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Abstract. In this article, we define M-matrices of the ternary Golay code and build fundamental properties of
the ternary Golay code on M-matrices. Moreover, using four M-matrices of the ternary Golay code, we give order
three elements, in the Mathieu group Mo, which generate M| and M1,.

1. Introduction

First of all we shall explain M-matrices. Let C be a code, which is naturally represented
as a linear subspace of the space

V = ®1<i<k:1<j<nFpeij .

For example, the binary Golay code and the ternary Golay code have this property. A k X n
matrix

A = (ajjeij) ajj € Fp .

is called an M-matrix of C if a family of vectors of V derived from A in a certain way forms
a basis of C. The existence of M-matrices of C characterizes some structure of the code C.
The notion of M-matrices is, though implicitly, contained in many articles, e.g. [2] Ch.11,
[3], [4] and [6].

At least in the case of the binary Golay code, T. Kondo [10] recognized the usefulness
of M-matrices, gave an explicit definition of them and discussed their good properties. In his
paper [12], M. Sawabe determines the conjugacy classes of the Mathieu group M»4 by making
use of M-matrices, of the binary Golay code. We also use M-matrices to give involutions
which generate M»>,M>3 and M4 in [7].

In §2 and §3, we shall define M-matrices of the ternary Golay code and build funda-
mental properties of the ternary Golay code on M-matrices. We can define M-matrices of
a somewhat general code, which contain the binary and the ternary Golay codes as special
cases(cf. [11]).
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In §4, we shall give an application of M-matrices to the Mathieu group M1,. In his
paper [1], N. Chigira gives involutions in the symmetric group Sj2, using four 3 x 3 boards,
which generate M1; and M1;. In fact, his boards come naturally from four M -matrices of the
ternary Golay code. Using these M-matrices, we shall give a set of order three elements in
M >, which generate M1 and M1>. R.T. Curtis ([4], [5]) also discusses generators of M2,
which are different from ours. We shall discuss similar results, for M1, as the above Sawabe’s
in a separate paper.

2. Ternary Golay codes and their M -matrices

In this section, we recall shortly fundamental results about ternary Golay codes, for
details we refer to [6] Ch.7, and introduce their M-matrices. Throughout this paper, we fix a
set 2 = {w1, w2, ..., w12} and the vector space V generated by the elements of £2 over F3:

v:ZFw,-.

i=1

For a vector v = )_; a;w;, we denote by supp(v) the support of v, i.e., the set of w]s with
a; # 0 and define the weight of v by the cardinality of supp(v).
A d-dimensional linear subspace C of V is said to be a ternary [12, d, w] code if the
minimum weight, which is called the minimum weight of C, of non-zero vectors of C is w.
We shall give proofs of known facts, for convenience of explanation, with some excep-
tions.

LEMMA 1 ([6] Ch.7 Lemma 7.14). Let C be any ternary [12, 6, w] code with w > 6.
For each vector v of weight < 3, let R(v) be the coset v+ C € V/C. Then the following
holds:
If the weight of u is 1 or 2 and R(u) = R(v), then u = v.
If the weight of u is 3 and R(u) = R(v), then the weight of v is also 3.
There are 2 x 12 cosets containing a vector of weight 1.

There are 4 x (122) cosets containing a vector of weight 2.

There are 2 X (132) cosets containing four vectors Ty, T», T3, T4 of weight 3. In this

AR S e

case they satisfy
2 = supp(T1) U supp(72) U supp(73) U supp(Ty) . (1)

6. w=0~0.

PROOF. If u is a vector of weight 1 or 2 and v is a vector of weight < 3, then, by the
condition w > 6, u = v. Assume a coset R has a vector T of weight 3. If a different vector
T’ from T of weight 3 is contained in R, then by w > 6 we see supp(T) N supp(7’) = 0.
Therefore there are at most four vectors contained in R of weight 3. On the other hand, we
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=142 2) wa(F) w21 ("2
N 1 2 4\3 )"

Hence for each vector T of weight 3 there must be exactly four vectors T’ of weight 3 satis-
fying T — T’ € C, and then the weight of T — T is 6. O

have

Let C be a ternary [12, 6, 6] code. A set of four vectors {11, T», T3, T4} of weight 3
satisfying (1) is called a foursome of the code C. The support of a codeword of weight 6 is
called a hexad.

