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Abstract. We show that all types of self-adjoint perturbations of a semi-bounded operator A (purely singular,
mixed singular, and regular) can be described and studied from a unique point of view in the framework of the
extension theory as well as in the framework of the additive perturbation theory. We also show that any singular finite

rank perturbation Ã can be approximated in the norm resolvent sense by regular finite rank perturbations of A. An
application is given to the study of Schrödinger operators with point interactions.

1. Introduction

LetA be a semi-bounded self-adjoint operator acting in a separable Hilbert space H with
inner product (·, ·) and let D(A), R(A), kerA, and ρ(A) denote the domain, the range, the
null space and the resolvent set of A, respectively. Without loss of generality, we will assume
that A ≥ I . By PM we denote an orthoprojector in H onto a closed subspaceM of H.

Let N be a closed subspace of H. Define D(AN) and AN as

D(AN) = {u ∈ D(A) | (Au, η) = 0,∀η ∈ N} , AN = A �D(AN) , (1.1)

whereA �D(AN) means the restriction ofA ontoD(AN). Obviously,AN is a closed symmetric

operator in H and its defect subspaceR(AN)⊥ = H�R(AN) coincides withN . The operator
AN is densely defined if and only if N ∩ D(A) = {0}.

Let Ã be a self-adjoint operator in H and let Ã ∧ A be the maximal common part of Ã
and A:

Ã ∧A = A �D(Ã∧A) , D(Ã ∧A) = {u ∈ D(A) ∩ D(Ã) | Au = Ãu} . (1.2)

Comparing (1.1), (1.2) one gets Ã ∧A = AN , where

N = {η ∈ H | (Au, η) = 0, Au = Ãu} (1.3)

is the defect subspace of Ã ∧ A. The operators Ã and A are relatively prime extensions of
the symmetric operator AN (i.e., the maximal common part Ã ∧ A of Ã and A coincides
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with AN ) and the self-adjoint extension Ã can be considered as a perturbation of the initial
(nonperturbed) operator A. In this way, an arbitrary self-adjoint operator Ã �= A can be
regarded as a perturbation of a fixed operator A.

The perturbation Ã is finite rank if and only if dimN < ∞, where N is the defect
subspace of Ã ∧ A.

A self-adjoint operator Ã �= A is called: regular perturbation of A if D(A) ∩ D(Ã) =
D(A) and singular perturbation if D(A) ∩ D(Ã) �= D(A). It is convenient to divide the
class of singular perturbations into two subclasses. Precisely, we will say that a singular
perturbation Ã is purely singular if the maximal common part Ã ∧ A is densely defined and
mixed singular if Ã ∧ A is nondensely defined.

At present, regular and purely singular perturbations are well-studied, respectively, by
the additive perturbation theory and extension theory methods (see [1, 2, 16] and the reference
list therein). Mixed singular perturbations are investigated considerably less.

In the present paper, a unique approach to the description and study of all types of per-
turbations of A (regular, purely singular, and mixed singular) is developed.

In Section 2, we describe all self-adjoint operators Ã in relation to a fixed self-adjoint
operator A by parameters {N, T }. Here N is a defect subspace of Ã∧A and a self-adjoint (in
N) operator T distinguishes Ã among self-adjoint extensions of Ã ∧ A which are relatively
prime to A. We study the relationship Ã ↔ {N, T } in detail and establish simple connec-
tions between {N, T } and the parameters characterizing Ã in the frameworks of the extension
and additive perturbation theories. (The relationship between such approaches for finite rank
perturbations has been studied in [25, 27].)

Our investigations show that the parameters {N, T } are quite natural for the description
of self-adjoint perturbations of a semi-bounded operatorA. In particular, they naturally appear
in the Krein’s resolvent formula relating Ã and A (Theorem 2.1). The parametrization Ã ↔
{N, T } provides convenient tools for extracting different properties of Ã. For example, the
Krein-von Neumann extension of AN corresponds to the pair {N, 0} (Proposition 2.2) and the

Friedrichs extension is determined by {N, T }, where N ⊂ D(A1/2), N ∩ D(A) = {0} and T

is uniquely defined by the relation (T η, ξ) = (A1/2η,A1/2ξ), ∀η, ξ ∈ N (Proposition 3.3).
In a certain sense, some results of Section 2 (Theorem 2.2) were inspired by the recent

papers [21, 22] where the authors present various ways of description of all self-adjoint per-
turbations of A (and moreover, all closed operators having at least one common point in their
resolvent sets) by parameters {M,γ } appearing in Krein’s type resolvent formulas. In Remark
1, we present an explicit formula relating the parameters {M,γ } and {N, T }.

By the construction, the parameters {N, T } deal with the extension theory approach. In
Theorems 2.5, 2.6, we reformulate the description of self-adjoint perturbations in the frame-
work of the additive perturbation theory. To do this, the parameters {N,B,R} are used. Here,

B and R are self-adjoint in N such that B = (T − R)−1.
In Section 3, self-adjoint perturbations Ã of A are described asA+V , where, in general,

the “potentials” V act in the scale of Hilbert spaces associated with A (A-scale).



PERTURBATION THEORY OF SELF-ADJOINT OPERATORS 275

In Section 4, we show that any finite rank self-adjoint perturbation Ã can be approxi-
mated by regular perturbations in the norm resolvent sense. Section 5 deals with some appli-
cation for the Schrödinger operators with point interactions.

2. Extension theory approach

In this section we are going to describe all types of perturbations of A (purely singular,
mixed singular, and regular) by methods of the extension theory.

2.1. Preliminary results. The boundary value spaces (BVS) approach is one of the
most popular methods for the description of self-adjoint extensions of a given densely defined
symmetric operator [13, 23]. Now we briefly outline some well-known results of the BVS-
theory needed for our exposition.

DEFINITION 2.1 ([13]). Let Lmin be a closed densely defined symmetric operator in
H. A triple (N, Γ0, Γ1), where N is an auxiliary Hilbert space and Γ0, Γ1 are linear mappings
of D(L∗

min) into N, is called a boundary value space (BVS) of L∗
min if the abstract Green

identity

(L∗
minf, g)− (f, L∗

ming) = (Γ1f , Γ0g)N − (Γ0f, Γ1g)N , f, g ∈ D(L∗
min)

is satisfied and the map (Γ0, Γ1) : D(L∗
min) → N ⊕ N is surjective.

If (N, Γ0, Γ1) is a BVS of L∗
min, then the restrictions of the adjoint operator L∗

min onto
the domains kerΓ0 and kerΓ1 determine, respectively, self-adjoint extensions L0 and L1 of
Lmin.

