kn)m of compact sets as in (P1) it follows that:

cre(Tg) C ﬂ closure g(X \ Km). 4.7

meN

If Ty_ 4om is compact, we can replace g by g™ on the right hand side of (4.7).
PROOF. Suppose that A ¢ closureg(X \ K,,) form € N, then consider & defined by:

else .

el
h(z)::{i‘q(Z) M7z € X\ K

The function / clearly is bounded and it can be easily verified that:
@ ThTg—=1+Tg-)h—1— H;Hg,
) Ty aTh=1+Tg—ryh-1— Hth.
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By (4.6) it is clear that z — K(z,z) and f := (¢ — A)h — 1 are bounded on K,, and
because of 1 (K,;;) < oo we have:

117200y = fK |f @K (2. 2)dpu(z) < oo

Hence, Ty is of Hilbert-Schmidt type and so it is compact. By our assumptions on Hj

and Hj both (a) and (b) show that Ty € [L(H)/K]" " and A ¢ 0¢(Ty). The second assertion
is an immediate consequence of 0, (Ty) = Ge(Tg(;)1)). O

5. Examples and Applications

Various aspects of the Berezin symbol have been studied c.f. [2], [4], [10], [15] and most
recently [11], [12]. Below we apply some of these results to obtain examples of our assump-
tions in THEOREM 4.1. In particular, we prove THEOREM III and (1.2) of the introduction.
All spaces X appearing in this section are metric with (P1)—(P3).

5.1. Bergman spaces over bounded domains. Let 2 C C” be a bounded domain
with a measure . By H := H?(£2, ) we denote the Bergman space of all holomorphic -
square integrable functions on £2. We assume that the point evaluations on H are continuous
and the reproducing kernel K is strictly positive on the diagonal. The following is due to J.
Arazy and M. Englis (c.f. [2], THEOREM 2.3.):

THEOREM 5.1 ([2]). Let $2 be either a bounded domain in the complex plane with
Cl-boundary, or a strictly pseudo convex domain in C" with C3-boundary, then

(a) B maps C(R2) into itself and preserves the boundary values.

(b) Forany f € C(2), the sequence (™) of iterated Berezin transforms converges

uniformly on 2 to a function g € C(§2) satisfying Bg = ¢ and oo = Jlag-

(c) Forany @ € C(382) there exists a unique g € C(2) satisfying Bg = g and

G150 = P. The function g is called B-Poisson extension of .

Let 2 C C" be as in Theorem 5.1 and denote by C((§2) the continuous functions on Q2
vanishing at the boundary. From (b) and the uniqueness result in (c) we conclude that:

COROLLARY 5.1. Let g € Sy := Co($2). Then (g(k))k converges to 0 uniformly on
2. In particular, Sy fulfills the assumptions of Proposition 4.2.

PROOF. The first assertion directly follows from THEOREM 5.1 and S_g = S,U{0} C So
shows that Sp is asymptotically invariant under B. Moreover, by the uniqueness result in
Theorem 5.1 it is clear that Fix(Sp) = {0} C Nyym. O

Note that Sp is symmetric under complex conjugation. In order to give an example for a
non-symmetric situation we consider:

A (2) = { feC@): fi, is anti-holomorphic}
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and set S| := Co(2) ® Aan(£2). With f € Co(2) and h € Ay, ($2) consider g = f+h € S).
Because of Bh = h and h = ¢ on 952 we conclude from Theorem 5.1 (b) and (c) that the
sequence (¢*)); is uniformly convergent on £2 to 4. Hence S is asymptotically invariant
under Berezin transform. Moreover, Fix(S;) = An(£2) C ./\/sym and the assumptions of
Proposition 4.2 hold.

THEOREM 5.2. Let g € Sy := Co(82) and ¢op € S| := Co(82) ® Aun(82), then

(a) Hg, € L*(H, HY) ifand only if Hy, € L*(H, HY).