LEMMA 2. Let C be any ternary [12, 6, 6] code. The the following hold:

1. The number of codewords of weight 6 is 264.

2. Let u and v be codewords of weight 6. If supp(u) = supp(v) then u = *+v. In
particular there are 132 hexads.

3. Let B denote the set of all hexads. Then the pair (52, B) is a Steiner system
$(12,6,5).

PROOF. Each foursome yields (g) codewords of weight 6. On the other hand each

codeword of weight 6 comes from %(g) foursomes. There are 2 x (132) foursomes by Lemma
1 (4) so that the number of codewords of weight 6 is

(A -

If two codewords u and v of weight 6 have the same support, then u — v € C. Since the
minimum weight of C is 6, it follows that u = v oru = —v.

Now we shall show that (§2, B) is a Steiner System S(12, 6, 5). For any 5-set P of £2, let
A and B be two different hexads containing P, and let # and v be codewords with supp(u#) = A
and supp(v) = B. Then u + v and u — v are of weight 6. If u + v (resp. u — v) is of weight
6, then u — v (resp. u + v) is of weight 3. This is absurd. Thus we see that any 5-set of £2 is
contained in at most one hexad. Therefore, since the number of the hexads is 132, there are
132 - 6 5-sets of £2 which are contained in hexads. On the other hand there are (152) =132-6
5-sets. Therefore any 5-set of £2 is contained in a unique hexad. O

Now we shall define M-matrices of a ternary [12, 6, 6] code C in the space V =
Y12 Fio. Let
¢:F3x{1,2,3,4 — 2 ={w,...,wn}

be a bijection, which is called a labelling. For each (c, i) € F3 x {1, 2, 3, 4}, take a non-zero
vector m(c, i) in the 1-dimensional subspace F3¢ (c, i) of V. A matrix

m(0, 1) m(0, 2) m(0, 3) m(0, 4)

M = (m(c,i))=| m(l,1) m(1,2) m(1,3) m(1,4)
m(—=1,1) m(—1,2) m(—=1,3) m(—1,4)
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is called an M -matrix of C with respect to a labeling ¢ if the following, which can be naturally
considered as elements of V, are contained in C:

m(0, 1) —m(0,1)
A= m(1,1) —m(1,1) , 2=<i<4, 2)
m(—1,1) —m(—1,1)

—m(0,1) m(,2) m(,3) m(,4)
Ag=| m(1,1) ,
m(—1,1)

m(0,1) m(0,2)

As = —m(1,1) m(1,3) ,
m(—1,1) m(—1,4)
m(0, 1) m(0, 3)

Ag=1| —m(,1) m(1,4)

m(—=1,1) m(=1,2)

As is easily seen that these 6 are linearly independent over F3; hence they forms a basis
of C. Notice that every inner product (A;, A;) in the space V is zero. In particular, a ternary
[12, 6, 6] code is self-dual, if it has an M-matrix.

M -matrices of C owe their origin to the following observation. Define a linear map /; by

I : Z Fsm(c,i) — F3, Z x(c,i)mc,i) > Z cx(e, i),

C€F3 C€F3

and their direct sum

4
L=@PL:vV— F)'.

i=1
Let
si : F3 —> Z Fsm(c,i), cw— m(c,i),
ceF3
and define the map

4
So=EPsi: F)* > V.

i=1
Then the map

S:(F)*—>V, S@t) =X+ S0,
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where
X=m@O,D+m(,1)+m(-1,1),
is a set-theoretic section of the F3-linear map L. Finally we define the inclusion

i - F3 —> ZFyn(c,i), t Z tm(c, i)

ceF3 ceF3

and set

4
IZ@L":(F3)4_)V'

i=1
Let
e1 =(1,0,0,0), e2=1(0,1,0,0), e3=1(0,0,1,0), e4=(0,0,0,1)

be the standard basis of Fg.
Under these notation, we have the following:
1. The image of L is the tetracode 7 :

T :={(a,b, (1), p(=1)) | a, b € F3 := {0, £1}, $(x) := ax + b} .