The operatorsL0 andL1 are transversal extensions ofLmin, i.e., they are relatively prime
with respect to Lmin: L0 ∧L1 = Lmin and D(L0)+D(L1) = D(L∗

min). These properties are
characteristic for the existence of BVS. Precisely, for any transversal self-adjoint extensions
L0 and L1 of Lmin there exists a BVS (N, Γ0, Γ1) of L∗

min such that L0 = L∗
min �kerΓ0 and

L1 = L∗
min �kerΓ1 .

LEMMA 2.1 ([11, 13]). Let L be a fixed self-adjoint extension of Lmin and let
(N, Γ0, Γ1) be a BVS of L∗

min such that D(L) = kerΓ1. Then an arbitrary self-adjoint exten-

sion L̃ of Lmin relatively prime with L is defined by the formula

L̃ = L∗
min �D(L̃) , D(L̃) = {f ∈ D(L∗

min) | T Γ1f = Γ0f } , (2.1)

where T is a self-adjoint operator in N. The correspondence L̃ ↔ T determined by (2.1) is a
bijection between the set of all self-adjoint extensions L̃ relatively prime with L and the set of
all self-adjoint operators in N. Self-adjoint extensions L̃ transversal with L are determined
by bounded self-adjoint operators T .

Let us use Lemma 2.1 for the description of purely singular perturbations Ã of A. In that
case Ã and A are relatively prime self-adjoint extensions of the densely defined symmetric
operatorAN = Ã∧A, where the defect subspaceN of Ã∧A satisfies the relationN∩D(A) =
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{0}. The domain of the adjoint operator A∗
N has the form D(A∗

N) = D(A)+̇N and

A∗
Nf = A∗

N(u+ η) = Au , ∀f = u+ η ∈ D(A∗
N) (u ∈ D(A), η ∈ N) . (2.2)

Taking into account (see e.g., [13]) that the triple1 (N, Γ0, Γ1), where

Γ0(u+ η) = PNAu , Γ1(u+ η) = −η (∀u ∈ D(A) , ∀η ∈ N) (2.3)

is a BVS of A∗
N such that kerΓ1 = D(A) and applying Lemma 2.1 (for N = N,L =

A,Lmin = AN ) with the use of (2.2) and (2.3), we immediately obtain

PROPOSITION 2.1. A purely singular perturbation Ã of A is determined by the for-
mula

Ãf = Ã(u+ η) = Au , D(Ã) = {f = u+ η, u ∈ D(A), η ∈ D(T ) | − T η = PNAu} ,
where N is the defect subspace of Ã ∧A and T is a self-adjoint operator in N .

The correspondence Ã ↔ {N, T } is a bijection between the set of all purely singular
perturbations of A and the set of pairs {N, T }, where N is an arbitrary non-trivial subspace
of H such that N ∩ D(A) = {0} and T is an arbitrary self-adjoint operator in N .

In the case of mixed singular or regular perturbations Ã, the situation is more complicated
because the operatorAN = Ã∧A is non-densely defined and the adjointA∗

N does not exist as a
uniquely defined operator. As a rule (see e.g., [9, 10, 19]), AN and its ‘adjoint’ are understood
as linear relations and the description of all self-adjoint relations that are extensions of the
graph of AN is carried out.

The approaches presented below enable one to preserve the operator form of the exposi-
tion and they do not need the linear relations technique.

2.2. The description of all self-adjoint perturbations of A. Let Ã �= A be an ar-
bitrary self-adjoint operator in H. Obviously, Ã and A are relatively prime with respect to
AN = Ã∧A but the symmetric operator AN is not necessarily densely defined and its defect
subspace N may have a non-trivial intersection with D(A).

Now, we are going to extend the description of purely singular perturbations presented
in Proposition 2.1 to the general case of all self-adjoint perturbations.

LEMMA 2.2. Assume that A is an invertible operator in H, N is a subspace of H, and
T is a linear operator in N . Then the relations

AN,T f = AN,T (u+ η) = Au , (2.4)

D(AN,T ) = {f = u+ η, u ∈ D(A), η ∈ D(T ) | − T η = PNAu} (2.5)

define an operator AN,T in H if and only if T satisfies the condition

T η − PNAη = 0 ⇒ η = 0 , ∀η ∈ D(A) ∩ D(T ) . (2.6)

1In fact, this BVS was already implicitly used in the classical works [8, 20].
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PROOF. Assume that f = u + η ∈ D(AN,T ) and f = 0. Then η = −u ∈
D(A) ∩ D(T ). In this case, (2.4) and (2.5) give AN,T f = −Aη and T η = PNAη. Since
A is invertible, the implication f = 0 ⇒ AN,T f = 0 holds if and only if η = 0 that is
equivalent to (2.6).

DEFINITION 2.2. An operator T acting in a subspace N of H is said to be admissible
with respect to A if T satisfies (2.6).

It follows from (1.1), (2.4), and (2.5) that AN,T is an extension of AN for an arbitrary
admissible operator T .

THEOREM 2.1. Assume that A ≥ I is a self-adjoint operator in H, N is a subspace
of H, and T is an admissible operator in N . Then the operator AN,T determined by (2.4),
(2.5) is a self-adjoint extension of the symmetric operator AN if and only if T is self-adjoint.
In that case z ∈ ρ(A) ∩ ρ(AN,T ) if and only if Q0(z) + T is boundedly invertible, where

Q0(z) = zPNA(A− zI)−1PN and

(AN,T − zI)−1 = (A− zI)−1 − A(A− zI)−1(Q0(z)+ T )−1PNA(A− zI)−1 . (2.7)

PROOF. The domain D(AN,T ) determined by (2.5) can be also described as

D(AN,T ) = D(AN) +̇ {(I − A−1T )η | ∀η ∈ D(T )} . (2.8)

So, any f ∈ D(AN,T ) admits the representation f = u0 − A−1T η + η (∀u0 ∈ D(AN),
∀η ∈ D(T )) and the formula (2.4) takes the form

AN,T f = AN,T (u0 − A−1T η + η) = Au0 − T η . (2.9)

The formulas (2.4), (2.5) and (2.8), (2.9) give equivalent descriptions of AN,T .
In view of (2.8), (2.9), AN,T is an extension of the symmetric operatorAN for any choice

of admissible operator T in N .
Assume that T is self-adjoint in N and show that AN,T is densely defined in H. Let

t ∈ H be orthogonal to D(AN,T ). By virtue of (2.8), t is orthogonal to D(AN). This means
that t = Awr , where wr ∈ Nr = N ∩D(A). Recalling that t has to be orthogonal to all terms
in (2.8), we get

0 = (−A−1T η + η,Awr) = (η,Awr)− (T η,wr) , ∀η ∈ D(T ) .