(b) Hg, € L2(H, H') implies that Hg, € L>(H, HY).

(¢) Forh € {g1, g1, g2} there is a norm estimate: || Hp||us < 2 - || Hj; || gs.

Let B, be the unit ball in C" with n > 2. It was observed in [25] that there is no non-zero
Hankel operator Hy € L?(H, H') with anti-holomorphic symbol. Hence, in general Hgy, in
Theorem 5.2 is not of Hilbert-Schmidt type in the case of Hz, = 0. Let v be the Lebesgue
measure on B,, (n € N) and define for « € R the measure yy by

dpe () = caK(z,2) " 1dv(z) ¢y >0
where K denotes the reproducing kernel of the unweighted Bergman space H2(Bj, v). It is
known that 4 is finite if and only if & > n and in this case we choose ¢, with uy(B,) = 1.
For @ > n and in the case of the weighted Bergman space H(f of holomorphic functions in
Lz(Bn, o) we want to add some remarks on compact Hankel operators. Let A be a finite sum
of finite products of Toeplitz operators on HD%, then it was proved in [14] that A is compact

if and only if its Berezin symbol vanishes at the boundary of B,. The following Lemma
corresponds to LEMMA 2.1 in the compact case:

LEMMA 5.1. Let g € L*(By) and R € {Hy, Ty} defined on HO% where a > n. With
the normalized reproducing kernel function k) _in (2.1) it holds:

(@) R is compactif and only if || Rk || — 0 as A — 0By,.

(b) For A — 0By, the sequence (k)),. tends to 0 weakly in L%(B,, Ua)-

PROOF. Because R is compact if and only if R*R is compact (a) follows from our
remark above together with:

o ITgkil® = TyT,(1) = TgT4(3),
o | Hgkpl* = HiHg() = (Tjyp — T3T4) (V).

To prove (b) let h € L?(By,, Ie) and € > 0. Choose a continuous function » on B,
having compact support such that ||r — i|| < e. It follows that:

[(h, k)| < [(h = r k)| + (1, Trka) | < e + | Trka ) -
By Proposition 4.1 the Toeplitz operator 77 is compact and (b) follows from (a). O

As an application of Theorem 5.1 we remark (c.f. [24] in the case « := n + 1 and [7]):
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COROLLARY 5.2. For geC(B,) both Hg and Ty _5 are compact on HD% where a > n.

PROOF. For all A € By, it follows with a straightforward calculation that:

[PLoks] = 509k + | Hoho | = | G0 = [50] 5.1)
By Theorem 5.1 both sides of (5.1) vanish at 9 B, showing that lim,_.5, || Hgks.| = 0.
Similarly, for A — 9 B,, one has the convergence:
0= |Ty-ghil* < [0 = Dka|* = {lg = 3" J0) — 0.
Finally, we can apply Lemma 5.1. g

An application of Theorem 5.1 leads to the results below. In case @ = n + 1 Theorem
5.3 and Corollary 5.3 have been originally proved in [13] by using different methods.

THEOREM 5.3. Let f € C(B,), then o,(Ty) = f(3By).

PROOF. The inclusion o.(Ty) C f(0By) follows from Proposition 4.3 and Corollary
5.2. Conversely, let A = f(xg) € f(9B,). By Theorem 5.1 (a) and for R € E(Hlf) it holds:

0< HRTf—Akx”ZS HR”ZHTf_)‘kX“ZS HR”Z{UC—)\'Z}()C) X—>X( 0.
For A ¢ 0.(Ty) one can choose R + K to be a left-inverse of Ty_; + K in the Calkin

algebra. Then there is K € K such that lim, _ , H (I — K)k, H = 0 in contradiction to Lemma
5.1, (b) and ||kx || = 1 for all x. Hence A € o.(Ty). O

COROLLARY 5.3. For f € C(B,) the operator Ty is Fredholm if and only if 0 ¢
S (@By).