2. Ay =1(e1) —I(e2), Ar = I(e1) — I(e3), A3 = I(e1) — I (es).
3. A4 = 5(0,0,0,0)), A5 = S((1,0,1,-1)), A¢ = S((1,-1,0,1)), where
{(1,0,1,—1), (1, —1,0, 1)} is a basis of the tetracode 7.

Generalizing this situation, we define codes of type MOG and introduce M-matrices of
such a code (cf. [11]). Notice that MOG comes from the Miracle Octad Generator (cf. [2]
Ch. 11).

The set of codewords of weight 6 is explicitly given if a code has an M-matrix:

LEMMA 3 ([6] (7.9)). Let the notation be as above. Then the set of codewords of C of
weght 6 is represented in the follwoing:

(I (e)) = 1(ej)), £ (ei) + S)), S(t) — S(t"), £(I(e;) + (ej) — S(1))
where 1 <i < j <4 andt # t' run over the tetracode T .
PROOF. The number of these codewords is
2-6+2-364+72+2-54=2064.

On the other hand, by Lemma 2 there are 264 codewords of weght 6. Thus we get the
lemma. -

Now we shall prove the main theorem in this section. In the proof, a codeword a;, w;, +
-+ + a;, w;, is sometimes denoted by {a;, w;,, ..., a; w;, }.
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THEOREM 4. Let C be an arbitrary ternary [12, 6, 6] code in V. For any codeword
X = {—x1, x2, x3, X4, ¥1, 21} € C of weight 6, there exists uniquely an M -matrix of the form:

X1 X2 X3 X4
1
<1

PROOF. Notice that, by Lemma 2, (§2, B) is the Steiner system S(12, 6, 5). For a vector
x of weight 1, we denote by x the supprt of x. By Lemma 1, we see that the set 77 =
{x1, y1, 21} determines a foursome 77, T», T3, T4 so that they satisfy

I 2= Ut supp(Ty).

2. T =T ={xi,yi, 2, —xj, —yj, —z;} is a codeword of weight 6.
There is a codeword K (# X) of weight 6 such that supp(K) D {x1, y1, zZ1, X2} and x» € K.
Considering K — (771 — T») and K — X, we see that K is equal to one of the following:

K1 ={x1, —y1,z1, X2, %, %} or Ky ={x1,y1, =21, X2, *, *}.

We take K1 as K and set K N T3 = {y3}, K N T4 = {z4}, renaming when necessary. And
we can set Ko = {x1, y1, —z1, X2, 23, ya}. Lastly let L be a codeword of weight 6 such that
supp(L) D {X1, y1, 21, X3, y4}. By a similar way, we have L = {x1, —y1, 21, x3, y4, x}, and
set L N T» = {zp}. Thus we have determined the set {y», y3, y4, 22, 23, 24}. Since the set
{T'—T; i =2,3,4), X, K, L} is contained in C and X = A4, K = As, L = Ag in (2), it
follows that the matrix
X1 X2 X3 X4
M=yt y2 y3
Z1 22 I3 Z4
is an M-matrix of C by the definition. The uniqueness is obvious from the construction. O
COROLLARY 5. Any two ternary [12, 6, 6] codes are isomorphic.

PROOF. Let C and C’ be two ternary [12, 6, 6] codes. Let M = (m;;) and M' = (m;j)
be M-matrices of C and C’, respectively. Then the mapping defined by m;; +— m] j gives an

isomorphism of C to C’. O

From now on we call a ternary [12, 6, 6] code the ternary Golay code.

3. Automorphisms of the ternary golay code and the mathieu group M,

In this section, we shall survey automorphisms of the ternary Golay code and the Mathieu
group My, for details and further discussion we refer to [6] Ch.5, Ch.7 and [11]. We shall
begin with the monomial group with coefficient in the prime field F,. Let S, be the symmetric
group of degree n. Then S, acts on the group (F )" via

“1).

(ai,...,a,)° = (alofl,...,ang
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By this action, we get the semi-direct product S, x (F )", which is isomorphic to the group
Mon(n, F) of monomial matrices with coefficient in F;:

¢S, X (F;)" — Mon(n,F,), (0,a)— A,
where

ajo if j =1i°
a=(a....an), Aij:{O otherwise .