Since T is a self-adjoint operator in N , the obtained equality implies wr ∈ D(T ) and Twr =
PNAwr . The last relation and (2.6) give wr = 0. Hence t = 0 and AN,T is a densely defined
operator in H.

To find the adjoint A∗
N,T we describe all elements g, w ∈ H satisfying the relation

(AN,T f, g) = (f,w) , ∀f ∈ D(AN,T ) . (2.10)

Putting f = u0 ∈ D(AN) in (2.10) and taking into account that (u0, w) = (Au0, A
−1w),

we get g − A−1w ∈ N . Denote η̃ = g − A−1w and substitute g = A−1w + η̃ and elements
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f ∈ D(AN,T ) of the form f = −A−1T η + η ∈ D(AN,T ) into (2.10). As a result, after a
trivial transformations with the use of (2.9), we derive

(−T η, η̃) = (η,w) , ∀η ∈ D(T ) . (2.11)

Since T is self-adjoint, (2.11) implies η̃ ∈ D(T ) and −T η̃ = PNw. But then, the element g
in (2.10) takes the form

g = A−1(I − PN)w + A−1PNw + η̃ = u0 − A−1T η̃ + η̃ (u0 = A−1(I − PN)w) .

Therefore, g ∈ D(AN,T ) and AN,T g = w (by (2.8) and (2.9)). So, if T is self-adjoint, then
A∗
N,T = AN,T .

Let AN,T be self-adjoint. It follows from (2.4) and (2.5) that

0 = (AN,T f, g) − (f,AN,T g) = −(T η, η̃)+ (η, T η̃)

for an arbitrary f = u+ η and g = v + η̃ from D(AN,T ). Hence, T is a symmetric operator.
To prove its self-adjointness, we consider an arbitrary η̃ ∈ N and w ∈ H satisfying (2.11). In

that case, as follows from above, g = A−1w + η̃ satisfies (2.10) for all f ∈ D(AN,T ). Hence
g ∈ D(AN,T ) and w = AN,T g (since AN,T is self-adjoint). Combining this with (2.4), (2.5)

one gets η̃ ∈ D(T ) and −T η̃ = PNAu = PNw (here u = A−1w). Recalling now (2.11), we
derive the self-adjointness of T .

To prove (2.7), we fix z ∈ C\R and consider the operatorQ0(z) = zPNA(A−zI)−1PN .

Since its imaginary part Im Q(z) = (Im z)PNA(A− zI)−1A(A− zI)−1PN is a positive (for
Im z > 0) or negative (Im z < 0) defined bounded operator in N and T is self-adjoint, the
operator Q0(z)+ T is boundedly invertible (i.e., 0 ∈ ρ(Q0(z)+ T )).

Let h ∈ H and f = u + η ∈ D(AN,T ) be such that h = (AN,T − zI)f . Using (2.4),

(2.5), one gets h = (A − zI)u − zη or PNA(A − zI)−1h = −(Q0(z) + T )η and hence,

η = −(Q0(z)+ T )−1PNA(A− zI)−1h.
On the other hand, it is easy to verify that [(AN,T − zI)−1 − (A − zI)−1]h =

A(A− zI)−1η. Comparing the latter two equalities we justify (2.7) for Im z �= 0. Obviously,
(2.7) can be extended onto z ∈ ρ(A) ∩ ρ(AN,T ) by continuity and 0 ∈ ρ(Q0(z) + T ) ⇔
z ∈ ρ(A) ∩ ρ(AN,T ). Theorem 2.1 is proved.

THEOREM 2.2. Let Ã be an arbitrary self-adjoint operator in H and A ≥ I . Then
there exists a unique pair {N, T }, where T is an admissible self-adjoint operator in a subspace
N such that Ã = AN,T .

The correspondence Ã ↔ {N, T } is a bijection between all self-adjoint operators and
the set of pairs {N, T }, where N is an arbitrary subspace of H and T is an arbitrary admis-
sible self-adjoint operator in N .

PROOF. Assume that Ã �= A is an arbitrary self-adjoint operator in H. Then Ã and
A are relatively prime extensions of the symmetric (not necessarily densely defined) operator
AN = Ã ∧ A, where N is determined by (1.3).
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Denote by Nz = H � R(AN − zI) the defect subspace of AN corresponding to z ∈ C.
An analog of the von-Neumann formulas for non-densely defined symmetric operators (see
e.g., [18, 23]) provides the following description of Ã:

D(Ã) = D(AN) +̇ {(I − CÃ)ηi | ∀ηi ∈ Ni} , (2.12)

where CÃ = (Ã− iI )(Ã+ iI )−1 is the Cayley transform of Ã and

Ã(u0 + ηi − CÃηi) = Au0 + i(I + CÃ)ηi (u0 ∈ D(AN), ηi ∈ Ni) . (2.13)

The operator A is described by the same formulas (with CA = (A − iI )(A + iI )−1

instead of CÃ) and the property of A and Ã to be relatively prime with respect to AN means
that (CA − CÃ) �Ni is an invertible operator.

Taking into account that A(A− zI)−1 maps N onto Nz and R(CÃ �Ni ) = N−i , one can

decompose any f = u0 + (I − CÃ)ηi ∈ D(Ã) as f = u+ η, where

u = u0 + iA−1(I + CÃ)ηi ∈ D(A) , η = (A+ iI )A−1(CA − CÃ)ηi ∈ N
and Ãf = Au. These relations, enables one to rewrite the definition (2.12), (2.13) of Ã in the
form (2.4), (2.5), where

T η = −iPN(I+CÃ)(CA−CÃ)−1A(A+iI )−1η , η ∈ D(T ) = (A+iI )A−1(CA−CÃ)Ni .
The operator T is well-defined (since ker(CA − CÃ) �Ni= {0}), admissible (by Lemma 2.2),

and self-adjoint (by Theorem 2.1). So, we show that Ã = AN,T .

It follows from Theorem 2.1 that the correspondence Ã ↔ {N, T } is a bijection between
self-adjoint operators and pairs {N, T }, where N is a subspace of H and T is an admissible
self-adjoint operator in N . Theorem 2.2 is proved.

REMARK 1. Theorem 2.2 can be also proved with the use of [21], where a description
of all self-adjoint operators Ã has been obtained with the help of parameters {M,γ } appearing
in the Krein’s resolvent formula relating Ã and A. Here M = N−i = {η ∈ H | ((A +
iI )u, η) = 0, Au = Ãu} is a defect subspace of Ã ∧ A and the self-adjoint operator γ in M
is determined by the relation

U = I − 2i(γ + iI )−1PM , (2.14)

where the unitary operator U has the form

U = [(A− iI )(A+ iI )−1][(Ã+ iI )(Ã− iI )−1] . (2.15)

Let us show that the equation

(Ã− iI )−1 = (A− iI )−1 − A(A− iI )−1(Q0(i)+ T )−1PNA(A− iI )−1 (2.16)

has a unique solution T , where T is self-adjoint in N and Q0(i) = iPNA(A − iI )−1PN .