5.2. Pluri-harmonic Fock space. Forn € N and with the usual Lebesgue measure v
consider the normalized Gaussian measure ¢ on C" defined by:

du(z) := 7" exp(—|z|H)dv(z) . (5.2)

The space Hj, of all entire and p-square integrable functions is called Fock space or
Segal-Bargmann space. It is known that H}, is a reproducing kernel Hilbert space with kernel
function K (x, y) = exp(x-y) forx, y € C" where x-y := x1y{+- - - +x,y, and |y|? := y- .
We also consider the space H,, = { f : f € Hyp} of anti-holomorphic functions and we
denote by Py (resp. Py,) the orthogonal projection from L2(C", w) onto Hy, (resp. Hyp). For
f € L*(C", p) note that:

A f =Pl 53

Considered on functions the Berezin transforms corresponding to both spaces Hy and
H,p, coincide and we denote it by B. For g € L°°(C") one has:
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[Bg]w) := /C gx)exp (x it +u- X — |ul?)du(x). (5.4)

It is readily verified that B can be regarded as a continuous convolution operator on the
Schwartz space S(C"), c.f. [15]:

Bf = f+h where h:=2"exp(—|'|2)

and fxg:= Qm)™" fcn F M g(-—y)dv(y) denotes the convolution product on S(C"). Using
the Fourier transform 7 on S(C") and g := Fh = exp (—4~!|-|?) it follows, that B also can
be written as pseudo-differential operator B = F~'M ¢F onS( C"). There is an extension of
I—B=FM 1—gF to the space S’'(C™) of tempered distributions. This observation leads
to a proof of the following fact, c.f. [15]:

LEMMA 5.2. Letu € 8'( C") such that Bu = u, then u is a harmonic polynomial. In
particular, any bounded function u which is reproduced under B must be constant.

PROOF. The Fourier transform of u € &’(C") is denoted by . By our remarks above
and with Bu = u it follows that 0 = (1 — ¢)ii = G| - |*4. Here the function

1—g&) 1—exp(-47"])

C&=gp = BE

is bounded away from 0 and it can be checked that multiplication by G induces an isomor-
phism of S’(C"). Hence 0 = | - |2/ which is equivalent to the Laplace equation Au = 0. Our
assertion follows from a well-known extension of Liouville’s theorem. O

As an immediate consequence it follows that, c.f. [4]:

COROLLARY 5.4. Let Sy := L°°(C"), then Fix(Sy) = C. In particular, the assump-
tions of Proposition 4.2 are fulfilled and for ¢ € L (C") it holds ||H;'||HS <2. ||Hg||HS.

With a symbol ¢ € L*®°( C") and (P, H) € {(Py, Hp), (Pan, Han)} we consider the
Hankel and Toeplitz operators:

(I —P)MyeL(H H") and PM, e L(H)
and denote them by H), H3" resp. T and T;". As a consequence of (5.3) we remark that:

LEMMA 5.3. Let g € L®(C"), then:

D) 1T s = 175" llas

(i) I1Hyllus = 1 H" llus

where both sides of (1) resp. (ii) may be simultaneously infinite.
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PROOF. We only prove (ii). Let [¢; : j € No] be an ONB of Hy, then an ONB of Hy, is
given by [e; : j € Ngl. Now, it follows by (5.3) that:

1Hge; 11> = llge;I” — | Page;lI* = llge; > — I Pwge;ll* = I1Ha e 11 .
Summing up this equality over j € Ny yields the desired result. O
DEFINITION 5.1. The pluri-harmonic Fock space Hyy consists of all f € ct(chHn

2. ’r o A
L~(C", n) such that Oforall j,k=1,...,n.