For an element A € Mon(n, Fj,), we set

¢~ (A) = (6 (A),a(A)) .
For a linear code D in F’I’,, we define, as usual, the group of automorphisms of D by
Aut(D) = {m € Mon(n,F,) | D" = D}.

The semi-direct product N := Mon(n, F,) x F’Z, acts on the set 29 = {(c,i) | ¢ €

F,,1 <i <n}via
(. )™ = (cajom + viewn, ™), meMon(n,F,), veF), 3)
where
om)=0(A), (ai,...,ay)=a(m)=a(A).

Then N can be considered as a subgroup of the permutation group of the set £29. Therefore
the group N actson V = Z(C’i)ego F,(c,i) = (F,)P*", which is the space of p x n matrices
with coefficient in F,, under the following:

xV = Z x(c,i)(c, i) = Z x((c, i)vil)(a i),
(c,i)ef (c,i)es2y

for

x= Y x(c.i)c.i), vEN.

(C,i)EQO

Thus we have an injective homomorphism
N = Mon(n,F,) x (F,)" — Mon(pn,F,). @)
From now on we fix a ternary Golay code C in the ambient space V = Z,li 1 F3w; asin
the previous section. Let M = (m(c,i)) (c € F3,1 <i < 4) be an M-matrix of C. Then we

defined, in §3, the following mappings:
L:V >~ @F3)" = (F)* S, 1:(F)* > V= (F3)4.

Notice that the image of the linear map L is the tetracode 7.
Then, for x € V, we have the following:
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1. Lx™9)y=Lx)", (m,0)eN.
2. L(xWY) = Lx)+(..,I(e),x)vi,...), where 1 stands for the identity matrix,
(1,v) € N and (x, y) means the inner product of the space V over F3.
Using these, we obtain the following (cf. [6] (7.19) and [11]):

LEMMA 6. Let the notation be as above. The restriction of the injective homomor-
phism (4) gives an isomorphism
Aut(7) x T —> (Mon(4, F3) x (F3)*) N Aut(C) .

Finally we recall the relation between the group Aut(C) of automorphisms of the ternary
Golay code C and the Mathieu group M1,. Every automorphism of C induces a permutation
of £2; hence we obtain a group homomorphism

f 1 Aut(C) — Sym(£2) =~ Si2,
where Sym(£2) is the permutation group of the set £2.

LEMMA 7. The kernel of the homomorphism f is the group (—1) generated by the
involution —1 of C defined by x — —x.

PROOF. Take a codeword X of weight 6. Let M be an M-matrix of C associated with
X (cf. Theorem 4). If an automorphism m of C induces the identity permutation on §2, then,
by Lemma 2, we have X = X or X" = —X; hence, by the uniqueness of M-matrices in
Theorem 4, M™ = M or M™ = —M. Thus m must be the identity or —1. O

THEOREM 8. The factor group Aut(C)/(—1) acts regularly on the set S of all ordered
sequences of 5 elements from S2. In particular,

|AuWt(C)/(—=1)| = |S| = 12-11-10-9 - 8.

PROOF. Let A = (ay,...,as) and B = (by, ..., bs) be two sequences in S. Then by
Lemma 2 there are two codewords X = {—x1,x2,...,x¢} and Y = {—y1, y2,..., 6} of C
such that

supp(x;) = a;, supp(y;)) =b; (1 <i <5).

Then by Theorem 4 there are two M -matrices of the form

Xl X2 X3 X4 YIY2 Y3 V4
(m(c,i))=| xs . (m(e, D))=\ s
X6 Y6

Then the mapping m defined by m(c, i) —> m(c, i)’ is an automorphism of C and m induces
the permutation o with A = B. Thus we have the transitivity.

If the permutation induced by an automorphism m of C satisfies A° = A, then by
Lemma 2 the above X™ must be X or —X. Hence for the M-matrix (m(c, i)) associated with
X, we have (m(c,i))" = (m(c,i)) or (—m(c,i)). Thus m must be 1 or —1, and we get the
regularity. a
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Since the ternary Golay code C is unique up to isomorphisms, it follows that the structure
of Aut(C) is also unique up isomorphisms. The group Aut(C)/(—1) is called the Mathieu
group of degree 12, which will be denoted by M1>. By Lemma 7, M is a permutation group
on the set £2. Let M| denote the stabilizer subgroup of M, at a point from £2. By Lemma
8, M1, is 5-transitive on 2, and the structure of M| does not depend on a choice of a point.
M is called the Mathieu group of degree 11.