Indeed, since (Ã+ iI )(Ã− iI )−1 = I + 2i(Ã− iI )−1 by substituting (2.16) into (2.15) we
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have

U = I − 2iA(A+ iI )−1(Q0(i)+ T )−1PNA(A− iI )−1 . (2.17)

Equating the right-hand sides of (2.14) and (2.17), enables one to establish an explicit expres-
sion of T through γ :

T = PNA(A− iI )−1PMγPMA(A+ iI )−1PN + PN(A+ A−1)−1PN . (2.18)

Since γ is self-adjoint inM = A(A+iI )−1N , relation (2.18) shows that T is self-adjoint

in N and D(T ) = (A+ iI )A−1D(γ ). It follows from (2.7) and (2.16) that (AN,T − iI )−1 =
(Ã− iI )−1, i.e., Ã = AN,T .

Many properties of AN,T can be easily characterized through the parameters N and T .

PROPOSITION 2.2. Let AN,T be defined by (2.4), (2.5). Then:
(i) The zero operator T = 0 is admissible for any choice of N . The corresponding

operator AN,0 coincides with the Krein-von Neumann extension2 of AN .
(ii) The operator AN,T is boundedly invertible if and only if T is boundedly invertible

in N . In that case A−1
N,T = A−1 − T −1PN.

(iii) The operator AN,T is a finite rank perturbation of A if and only if dimN < ∞.

PROOF. SinceA ≥ I the condition (2.6) provides the admissibility of the zero operator
T = 0 for any choice of N . The corresponding operator AN,0 has the domain D(AN,0) =
D(AN)+̇N (by (2.8)). Employing Corollary 3 in [5], we derive that AN,0 coincides with the
Krein-von Neumann extension of AN .

Since A ≥ 1, formulas (2.4), (2.5) imply that 0 ∈ ρ(AN,T ) ⇔ 0 ∈ ρ(T ) and A−1
N,T =

A−1 − T −1PN.

A self-adjoint operator AN,T is a finite rank perturbation of A if the resolvent difference

θz = (AN,T − zI)−1 − (A − zI)−1 is a finite rank operator (i.e., dimR(θz) < ∞) for at

least one z ∈ ρ(A) ∩ ρ(AN,T ) [16]. Since 0 ∈ ρ(A(A − zI)−1), the relation (2.7) yields
dimR(θz) = dimN . Proposition 2.2 is proved.

2.3. BVS approach. As was mentioned above, the symmetric operator AN is not
necessarily densely defined and the description of self-adjoint extensions AN,T ⊃ AN cannot
be obtained directly by methods of the extension theory of densely defined operators. An
approach presented in this subsection allows one to avoid this inconvenience and to consider
AN,T as an extension of a densely defined symmetric operator. Precisely, under the assump-
tions:

(1) Nr = N ∩ D(A) is a closed subspace in H;
(2) there exists a bounded self-adjoint operator R in N satisfying the condition

Rηr = PNAηr , ∀ηr ∈ Nr (2.19)

2i.e., the “smallest” self-adjoint extension among all nonnegative extensions of AN , whereas the Friedrichs ex-
tension of AN is the “greatest” one, see [5] for details.
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and such that (T − R)−1 is a bounded operator in N ,
we construct a closed densely defined symmetric operator AN,T ,min such that AN ⊂
AN,T ,min ⊂ AN,T and describe AN,T in terms of BVS of A∗

N,T ,min (cf. Proposition 2.1).

It follows from (1) that the space N admits the decomposition N = Nr ⊕ Ns into its
singular Ns = N �Nr and regular Nr = N ∩ D(A) parts with respect to A.

With respect to the decomposition N = Nr ⊕Ns , the operator R can be presented as an

operator-valued matrix

(
Rrr Rrs

Rsr Rss

)
. Here Rrr = PNrAPNr , Rsr = PNsAPNr (by (2.19)),

and Rrs = R∗
sr . The choice of Rss in Ns is restricted by the condition of (T − R)−1 to be

bounded.
Since D(A)+ N = D(A)+̇Ns , the definition (2.4), (2.5) of AN,T can be rewritten with

the use of R

AN,T f = AN,T (v + ηs) = Av − APNr η , v ∈ D(A) , ηs ∈ Ns , (2.20)

where η ∈ N and ηs = PNs η satisfy the boundary condition

(T − R)η = −(PNAv + Rηs) . (2.21)

By analogy with (2.20) and (2.21), we define an operator AN,T ,max in D(A)+̇Ns by the
formulas

AN,T ,maxf = AN,T ,max(v + ηs) = Av − APNr ξ , v ∈ D(A) , ηs ∈ Ns , (2.22)

where ξ ∈ N is determined for f = v + ηs by the relation (cf. (2.21))

(T − R)ξ = −(PNAv + Rηs) . (2.23)

It follows from the definition of AN,T ,max that D(AN,T ,max) ⊆ D(A)+̇Ns .
THEOREM 2.3. If assumptions (1), (2) hold, then the operatorAN,T ,max possesses the

following properties:
i) D(AN,T ,max) = D(A)+̇Ns .

ii) The abstract Green identity

(AN,T ,maxf, g)− (f,AN,T ,maxg) = (Γ1f, Γ0g)Ns − (Γ0f, Γ1g)Ns , (2.24)

(f, g ∈ D(AN,T ,max)) holds, where

Γ0f = Γ0(v + ηs) = PNs (Av + Rηs) , Γ1f = Γ1(v + ηs) = ξs − ηs , (2.25)

v ∈ D(A), ηs ∈ Ns , and ξs = PNs ξ , where ξ ∈ N is determined by the relation (2.23).
iii) The map (Γ0, Γ1) : D(AN,T ,max) → Ns ⊕Ns is surjective.
iv) The operator AN,T ,min = AN,T ,max �D(AN,T ,min),

D(AN,T ,min) = {f ∈ D(A) +̇Ns | Γ0f = Γ1f = 0} (2.26)

is a closed symmetric densely defined operator in H and A∗
N,T ,min = AN,T ,max.
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v) The triple (Ns, Γ0, Γ1), where Γi are determined by (2.25) is a BVS ofAN,T ,max =
A∗
N,T ,min.