BZjazk -

According to [18] it holds Hpp = Hy @ {Hah © C} and any f € Hp, can be written as:
f=h+r, with r(0)=0 (5.5)
where # and r are holomorphic. With g € L°°(C") and the orthogonal projection Py, from
L%(C", i) onto Hpy, we define the pluri-harmonic Hankel operator by:
HP" := (I — Pon) My : Hop — Hp .
For f € Hj it can be checked by a straightforward calculation that:
@ [HFI? = HL 1P = 1Pag £17+ | (g, DI,

) HS FI? = 1H®FI2 = [ Pag 1% + (9. f)
As an application of Corollary 5.4 and Lemma 5.3 we can prove for g € L°(C"):

| 2

THEOREM 5.4. H}' € L2(Hy, HY) iﬁth € L2(Hp, Hy}) and ||th||HS < V2.
||th||HS. Moreover, H;’ € L2(Hy, HhJ‘) is sufficient for th, th € EZ(HP;,, HPJ;l) and

ma {7 .|

1} = 5 min {1312, 1212

PROOF. With an ONB [eg := 1,¢; : j € N] of Hy, the system [ep, ej,ej : j € N]
defines an ONB of Hyy,. Applying (a), (b) and Lemma 5.3 above it follows that:

[ H5 s + 13" = i@ {1H5e | + | 1o, (56)

(0.¢]

2 2 2 _ 2
= | s + 12315 = D= { | nges I + [ Prse )
j=1
(0.¢]

2 2 __ 2 _ 2
= | as + 15 s = D= {1 Pvge I + | Pages ).
j=1

In particular, it holds

h h
IH s + IHD 12 = | HE I Fs + I HEM L)
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Hence H gh is of Hilbert-Schmidt type if and only if H gh is of Hilbert-Schmidt type and
it holds ||H§h||Hs <2 ||th||HS~ Moreover, with f € {g, g}, Corollary 5.4 and (5.6):

15t 0

ph 2 h|2 hi2 . hi2
[ s = [Hp1s + [ H] s = 5+ minf [ 1) .

5.3. Hilbert space on quadrics. Let H be a closed subspace in L>(X, i) with repro-
ducing kernel K. In our analysis on Hankel operators the Berezin measure V defined in (2.3)
plays a crucial role. In case of the Fock space (or Segal-Bargmann space) Hy, c.f. section 5.2,
it is readily verified that:

7"V := Qc» = Liouwville volume form (5.7)
where ¢ coincides with the usual Lebesgue measure on C* = T*(R"). In fact, Hy is
only one example of a reproducing kernel Hilbert space which naturally arises from a more
general construction method. It was remarked in [20], that Hy can be obtained by pairing
of polarizations from the real and Kiler polarization on the cotangent bundle 7*(R") = C".
The Bargmann transform between L?(R") and H;, can be derived via this method.

By replacing R" with the n-dimensional sphere S” the same construction leads to a repro-
ducing kernel Hilbert space Hg» of holomorphic functions on a non-singular cone or quadric
Xgr in C"*1\ {0} diffeomorphic to the punctured cotangent bundle Ty (S"). We give the def-
inition of Hg» which we consider to be of interest itself and prove an asymptotic version of
(5.7) in the case of Hg. For a detailed description of pairing of polarizations we refer to [5]
and [20]. More examples of this method are treated in [5], [6], [16] and [17].

Let 8" := {(x0,...,%,) € R™! : |x|> = 1} be the n-dimensional sphere with the
standard Riemann metric induced from the Euclidean metric on R, As before we write
x-y:= Y x;-yjand x| := x - x for x, y € R""!. The tangent bundle 7'(S") and the
cotangent bundle 7*(S") can be identified via this metric and are realized in R"*! x R"*!:

T*(8") =T7(S") = {(x,y) e R x R"™ : |x| = landx - y = 0} .

With the punctured cotangent bundle 7;;(S") := {(x, y) € T*(S") : y # 0} we define a
diffeomorphism tg» onto a quadric Xg» by:

g T (S") — Xgn := {z € C"*! 1z -z = 0and z # 0} (5.8)
(x,y) = z=lylx++v-ly.
The symplectic form wsr and the canonical one form Og: on T*(S") respectively are

given by the restriction of > dyx A dx and Y yk - dxi on R x R*!. Via (5.8) it can be
shown that the symplectic form wyx on Xg» is expressed as:

wx = \/—238|Z| .