4. Involutions and order three elements in M/,

In this section we denote by C the ternary Golay code in V = Z}il Fiw;. Let M =
(m(c,i)) be an M-matrix of C. We shall use a traditional notation, so we rename by the
following (cf. [2] Ch.10):

oo -8 0 -1
% =m,i)=|7 -X 3 -9 (X =10).
6 -2 4 -5

Now consider the following three M-matrices:

7 0 -3 -1 5 -3 X -1 6 X -8 -1
5 8 =X -9, 6 -0 8 -9 ], oo 3 -0 -9
oo 2 -4 -6 7 =2 4 —o0 5 2 -4 -7

It is easily checked that these are in fact M-matrices by Lemma 3 or the property of MIN-
IMOG ([2] Ch.11) or the table in the appendix. Removing the first column from these four
M -matrices and forgetting the sign, we have the following 3 x 3 boards:

8ot 0|31 3(x|1 x|8|1
3 8 9 819 3 9
20415 20416 2] 4]0 2047

Chigira [1] gave these boards without using M-matrices, and gave involutions, by using
these boards, in the symmetric group Sj2 which generate the Mathieu groups M;; and My».
The involutions given by him are the following:

LEMMA 9. For each M-matrix of C, we have nine involutions in Aut(C):

o | o | — o | “Te N o | — | o

. . \>|</ .
9 9 9
. o | I~ .
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SEHYSERRP
+

~2

. | o | s . |
. o | N~ .

9 9
o | o | —— o | TeN o | —— | o

PROOF. These involutions are contained in Aut(7) x 7 C Aut(C). For example, the
fourth involution g in the above is defined by

1
—1

| O =Ll =D | eAwT)xT.
—1
In fact, this corresponds to the element
(01 a, U) = (((3 4)7 (17 _17 _17 _1))7 (Ov _17 _17 _1))
in the group
(82 x (F)*) x F§ =~ Mon(4, F3) x F}.

Then, by the action (3), we have the following:

0, 1) = O, 1), (0,2 = (=1,2), (0,3 = (=14, (0,4 — (=1,3),

1L = (LD, (1,2 = (1,2, (1,3) — (1,4, (1,4 ~ (1,3),

-1, D= (=11, (=1L,2+ (0,2), (=13 0,4, (1,4~ (0,3).
Thus we get the fourth involution. a

As for order three elements, we have the following:

LEMMA 10. Foreach M-matrix of C, we have two order three elements in Aut(C):

PROOF. These order three elements are also contained in Aut(7) x 7 C Aut(C). In
fact, they are, respectively, defined by

1 1

,(0,0,0,0) L0,1,1,1) ]| e Aw(T) x 7.

1
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We denote by I, J, K, L the above four M-matrices. For I, we denote by I3 = {i1, i7}
the set of two order three elements in M1, given in the above lemma:

i1=@801(X39)(245)(6)(c0)(7), i2=8X2)(034)(195)(6)(c0)(7).

Similarly we define J3, K3, L3.
The following is an order three version of the theorem proved by Chigira ([1], Th.1.1).

THEOREM 11. Under the above notation,

(1) (I3, J3) = (I3, K3) = (I3, L3) = (J3, K3) = (J3, L3) = (K3, L3) = L2(9) = Ag,
(2) (I3, J3, K3) = (I3, J3, L3) = (I3, K3, L3) =~ (J3, K3, L3) =~ My, and

(3) (I3, J3, K3, L3) >~ M.

PROOF. These three are proved by tedious calculation, so we shall only give outline of
proofs of (2) and (3).
By the definition, we have

i1=B01)(X39)(245)(6)(cc0)(7), ir=(8X2)(034)(195)(6)(c0)(7)
J1=03DEB X9246)(5)(00)(7), j2=(082)3X H(196)(5)(00)(7)
ki =B X1)(089)(2400)(5)(6)(7), k= (302)(X84)(1900)(5)(6)(7)
IH=X81)B0924ANG)NO6)(0), [Hh=(X32)@B04)(197)(5)(6)(0).