PROOF. Since (T − R)−1 is bounded, the relation (2.23) immediately implies i).
To establish the Green identity for AN,T ,max, we denote f i = vi + ηis (vi ∈ D(A),

ηis ∈ Ns, i = 1, 2) and consider the corresponding ξ i ∈ D(T ) that are determined by (2.23).
It follows from (2.22), (2.23) that

(AN,T ,maxf
1, f 2)− (f 1, AN,T ,maxf

2) = (Av1, η2
s − ξ2

s )− (η1
s − ξ1

s , Av
2)

+ (η1
s , APNr ξ

2)− (APNr ξ
1, η2

s )+ (Av1, ξ2)− (ξ1, Av2) . (2.27)

Using the self-adjointness of T and R and the relation (2.23), we get (Av1, ξ2) −
(ξ1, Av2) = (−(T −R)ξ1 −Rη1

s , ξ
2)− (ξ1,−(T −R)ξ2 −Rη2

s ) = (Rξ1, η2
s )− (η1

s , Rξ
2).

Substituting the obtained expression into (2.27) and taking (2.19) into account, we establish
(2.24).

To prove iii) it suffices to verify that

Γ1D(AN,T ,max) = Ns and (Γ0, Γ1)D = Ns ⊕ {0} (2.28)

for some set D ⊂ D(AN,T ,max). Indeed, for any f = −A−1Rηs + ηs , relation (2.23) gives
ξ = 0 and hence, Γ1f = −ηs . So, the first relation in (2.28) is true.

Let ws ∈ Ns . Since T − R is boundedly invertible in N , (T − R)ξ = ws for an

element ξ ∈ N . Put ηs = ξs, and v = −A−1(ws +Rηs). Then Γ1(v+ ηs) = ξs − ηs = 0 and
Γ0(v+ηs) = PNs (Av+Rηs) = −ws that gives the second relation in (2.28) for D = {v+ηs}.

Let us prove iv). It follows from (2.24) and (2.26) that AN,T ,min is a symmetric operator
in H. Moreover AN,T ,min ⊃ AN (see (2.25)). Thus, if t is orthogonal to D(AN,T ,min), then
t ⊥ D(AN) and hence, t = Awr , where wr ∈ Nr . Denote by ξ the solution of the equation

(T − R)ξ = wr and put ηs = ξs = PNs ξ , v = −A−1(wr + Rηs). Then Γ1(v + ηs) =
ξs − ηs = 0, Γ0(v + ηs) = PNs (Av + Rηs) = 0. Thus f = v + ηs ∈ D(AN,T ,min) and

0 = (f,Awr) = (−A−1(wr + Rηs)+ ηs,Awr) = −(wr,wr) = 0

(here we use that R = R∗ and PNAwr = Rwr ). Therefore wr = 0 and AN,T ,min is a densely
defined operator.

The adjoint A∗
N,T ,min can be find by analogy with the description of A∗

N,T in Theorem

2.1. Namely, we consider the equation (AN,T ,minf, g) = (f,w) for all f ∈ D(AN,T ,min). The

assumption f ∈ D(AN) gives g − A−1w = ζ ∈ N . Hence g = A−1w + ζ ∈ D(A)+̇Ns =
D(AN,T ,max). By (2.24), (AN,T ,minf, g) = (f,AN,T ,maxg) (∀f ∈ D(AN,T ,min)). So, w =
A∗
N,T ,ming and A∗

N,T ,ming = AN,T ,maxg .

The relation AN,T ,max ⊃ AN,T ,min implies A∗
N,T ,max ⊂ AN,T ,max. The equality

A∗
N,T ,max = AN,T ,min follows from the Green identity (2.24) and the property iii) of Γi .

Thus AN,T ,min is a closed operator.
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By virtue of i)–iv), the triple (Ns, Γ0, Γ1) is a BVS of A∗
N,T ,min = AN,T ,max. Theorem

2.3 is proved.

THEOREM 2.4. If assumptions (1), (2) hold, then AN,T is a self-adjoint extension of
the densely defined symmetric operator AN,T ,min and

AN,T = AN,T ,max �D(AN,T ) , D(AN,T ) = {f ∈ D(A) +̇Ns | Γ1f = 0} .
PROOF. If (T −R)−1 exists, then ker(T −R) = {0} and, hence ker(T −R) �Nr= {0}.

The last relation and (2.19) yield (2.6). So, T is an admissible self-adjoint operator in N .
Let AN,T be a self-adjoint operator determined by (2.4), (2.5). Comparing (2.21) and

(2.23) for any f = v + ηs ∈ D(AN,T ) one gets ξ = η. But then Γ1f = ξs − ηs = 0 and
AN,T f = AN,T ,maxf . Therefore, the self-adjoint operator AN,T is a restriction of A′

N,T =
AN,T ,max �kerΓ1 . Since (Ns, Γ0, Γ1) is a BVS of AN,T ,max, the operator A′

N,T is self-adjoint

[13]. Hence, AN,T = A′
N,T . Theorem 2.4 is proved.

In Theorems 2.3, 2.4 it is assumed thatB = (T −R)−1 is a bounded self-adjoint operator
in N . This allows one to exclude ξ in (2.22), (2.23) and to establish the following explicit
expression for AN,T ,max:

AN,T ,maxf = AN,T ,max(v + ηs) = Av + APNrBPN(Av + Rηs) (2.29)

for all v ∈ D(A) and ηs ∈ Ns . Combining (2.29) with Theorem 2.4, one gets

THEOREM 2.5. Let B be a bounded self-adjoint operator in N = Nr ⊕ Ns , Nr =
N ∩ D(A) is a closed subspace, and kerB = {0}. Then the operator

Ãf = Ã(v + ηs) = Av + APNrBPN(Av + Rηs) , (2.30)

where elements v ∈ D(A) and ηs ∈ Ns satisfy the boundary condition

ηs + PNsB(PNAv + Rηs) = 0 (2.31)

is self-adjoint in H and Ã ∧ A = AN .

Note that Theorem 2.5 can be proved without employing of previous theorems. To do
this, it suffices to establish the Green identity for the operatorAN,T ,max defined by (2.29) with
the boundary operators

Γ0f = Γ0(v + ηs) = PNs (Av + Rηs) , Γ1f = Γ1(v + ηs) = −ηs − PNsB(PNAv +Rηs)

in the right-hand side and to verify that the triple (Ns, Γ0, Γ1) is a BVS.
In a particular case where N = Nr , the following result can be easily proved.