_1yrn=D/2 .. .
(Gl i -wgn be the Liouville volume form on T (S"). Due to the isomor-

Let 2gr := o
phism (5.8) it can be regarded as a volume form 2y on Xg». Let Py denote the restriction
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of holomorphic polynomials on C"*! to Xg». On Px we consider a family of inner products
depending on two real parameters (#, N) where h > Oand N > —n:

(p.q)y = P@a@e ™z Nds2y, p.q € Px. (5.9)
(h,N) Xsn

By pairing of polarizations the case h := 227 and N :=n/2—1 naturally appears and
the measure dm ,, yy == e 1. 12\Nd 2y corresponds to the Gaussian measure g in (5.2). As
an analog to the Segal-Bargmann space we define:

H2(Xsn, dmp, ny) == L?-closure of Px w.r.t. the inner product (5.9) .

It can be shown that H 2(Xsn, dm, ny) is a reproducing kernel Hilbert space. Moreover,
its elements can be extended to holomorphic functions on the whole space C"*!. The repro-
ducing kernel K, n) can be calculated in form of an infinite sum and involving the Gamma
function. More precisely, it holds (c.f. [5]):

o0

Ky (hi2) = Clh,n,N) - Y Fk+n—1-Qk+n-1)
k=0

- |ha % (5.10)
I'Ck+ N +n)-T'(k+1)

pN
Vol(X(S"))-I"(n)

For H?(Xgn, dm,Ny) we prove an asymptotic property corresponding to (5.7).

with C(h,n, N) := and X(§") :=={z e Xg : |z| = 1}.

PROPOSITION 5.1. For N > —n and h > 0 it holds:
hn

=1 Vol(£(S") - T'(n) G-AD

Aler;O‘A‘Noexp(— 1) - Ky 0 1) =

In particular, (5.11) can be written as 27" 'h=NC(h, n, N) and is independent of N.

A direct computation shows, that (5.10) splits into two sums:

o0
Ky (s 2) = Cn, Ny - {210 2 10k, N - 1
k=0

+(n—1)-21(k,n—1,N—1).|h,\|2’<} (5.12)
k=0

where

I'(k+n)

I(k,n,N) = .
kN = e Nt n Ok 1)

Using the expression of the Euler integral fol tP=1(1 — )4~ 1dt where p, ¢ > 0 in terms
of the Gamma function together with the well-known duplication formula:

ﬁ-z_Zk-F(2k+l)=F<k+%)-F(k+1)
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one easily verifies in case of % > —1 and k € No:

E(n,N 1 n 1 0
Thon Ny = BN [ et g2 [ a0 e (5.3)
(2k)! 0 0

Here E(n, N) > 0is given by:

1
E(n, N) = . (5.14)
P e VW A(CSC S
Multiplying (5.13) with x> and summing up over k € Ny leads to:
00 1 pl
Z[(k, n,N)-x* = / / @y N (s, 1) - cosh {+/st - x}dsdt (5.15)
=0 0 Jo
where @, v : (0, 1)> — R is defined by:
sn1 Nin N-n
P, n(s,t) :=E@n,N) - (1= -1—=s)y 72 . (5.16)

Jt
In (5.15) one can replace n by n — 1 and N by N — 1. By using (5.12) we derive the
following integral expression of K, y) on the diagonal:

COROLLARY 5.5. For %5 > —1 and with:

Wy N (s, 1, %) := C(h,n, N) - {2x2 DN (s 1) (11— 1) - Dyt N1 (s, t)} (5.17)

it holds:

1 1
Konny(h 1) = / / W, (s, 7, [hA]) - cosh {Js? |hk|} dsdt .
0 0

Below we analyze the asymptotic behavior of integral expressions having the form (5.15)
and apply our results to the proof of Proposition 5.1.
Let f, g : Rt — RT and k > 0, then we write f ~ g iff lim;_, o0 t* - f(r) exists and

lim - {f(1) = g0} =0.