Then we see that

xp:=irj1 = (8 3)(1 X)(26)(54)(0)(9)(c0)(7)
by =xz:=1i1j2 = (8)(X)(00)(7)(0945)(1236)

x3:=11i2 =(835)(092)(1 X 4)(6)(c0)(7)

x4 1= j1j2= 8410 X 6)(392)(5)(c0)(7)

x5 1= (x4)" = (3 1X)(946)(520)(8)(c0)(7)
a3 = x6:= (1) = 8 X)(2)(6)(3 1)(5 4)(09)(00)(7)

x7 :=1i2j2 = (84)(0 X)(1 6)(3)(9 5)(2)(00)(7)

xg 1= jika = (8)(0)(12 X 00)(29 4 6)(5)(7)

xg 1 =i1ky = (8)(03)(1 9)(X)(2 00)(5 H(6)(7)

yi1 i =izky = (8)(0)(1 00)(X 3)(9 5)(24)(6)(7)
ag=y2 =y = 3)(0)(X 00)(1 8)(94)(6 5)(2)(7)

V3= ()™ = ®)(X)(6 00 15)2304)(9)(7)

y4 1 =lzkiky = (895 0)(12 00 3)(X)(4)(6)(7)

ys 1= (a)™ = (X 049)(3200 1)(&)(5)(6)(7)

Y6 = (5)"3 = (X 239)(4 05 6)(8)(00) (1)(7)
by =y7:=(6)" =(3014)(6529)(8)(c0)(X)(7)

vs = (x9) = (8)@)(36 X 00)(1502)(9)(7)
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ar=yo:= ()" = (84)(56)(23)(c0)(9 DO)(X)(T)
21 2= jolr = (8 X)(00)(0)(1 7)(3)(9 6)(2 4)(5)

as=22:= ()% = BX)0)(co NE)B4)(19)(S).

Thus we have shown that by, by, az, a3, as, as are contained in (I3, J3, K3, L3). Then it
is easily seen that (I3, J3, K3, L3) is S-transitive; thus we have

(I3, J3, K3, L3)| = 12-11-10-9-8 = [M12].

On the other hand, we have, by the definition, (I3, J3, K3, L3) C Mj;; hence we have
(I3, J3, K3, L3) = Mq».

Now we shall prove (2). By symmetry, we only show (I3, J3, K3) = Mj;. By easy
calculations we see that (I3, J3, K3) contains

{b1,b2, a2, a3, as} .

Then by the same argument as above, we have (I3, J3, K3) = Mj;. O

We notice that the same argument as above works for involutions, so we get another
proof for Chigira’s Theorem.

Moreover we have the following theorem. To prove it we need further tedious calcula-
tion, so we shall omit its proof. For details, we refer to [9].

THEOREM 12. Under the the same notation as above, we have

L. (i1, j1) = (i2, jo) = (i1, k1) = (i2, ko) =~ Ag,

2. (i1, jo) = (i2, j1) = Ag = L2(9),

3. (i1, ko) = (in, k1) > As,

4. iy, j1, k1) = (i2, j2, k2) = As,

5. (ins ji, ki, 1) = (ia, j2, ko, [2) >~ Ag >~ L2(9),

6. (is, js, ki) = is, Jro ks) = (ir, s, ks) = M1 ({1,2} = {¢, s}),

T Aiss Jsokso be) = (is, Jsokey bs) = is, Jos kso bs) = (ies Jso ke, ) = (s, Jos ksy ) >
(is, Jeskeyls) = My ({1,2} = {t, s}).