THEOREM 2.6. Let B be a bounded self-adjoint operator in N ⊂ D(A). Then the
operator

Ã = A+ ABPNA , D(Ã) = D(A) (2.32)

is self-adjoint in H. The relation Ã ∧A = AN holds if and only if kerB = {0}.
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REMARK 2. In this subsection, operatorsAN,T are studied under assumptions (1) , (2)
(see the introductory part of subsection). Their weakening requires an additional considera-
tions. However they are immediately satisfied in a series of important particular cases. For
instance, in the case of purely singular perturbationsNr = {0}, the condition (1) is trivial and
(2) is obviously satisfied for any self-adjoint operator T . Another example deals with the case
of finite rank perturbations. Here (1) is obvious and (2) is justified by the following assertion.

PROPOSITION 2.3. Let T be an admissible self-adjoint operator in N = Nr ⊕Ns and
dimN < ∞. Then there exists a self-adjoint operator R in N satisfying condition (2.19) and
such that ker(T − R) = {0}.

PROOF. Let

C = T − R =
(
Crr Crs

Csr Css

)
, Crr = C∗

rr , Css = C∗
ss , Crs = C∗

sr .

Since the property of T to be admissible is equivalent the relation kerCrr ∩ kerCsr = {0}, we
complete the proof after the finding Css such that kerC = {0}.

Let us consider Css = Is + Csr |Crr |−1PN1Crs , where Is is the identity operator in Ns
and N1 = Nr � kerCrr . It is clear that C−1

rr PN1 and |Crr |−1PN1 exist and hence, Css is
well-defined. Assume that x = xr + xs ∈ kerC, i.e.,

Crrxr + Crsxs = 0 , Csrxr + Cssxs = 0 . (2.33)

It follows from the first relation that (Crsxs, x0) = 0, ∀x0 ∈ kerCrr and xr = x̃0 −
C−1
rr PN1Crsxs, x̃0 ∈ kerCrr . Substituting the obtained expression of xr into the second

relation of (2.33) and multiplying it by xs we get

(xs, xs)+ (Csr [|Crr |−1 − C−1
rr ]PN1Crsxs, xs) = 0 .

Here the second term is nonnegative (sinceCrs = C∗
sr ) and hence, xs = 0. But thenCrrxr = 0

and Csrxr = 0 (see (2.33)) i.e., xr ∈ kerCrr ∩ kerCsr = {0}. Therefore, kerC = {0}.
Proposition 2.3 is proved.

3. Additive perturbations theory approach

To describe self-adjoint perturbations Ã of A as A + V , in general, one needs to use
“potentials” V acting in the scale of Hilbert spaces associated with A (A-scale).

We recall [7] that A-scale is the collection of Hilbert spaces Hs ⊂ H = H0 ⊂ H−s s >
0, where Hs = D(As/2), ‖u‖s = ‖As/2u‖ and H−s is the completion of H0 with respect to

‖u‖−s = ‖A−s/2u‖. We will use the notation A for the continuation of A as an isometric
mapping from H0 = H onto H−2. Then the inner product in H can be extended to a pairing
between Hs and H−s . In particular, for u ∈ H2 = D(A) and ψ ∈ H−2, we have 〈u,ψ〉 =
(Au,A−1ψ) = 〈ψ, u〉.
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An operator L : Hs → H−s is called Hermitian if 〈Lu, v〉 = 〈u,Lv〉 for all u, v ∈
D(L) ⊂ Hs .

Let L : H → H−2. In that case, the operator L = L �D, where D = {u ∈ D(L) | Lu ∈
H} is called the H-part of L (or the restriction of L in H, L = L �H). If L �= L �H, then the
operator L is called singular in H.

Obviously, that A �H= A and A is a singular operator in H.

PROPOSITION 3.1. Under the conditions of Theorem 2.5, we consider the singular
operator

Ãf = Af + ABPN(Av + Rηs) , f = v + ηs , v ∈ H2 , ηs ∈ Ns (3.1)

determined on H2+̇Ns . Then the H-part of Ã coincides with the self-adjoint operator Ã in
Theorem 2.5.

PROOF. Since

Ãf = Ã(v + ηs) = Ã(v + ηs)+ A[ηs + PNsBPN(Av + Rηs)] ,
where Ã is determined by (2.30), the condition Ã(v + ηs) ∈ H is equivalent to the boundary

condition (2.31). Hence, Ã �H= Ã. Proposition 3.1 is proved.

THEOREM 3.1. Let V : H2 → H−2 be a bounded Hermitian operator and let N =
A−1R(V) = H�A ker V be a subspace of H such that N = Nr ⊕Ns , where Nr = N ∩H2.
Assume that R is a self-adjoint operator in N satisfying the condition (2.19) and consider the
extension (regularization)

VRf = V(u+ A−1Rηs) , f = u+ ηs , u ∈ H2 , ηs ∈ Ns
of V onto H2+̇Ns . Then the H-part of the singular operator Ã = A + VR is a self-adjoint

operator Ã = Ã �H in H and Ã ∧ A = AN .

PROOF. The operator B = A−1VA−1PN is a bounded self-adjoint operator in N and

kerB = {0}. It is easily to see that the singular operator Ã = A + VR coincides with the

operator Ã defined by (3.1). Using Proposition 3.1, we complete the proof of Theorem 3.1.

REMARK 3. The necessity of an extension (regularization) of an Hermitian singular
“potential” V for the construction of self-adjoint realizations ofA+ V in H has been justified
in [2] for the case of finite rank purely singular perturbations. For Schrödinger operators
with point interactions, the ideology of the regularization of an initial expression to the wider
domain of the formal adjoint operator is often used in physical works and it was inspired by
Fermi’s work [12], where a “pseudo-potential” was used for regularization.

If R(V) ⊂ H−1, i.e., N ⊂ H1, a singular operator V : H2 → H−2 can be continuously

extended ontoH1 as a bounded Hermitian operator Ṽ : H1 → H−1. The operator Ṽ is defined
onH1 ⊃ H2+Ns and it is called natural extension of V. In that case, the regularizing operator
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R is determined uniquely by the equality (Rη, η̃) = (A1/2η,A1/2ξ), ∀η, ξ ∈ N ⊂ H1 and it
is called natural.

The next statement is a direct consequence of Theorem 3.1.

PROPOSITION 3.2. Let Ṽ : H1 → H−1 be a bounded Hermitian operator. Then the

H-part of the singular operator Ã = A + Ṽ is a self-adjoint operator Ã = (A + Ṽ) �H in H.

REMARK 4. In [17] for purely singular perturbations of the form

Ã = A + αψ−1 〈 ·, ψ−1〉 , ψ−1 ∈ H−1 \ H (3.2)

it has been shown that the Friedrichs extension of the corresponding minimal operator is
determined by (3.2) with the coupling constant α = ∞. Such a property can be generalized
as follows.