Given a sequence of functions g; : Rt — R where j € Ng we write f ~ > gj and
say that the (formal) series ) | g; represents f asymptotically for large values of r whenever:

e Forallk e No: f —{go+ g1+ -+ g} ~x Oand
e there is a constant a; such that g ~ i’—,’;

Let @ : [0, 1]2 — C be integrable and assume that p : [0, 1]2 — R is continuous. For
any measurable subset U C (0, 1)? we define Jg@ : Rt — C with x = (s, 1) by:

I o (x) = /U D (s, 1) -exp{ — p(s,1) - x}dx.
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In our application we examine the case where

(1) @(s,1) = Do p(s, 1) :=(1—95)*-(1—t)/ ande, B > —1,

2) p(s, 1) :=1— /st

The Taylor expansion of p at xg := (1, 1) and of first order is given by:

pls.)=1(s.)+ Y O(1—s* |1—1])
k+1>1
where 7(s,1) := 1 — 5 - (s +t). Hence it follows that:
, 1
lim 20 _ (5.18)
(s,t)—>x0 T(S,1)
We set U := [0, 1]%> and determine the asymptotic behavior of J g T
rqjﬂ(x)—exp( Xx) - /(l—s) exp ds /(l—t)’3 exp(z)d
From
2\**! x ?
/ 1 —-9*. exp( )ds = (—) exp (5) / t* - exp(—1t)dt
0
it follows that:
v ya+p+2
JT@mﬁ(x) ~a+B+2 W‘F(a"i‘l)‘r(ﬁ-i-l)- (5.19)

With our notations in (1) and (2) above we prove:

LEMMA 5.4. LetW : [0,1]2 — C be continuous in a neighborhood V of xo := (1, 1)
and assume that o, B > —1, such that ¥ - @y g is integrable over V. Then

v a+p+2
Jp.w.dq 5 (X) ~atpt2 ¥(xo) - prav s Fle+)-I'(B+1). (5.20)

PROOF. For 1 > ¢ > 0 and with (5.18) we choose a neighborhood W C V of x¢ such
that:

[1 — 8] -T(s, 1) < p(s,t) < [1 +8] -7(s, 1)

forall (s, ) € W. Hence, by using @, g > 0 it follows for x > 0 that:

e, ST+l x) <1, ﬂ(x)_JT(p S —el-x). (5.21)
With y € {p,t}and Vp € {U, V} notethatJVqj p J)‘,/f’;)‘;vﬂ +JV¢ p andJVO\W is of

order O (x~°°) as x — o0. An application of (5.19) and (5.21) shows that:
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2P P+ 1)-T(B+1) o

P +8+2 gV

(14 e)ath+2 = liminfx To.005 ()

204P2 . P@+ 1) - T'(B+1)
(1 - 8)a+ﬁ+2

< limsup x*TA+2. J/‘)/(p ﬂ(x) <
X—00 e

Because ¢ > 0 was arbitrary, it follows for any neighborhood V of xg:

lim x®tA+2 -JX’% (xX)=2TP2 . ra+1)-rB+1). (5.22)

X—>00

By the continuity of ¥ we can assume that |¥ (s, 1) — ¥ (xo)| < ¢ for all (s,¢) € W.
Moreover, by (5.22) there is ¢ > 0 such that [x*TA+2 . J/‘f%ﬂ (x)] < cforall x > 0. Hence
xoetB+2 .JZXW'@a,ﬂ (x) — XATA+2 ¥ (x0) 'J;‘f%,ﬂ @] <c-e.