Appendix

The table of cordwords of weight 6 of the ternary Golay code generated by (cf. Page 4
(2)) with basis £2* (cf. Page 10). In the bable & stands for —«, and the codewords corespond
to those of the ternary Golay code in Conway-Sloane [2] Ch. 10.
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Support Element Element Support Element Element
0001239 | 001239 | 001239 0012459 | 012459 | 0012459
0001247 | 0001247 | 001247 0012468 | 012468 |oc0l12468
0001256 | 0001256 | 01256 001257X | 001257X | ®1257X
000128X [ 00128X | 00128X |[001269X | ©01269X |0012690X
001348 | 01348 |0001348 || 0012789 | 0012789 | 12789
001357 | 0001357 | 01357 || 0013456 | 0013456 | 013456
©0136X | 00136X |000136X || 0013479 | 13479 | 0013479
000145X [ 000145X | ©0145X |[001359X | 001359X |01350%
001469 | 01469 |00c01469 || 0013689 | 0013689 | 013689
001589 | 01589 |0001589 |[001378X |c01378X | ©1378X
0001678 [ 001678 | occ01678 0014578 | 0014578 | 014578
000179X | 00179X | 000179X |[c01467X |oc0ld67X |01467X
0002345 | 002345 | 0002345 001489X | 01489X | oc01489X
0002368 [ 0002368 | 002368 0015679 | 15679 |o015679
000237X | 00237X | 00237X ||[c01568X | 01568X |00l568X
000246X | 000246X | ©00246X || 0023469 | 0023469 | 023469
0002489 | 0002489 | 002489 0023478 | 023478 | 0023478
002578 | 02578 | 0002578 || 002356X | 02356X | 02356X
00259X | 0259X |000259X || 0023579 | 0023579 | 23579
002679 | %02679 |0002679 |[002389X | c02389X | ©02389X
003467 | 0003467 | 03467 || 0024567 | 0024567 | 024567
000349X [ 000349X | ©0349X || c02458X | ®02458X |002458X%
003569 | %003569 |0003569 |[002479X | 02479X | 002479X
00358X | %00358X |000358X || 0025689 | 025689 | 0025689
0003789 | 003789 | 003789 002678X | 002678X | 02678X
0004568 | 004568 | 0004568 003457X | 003457X | %03457X
0004579 | 0004579 | 004579 0034589 | 0034589 | 034589
000478X | 00478X | 000478X || c03468X | 003468X |03468X
000567X | 000567X | ©00567X || 035678 | 0035678 |035678
000689X | 000689X | 00689X || c03679X | ©03679X |003679X
001234X | 01234X | 001234X || 004569X | 04569X | 0045690X
0012358 | 0012358 | 012358 || 0046789 | 0046780 | 046789
012367 | 12367 |0012367 |[005789X | 05789X | 005789X
012346 012346 012346 04589X |04589X |04589X
01235x |01235X |01235X 04679X |04679X |04679X
012378 012378 012378 056789 056789 056789
012458 012458 012458 123457 123457 123457
01249X |01249X |01249X 123489 123489 123489
012579 012579 012579 123569 123569 123569
01267X |01267X |01267X 12368X 12368X% 12368X
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Support Element Element Support Element Element

012689 | 012689 | 012689 12379X | 12379X | 12379X
013459 | 013459 | 013459 12456X | 12456X | 12456X
01347X |01347X |01347X || 124679 |124679 | 124679
013568 | 013568 | 013568 12478X | 12478X | 12478X
013679 | 013679 [013679 125678 | 125678 | 125678
01389X |01389x | 01389X |[12589X [12589X |12589X
014567 | 014567 |014567 13458X | 13458X | 13458X
01468X |01468X |01468X || 134678 |[134678 | 134678
014789 | 014789 |[014789 13469X | 13469X | 13469X
01569X |01569X | 01569X || 13567X |13567X |13567X
01578X |01578X | 01578X || 135789 |[135789 | 135789
023479 | 023479 | 023479 145689 | 145689 | 145689
02348X |02348X | 02348X || 14579X | 14579X |14570X
023567 | 023567 | 023567 16789X | 16789X | 16789X
023589 | 023589 | 023589 234568 | 234568 |234568
02369X |02369X | 02369X |[23459X [23459X |23459%
024569 | 024569 | 024569 23467X |23467X |23467X
02457X |02457X | 02457X || 23578X |[23578X |23578X
024678 | 024678 | 024678 | 236789 [236789 |236789
02568X | 02568X |02568X || 245789 |245789 | 245789
02789X |02789X | 02789X |[24689X [24689X |24689X
03456X | 03456X | 03456X ||[25679X |25679X |25679X
034578 | 034578 | 034578 || 345679 |345679 |345679
034689 | 034689 | 034689 |[34789X |34789X |34789X
03579X |03579X | 03579X |[35689X [35689X |35680X%
03678X |03678X | 03678X || 45678X |45678X |45678X
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