PROPOSITION 3.3. A purely singular perturbation Ã of A coincides with the
Friedrichs extension AF of Ã ∧ A if and only if N ⊂ H1, where N is the defect subspace
of Ã ∧ A. In this case, Ã = AF = AN,T , where T is determined by the relation

(T η, ξ) = (A1/2η,A1/2ξ) , ∀η , ξ ∈ N ⊂ H1 (3.3)

and A−1
F = A−1 − P

H1
N A−1, where PH1

N is an orthoprojector in the Hilbert space H1 onto
N .

PROOF. Since Ã andA are relatively prime extensions of the symmetric operatorAN =
Ã ∧ A with the defect subspace N , the general properties of the Friedrichs extension yield
that Ã = AF ⇔ N ⊂ H1 (see e.g., [6]). The Friedrichs extension AF is distinguished by

the condition (AF f, g) = (A1/2f,A1/2g) (∀f, g ∈ D(AF )) among all self-adjoint extensions
AN,T of AN . Using (2.8) and (2.9) we rewrite this condition as (T η, ξ) = (A1/2η,A1/2ξ)

(∀η, ξ ∈ N ⊂ H1).

By virtue of assertion (ii) of Proposition 2.2,A−1
F = A−1−T −1PN . Using (3.3), it is easy

to show that T PH1
N A−1 = PN that gives Ã−1 = A−1−PH1

N A−1. Indeed, (T PH1
N A−1f, η) =

(A1/2P
H1
N A−1f,A1/2η) = (P

H1
N A−1f, η)H1 = (A−1f, η)H1 = (PNf, η). Proposition 3.3

is proved.

REMARK 5. Under the conditions of Proposition 3.3, the natural regularizing operator

R coincides with T . This means that B = (T − R)−1 does not exist. In this case, from the
physical point of view, infinite value of the coupling operator-parameter B can be used.

REMARK 6. The non-uniqueness of the regularizing operator R (up to the choice of
Rss) is useful for the description of all finite rank perturbations in terms of singular additive
perturbations (see Proposition 3.1 and Remark 2) and for the preservation of initial symmetries
of the potential V in its regularization VR (see e.g., [2, 15]).
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4. The resolvent approximation

PROPOSITION 4.1. Let a finite dimensional subspace N be fixed and let Ti be a se-
quence of admissible operators that converges to an admissible operator T in N . Then AN,Ti
converges to AN,T in the norm resolvent sense.

PROOF. To justify that AN,Ti → AN,T in the norm resolvent sense it suffices to show

that ‖(AN,Ti − zI)−1 − (AN,T − zI)−1‖ → 0 for a fixed z ∈ C\R. By virtue of (2.7), the
latter relation is equivalent to

‖[(Q0(z)+ Ti)
−1 − (Q0(z)+ T )−1]PN‖ → 0 . (4.1)

To verify (4.1), we fix an orthonormal basis {ηj }n1 in N and consider matrices Θi =
(θ ikl)

n
k,l=1 and Θ = (θkl)

n
k,l=1 that correspond to the operators Q0(z) + Ti and Q0(z) + T ,

respectively, in the basis {ηj }n1.
Since Ti → T , the operators Q0(z) + Ti converge to Q0(z) + T as i → ∞. In this

case, θ ikl → θkl for any 1 ≤ k, l ≤ n [14]. Hence, detΘi converges to detΘ , where detΘ is

a non-zero number (since Q0(z) + T is invertible). This means that 1
detΘi

→ 1
detΘ and any

entry χikl of the inverse matrix Θ−1
i converges to the corresponding entry χkl of Θ−1. This

property is equivalent to (4.1) [14]. Proposition 4.1 is proved.

THEOREM 4.1. For any finite rank self-adjoint perturbation AN,T there exists a se-

quence ANi,Ti = A + Vi (Vi = A(T − PNiA)
−1PNiA) of regular finite rank perturbations

that converges to AN,T in the norm resolvent sense, as i → ∞.

PROOF. Let AN,T be a singular finite rank perturbation of A and let {ηj }n1 be an or-
thonormal basis in N . Since D(A) is dense in H, any vector ηj of the basis can be approxi-
mated by elements from D(A). Combining this with the Gramm-Schmidt orthonormalization
procedure it is easy to establish the existence of an orthonormal system {ηεj }n1 of elements

from D(A) such that

‖ηj − ηεj‖ < ε , 1 ≤ j ≤ n , ∀ε > 0 . (4.2)

Let us choose a decreasing sequence εi → 0 and let {ηεij }n1 be the corresponding or-

thonormal system satisfying (4.2) for ε = εi . Obviously, the linear span Ni of {ηεij }n1 is

contained in D(A) and the sequence of subspaces {Ni} approximates N in the sense of (4.2).
To define a sequence {Ti} of admissible operators in Ni we fix the matrix T = (tkl)

n
k,l=1

corresponding to the given operator T in the basis {ηj }n1 and determine an operator Ti having

in Ni the same matrix representation T but with respect to the basis {ηεij }n1. Of course, the

operator Ti constructed in such a way need not be admissible (i.e. may happen that ker(Ti −
PNiA) is not trivial). However, the admissibility of Ti is easily achieved by the replacement
of Ti by Ti − αI , where α > 0 can be chosen less than an arbitrary fixed positive number.
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In what follows, for definiteness, we will assume that the entries of the matrix Ti =
(tikl)

n
k,l=1 corresponding to the admissible operator Ti in the basis {ηεij }n1 satisfy the relation

|tkl − t ikl| < εi , 1 ≤ k, l ≤ n , ∀i ∈ N . (4.3)

The regular subspaces Ni and admissible operators Ti constructed above allow one to
determine with the help of (2.32) a sequence {ANi,Ti } of finite rank regular perturbations of
A.

By analogy with the proof of Proposition 4.1 we conclude that the convergenceANi,Ti →
AN,T for i → ∞ in the norm resolvent sense is equivalent to the convergence

‖(Qi0(z)+ Ti)
−1PNi − (Q0(z)+ T )−1PN‖ → 0 , i → ∞ , (4.4)

where PNi are orthoprojectors onto Ni in H, z ∈ C\R is fixed, and Qi0(z) = zPNiA(A −
zI)−1.

Let f ∈ H. Then (Q0(z)+ T )−1PNf = (η1, . . . , ηn)Θ
−1col((f, η1), . . . , (f, ηn)) and

(Qi0(z)+ Ti)
−1PNi f = (η

εi
1 , . . . , η

εi
n )Θ

−1
i col((f, ηεi1 ), . . . , (f, η

εi
n )) . (4.5)

Here Θ = (θkl)
n
k,l=1 and Θi = (θ ikl)

n
k,l=1 are the matrix representations of Q0(z) + T and

Qi0(z)+ Ti in the basis {ηj }n1 and {ηεij }n1, respectively.