VAW

Finally, (5.22) where V is replace by W and Jp,q/.@a . JV\W

pbuy € O(x™ ) asx - o
prove (5.20). O

COROLLARY 5.6. Let V be a neighborhood of xo := (1, 1) and assume that ¥ €
CK(V). With o, B > —1 is follows in generalization of (5.20):

(=Dl vy
Bwa,, (0= 30— @) T oy () ~arpikra Gr(x)

lyl<k

Vv
p>q>a+y1 B+r2

a+p+k+2 1 alvly
XoeHBkA2 V1 oxy
X ik y!  ox

where the asymptotic of J is given in (5.22) and

Gir(x) = (—DF. xo) - F'a+yi+D)-T'B+y+1).

PROOF. By multiplying the Taylor expansion of ¥ at xo = (1, 1) with @, g one obtains
for y in a neighborhood of x¢ that:

vl glriy
F(y):=%¥() - Pap(y) — Z ( y? Yy (x0) * Partyy, p+72 (V)
lyl<k '
v
= (_l)k : Z J;/(!y) : ¢a+yl,ﬂ+)/2 ).

lyl=k

\
FTTG 4 (x0). Lemma

where W, (y) = k- i} (1 —)¥1 . &% () 4. [y — xo])dt and ¥, (xg) = L
5.4 shows for a neighborhood V of x( that JX,F(x) ~atprk+2 Gr(x). O

In particular, for ¥ € C*°(V) we have proved XA+ Jgﬁw%ﬂ ~ Y g; where the

functions g; are given by:
1 alvly v
— (xo) - J

. (=1 . @ tB2 .
gj(x) = (=1)/ - x Z‘y! P P Paiyr b
YI=J

(x).
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Lemma 5.5 follows by straightforward arguments. We omit the proof.

LEMMA 5.5. Let ax,bry > 0 such that a(t) = Zkzoaktk converges on R. If
limy s 0o Z—: = 1 then B(t) = Zkz() btk converges on R and lim;_, 5 a(t) ~,371(t) = 1.

In Proposition 5.2 we apply Corollary 5.6 to (5.15) which holds for N;” > —1:

PROPOSITION 5.2. Let f:= M3 > o := N2 > —1 then it holds:
(0.¢]
xN+2-exp(—x)-ZI(k,n, N) - x2 ~Zg,~ (5.23)
k=0

where V is a neighborhood of (1, 1) and with g; : Rt — RT of order O(x77) as x — oo:

. E(m,N -1 —1
gj(x) = (=17 . %  x¥BE2 Z < 2) . <’l N ) ’J/‘;%w.,mn (x). (5.24)

) 1
lyl=j 4

PROOF. It follows from (5.15) and the notation in (5.16) that:

o
xN*2 L exp(—x) - Z I(k,n, N) - x2 = yoth+2 Jpw 5 (X)+ 0(x™) (5.25)

k=0
where ¥ (s, t) := E("Z’N) cgnh t’%. In particular, it holds with y := (y1, y») € N(Z):
1 oy E(n,N) (—3\ (n—1
— . (x0) = ——= . . .
y! axv 2 i V2
Finally, we can apply our remark above. g

REMARK 5.1. The integral expression (5.15) of the left hand side in (5.25) is not
unique. It can be checked that in the case N + % > —1 a second integral formula is given by:

o 1 1 )
exp(—x)~21(k,n,N)~x2k:/O /O Sy n(s 1) - (1 =)V T2

k=0
x cosh {—(1 —2/s(T = 9)1) -x} dsdt (5.26)

where
1 snfl (1= S)N+l
VA T(N+3) Vi

Using (5.26) instead of (5.15) in the proof of Proposition 5.2 an asymptotic expansion of

Dy N (s, 1) i=

the form (5.23) also can be derived for N + % > —1. In this case the functions g; are given
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in terms of the integral expressions:

1 o

1,0 = / <5 - s> (=0 exp{ =1 =2ys(T—9)1) - x}dx.
w

where x = (s,7) and «, 8 > —1 and W is a neighborhood of (%, 1). We will not present a

detailed calculation here.