It follows from (4.2) and (4.3) that the entries θ ikl of Θi converge to the corresponding
entries θkl of Θ . Using this fact and arguing as in the proof of Proposition 4.1, we conclude

that the entries χikl of the inverse matrix Θ−1
i converge to the corresponding entries χkl of

Θ−1 as i → ∞.
Let us fix an arbitrarily small ε > 0 and choose m ∈ N such that the inequalities εi <

ε and |χkl − χikl| < ε, 1 ≤ k, l ≤ n hold for all i > m. Using (4.2) and (4.5) it is easy to
verify that

‖(Qi0(z)+ Ti)
−1PNi f − (Q0(z)+ T )−1PNf ‖ < (3n2χ)ε‖f ‖ , ∀i > m , (4.6)

where χ = max1≤k,l≤n|χkl|. Since f is arbitrary element from H, the upper bound (4.6)
implies (4.4). Theorem 4.1 is proved.

5. Finite rank perturbations of the Schrödinger operators

5.1. One point interaction in R3. Let us consider the Schrödinger operator with one
point interaction determined by the expression −∆ + I + b 〈 ·, δ〉 δ (b ∈ R), where δ is the
Dirac δ-function (with support at 0).

In this case, the free Schrödinger operator has the form A = −∆ + I , D(A) = H2 =
W 2

2 (R
3), whereW 2

2 (R
3) is the Sobolev space. The operator A acts in L2(R

3). The dual space

H−2 coincides with W−2
2 (R3) and V = b 〈 ·, δ〉 δ(x) is a symmetric singular operator acting

from H2 in H−2.
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Obviously, kerV = {u(x) ∈ W 2
2 (R

3) | u(0) = 0}. The restriction of A onto kerV de-
termines a symmetric densely defined operator AN, D(AN) = kerV (see (1.1)), where the

defect subspace N = L2(R
3)� A kerV coincides with the linear span of e

−|x|
|x| .

To define a regularization VR on D(A∗
N) = W 2

2 (R
3)+̇N , we consider the linear func-

tionals Γi : D(A∗
N) → C (i = 0, 1)

Γ1f = fs := 4π lim|x|→0
|x|f (x) , Γ0f = fr := lim|x|→0

(
f (x)− fs

4π |x|
)

(5.1)

and define the following extension of V onto D(A∗
N):

VRf (x) = bfrδ(x) , ∀f ∈ D(A∗
N) = W 2

2 (R
3) +̇N . (5.2)

It is interesting to note that the well known pseudo-potential

VFf (x) = b

[
∂

∂|x| |x|f (x)
]

|x|=0

δ(x)

suggested by Fermi [12] in 1936 determines exactly the same regularization VR.

The operator A = −∆ + I is determined in the A-scale and it maps L2(R
3) onto

W−2
2 (R3), where the right-hand side is understood in the distributional sense, i.e.,

Af = (−∆+ I)f = −(∆f )(x)+ f (x)+ fsδ(x) , f ∈ W 2
2 (R

3) +̇N. (5.3)

Here the symbol −(∆f )(x)means the action of −∆ in the point-wise sense except for x = 0.
TheL2(R

3)-part of A+VR is a self-adjoint operator Ã inL2(R
3) and it can be considered

as a model of the Schrödinger operator with one point interaction determined by the singular
potential V . The operator Ã is a purely singular perturbation of A.

Since f ∈ D(Ã) ⇔ (A + VR)f ∈ L2(R
3), relations (5.2) and (5.3) imply

D(Ã) = {f ∈ W 2
2 (R

3)+̇N | fs + bfr = 0}
and Ãf (x) = −(∆f )(x)+ f (x).

To get a description of Ã in the extension theory framework we note that the triple
(C, Γ0, Γ1), where Γi are determined by (5.1) is a BVS ofAN . In terms of this BVS, the oper-
ator Ã can be described as the restriction ofA∗

N onto D(Ã) = {f ∈ D(A∗
N) | −bΓ0f = Γ1f }.

5.2. Nonlocal point interaction in R. Let us consider a Schrödinger operator that is

determined by the expression − d2

dx2 + I + V with a singular symmetric potential

V = b11 〈·, δ〉 δ + b12(·, q)δ + b21 〈·, δ〉 q + b22(·, q)q . (5.4)

Here the coefficients bij ∈ C form an Hermitian matrix B.

The nonperturbed operator A has the form A = −d2/dx2 + I , D(A) = W 2
2 (R) = H2

and the defect subspace N ⊂ L2(R) coincides with the linear span of functions η1(x) =
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A−1δ = 1
2e

−|x| and η2(x) = A−1q(x). Since η2(x) ∈ D(A), the corresponding symmetric
operator AN is non-densely defined.

Self-adjoint extensions of AN are examples of mixed singular perturbations of A. To
describe such type of extensions with the help of additive perturbations A + V , we need to

construct some extension (regularization) of V onto W 2
2 (R) + N . This is a simple problem

because W 2
2 (R) + N ⊂ H1 and the delta function δ admits the extension by continuity onto

W 2
2 (R)+N defined by the formula 〈f, δ〉 = f (0) (f ∈ W 2

2 (R)+N). As a result we get

VRf = b11f (0)δ(x)+ b12(f, q)δ(x)+ b21f (0)q(x)+ b22(f, q)q(x) .

The operator A = − d2

dx2 + I maps L2(R) onto W−2
2 (R), where the derivative is under-

stood in the distributional sense, i.e.,

− d2

dx2f (x) = −f ′′(x)− f ′
s δ(x)− fsδ

′(x) , ∀f ∈ W 2
2 (R\{0}) , (5.5)

where fs = f (+0)− f (−0), f ′
s = f ′(+0)− f ′(−0), and f ′′(x) means the ordinary second

derivative for x �= 0.
Since any function f ∈ W 2

2 (R) + N is continuous at x = 0, the formula (5.5) takes the

form: Af = −f ′′(x)+ f − f ′
s δ(x), ∀f ∈ W 2

2 (R)+N. Therefore,

(A+VR)f = −f ′′(x)+f (x)+[b21f (0)+b22(f, q)]q(x)+[b11f (0)+b12(f, q)−f ′
s ]δ(x) .

The L2(R)-part of A + VR is a self-adjoint operator Ã in L2(R) determined by the rule:

Ãf = −f ′′(x)+ f (x)+ (b21f (0)+ b22(f, q))q(x) ,

where f ∈ D(Ã) = {f ∈ W 2
2 (R)+N | b11f (0)+ b12(f, q) = f ′

s } and Ã can be interpreted
as a model of the Schrödinger operator with non-local point interactions [3, 4].
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