According to (5.12) the kernel K, ny(A, 1) on the diagonal can be expressed as
Kg,ny(A, A) = F(JhA]) with F : R — R™. By (5.23) an asymptotic expansion of

x> xVexp(—x)- F(x) (5.27)

14

in terms of Jp!%‘ﬁ

where V is a neighborhood of xo := (1, 1) can be obtained explicitly in

the case N2_” > —1. We only calculate the Oth-order term gy and we find that lim, _, o go(x)

is independent of N. This enables us to prove Proposition 5.1 in the case N > —n:

PROOF OF PROPOSITION 5.1. Let us first assume that
(5.14) and (5.24) in the case j = 0 together with (5.22) and U := [0, 112 that:

: _EMN) . g2 _ 1
im0 = FE i 2 0 =

N > —1, thenit follows from

where 8 = % >o = % > —1. Because of (5.23) one also has:

o0
1
i N+2 | —x)- 2 R
xl;rrgox exp(—x) k_OI(k,n, N) -x T (5.28)

In the case —n < N < n — 2 we choose kg € N with N + 2koy > n — 2. We define:

o0
I'(k+k
By =Y (k + ko +m)
—~ 'k +2ko+N+n+2) - I'k+ko+1)

According to Lemma 5.5 and the identity
o F'k+n)-I'tk+ko+1) _1
k—oo I'(k+1)- T'(k+ko+n)

it follows that limy oo B(x) - a(x)~! = 1 where a(x) := 33, I (k,n, N + 2ko) - x*. In
particular, one obtains from (5.28) where N is replaced by N + 2kq:

1
exp(—x) - B(X) ~Ni2kg+2 €XP(—X) - ct(X) ~Ny2kg+2 S NT2KoH2 (5.29)

Because Y ;o I(k,n, N) . x2k — x?ko. B(x) is a polynomial and by applying (5.29), the
asymptotic (5.28) in the case —n < N < n — 2 is given by:

o
1
lim xV*2 . exp(—x) - E [(k,n, N) - x** = lim xN+%0+2 . exp(—x) - B(x) = o
X—00 paar X—00 2
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Finally, (5.11) follows from (5.28) for N > —n and (5.12) which shows that the Oth-
order term go of the expansion (5.27) coincides with 2 - C(h, n, N) - go. O
Let Hy be the Hankel operator on HZ(XSn, dm, ny) where h > O and N > —n.

COROLLARY 5.7. For f € LZ(XSn, §2x) the operator Hy is Hilbert-Schmidt. More-
over, there is ¢ > 0 independent from f such that |H | gs = ||Hf||HS <c- ||f||L2(XSn,Qx)'

PROOF. Apply Proposition 4.1 and Proposition 5.1 which shows that there is ¢ > 0
with fg  [fO)PKany G, Mdma,ny ) < ¢ - [y, | fPd2x < oo O

REMARK 5.2. In [5] (see also [16] and [17]) a family of reproducing kernel Hilbert
spaces with kernel K ((}:1 Ny on rank one complex matrices A and naturally arising from the
complex projective space P"C by pairing of polarizations is introduced. Here we only state
the main result on the kernel asymptotic in [5]. As an analog to the quadric case one has:

PROPOSITION 5.3 ([5]). Let N > —nand h > 0, then
1-2n th

‘T (n—1)

2
lim KS (A, A). e VAT 41N =

5.30
lAl—oo M) (5.30)

where ¢ > 0 is independent of N and h. In particular, (5.30) is independent of N.

5.4. Problems and Remarks. (1) Isthere an extension of Corollary 5.4 or Theorem
5.4 to Schatten-p-class (p # 2) or compact Hankel operators? (The compact case for Hy is
treated in [10], [21]).

(2) Determine the bounded fix points of the Berezin transform in the case of the pluri-
harmonic Fock space or the spaces H 2(Xsn, dm ., ny).
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