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Abstract: We study the resurgence structure of a formal normalization of a certain vector

field to the normal form using ‘‘mould calculus’’ developed by J. Écalle. We also describe the

resurgence structure of transseries solutions of a nonlinear ordinary differential equation.
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1. Introduction. This is an announcement

of our forthcoming paper [10]. Let X be a vector

field of the form

X ¼ x2 @

@x
þ
Xn
j¼1

Ajðx; yÞ
@

@yj
ð1Þ

with Ajðx; yÞ 2 Cfx; yg satisfying for any i; j

Ajð0; yÞ ¼ �jyj ð�j 6¼ 0Þ;ð2Þ
@x@yiAjð0; 0Þ ¼ 0:ð3Þ

We assume that � ¼ ð�1; � � � ; �nÞ satisfies the fol-

lowing non-resonance condition:

k � � 6¼ �j holds for any j and k 2 Zn
�0 n fejg;ð4Þ

where k � � :¼ k1�1 þ � � � þ kn�n and ej is the j-th

unit vector. In this paper, we study the resurgence

structure of the formal normalization � of X to the

normal form

X0 ¼ x2 @

@x
þ
Xn
j¼1

�jyj
@

@yj
;ð5Þ

which acts on fðx; yÞ 2 C½½x; y�� as a formal coor-

dinate transformation of the form

ð�fÞðx; yÞ ¼ fðx; ’ðx; yÞÞ; ’ðx; yÞ 2 C½½x; y��:

For the purpose, we adopt ‘‘mould calculus’’ devel-

oped by J. Écalle (cf. [3]). To be precise, we use

arborescent moulds, or arbomoulds for short, which

are moulds associated with rooted forests. This

problem was discussed in [4] in general settings.

In [10], the singularity structure of an arbomould

M
�, which appears as coefficients of the arbomould

expansion (15) of �, in the Borel plane is clearly

described by discrete filtered sets based on the

works [9], [11], [15], [18] and [19]. Further, the

resurgence structure of � is given in the form

(24) following the discussion in [17], where the

same problem was treated using ordinary moulds,

i.e., associated with words, when n ¼ 1. (See

also [13].)

As an application, we also consider the resur-

gence structure of transseries solutions of the

following nonlinear ordinary differential equation:

x2 d�

dx
¼ Aðx;�Þ;ð6Þ

where A ¼ ðA1; � � � ; AnÞ. The Borel summability of

the transseries solutions was studied in [2]. In this

paper, we describe more precisely their singularity

structure in the Borel plane and give their alien

derivatives at the singular points by the bridge

equation (25), which connects alien calculus and

ordinary differential calculus.

2. The Connes-Kreimer Hopf algebra.

We first recall the definition of the Connes-Kreimer

Hopf algebra associated with (non-planar) rooted

trees. (See [5], [7], [8], [12] and [16] for details.)

Definition 2.1. A (non-planar) rooted tree

T ¼ ðV ;EÞ is a connected and simply connected

set of edges and vertices in which one vertex is

distinguished, where V (resp. E) is the set of

vertices (resp. edges) of T . We call such a vertex the

root of T . We regard a rooted tree as a directed

graph by an arborescent orientation, i.e., each edge

is directed away from the root. A rooted forest is a

disjoint union of rooted trees. The empty graph � is

regarded as a rooted forest. The set of isomorphism

classes of rooted trees (resp. rooted forests) as

directed graphs is denoted by T (resp. F).
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Let D be a non-empty set. We then define

rooted trees decorated by D as follows:

Definition 2.2. A D-decorated rooted tree

is a pair ~T ¼ ðT ; �Þ, where T ¼ ðV ;EÞ is a rooted

tree and � is a map � : V ! D. A D-decorated

rooted forest is a disjoint union of D-decorated

rooted trees. Two D-decorated rooted forests ~F1 ¼
ðF1; �1Þ and ~F2 ¼ ðF2; �2Þ are isomorphic if there

exists an isomorphism � : F1 ¼ ðV1; E1Þ ! F2 ¼
ðV2; E2Þ of rooted forests satisfying �2 ¼ �1 � �.

The set of isomorphism classes of D-decorated

rooted trees (resp. D-decorated rooted forests) is

denoted by T D (resp. FD).

Remark 2.3. By abuse of notation, we use

representatives to represent isomorphism classes of

trees and forests since the names of the vertices are

not important in the following discussion.

Definition 2.4. Let ~T be a D-decorated

rooted tree. A cut c is a subset of E. Then, c defines

a forest Fcð ~T Þ 2 FD by eliminating c from E. The

remaining part Rcð ~T Þ 2 T D is the tree in Fcð ~T Þ that

contains the root of ~T and the pruned part

Pcð ~T Þ 2 FD is the disjoint union of the other trees

in Fcð ~T Þ. A cut c is admissible if it appears at most

once on any directed path from the root to leaves in
~T . The total cut is a virtual cut, which represents a

cut above the root. In such a case, we set Rcð ~T Þ ¼ �

and Pcð ~T Þ ¼ ~T . The set of admissible cuts and the

total cut of ~T is denoted by Admð ~T Þ.
By the definition, ~F 2 FD is given by the

disjoint union of ~T1; � � � ; ~T‘ 2 T D and it is simply

denoted by ~T1 � � � ~T‘. The grafting operator Bþd :

FD ! T D ðd 2 DÞ is defined as follows: for ~F ¼
~T1 � � � ~T‘ ð ~T1; � � � ; ~T‘ 2 T DÞ, Bþd ð ~F Þ ¼ ðT 0; �0Þ is de-

fined by adding to ~F a vertex �0 (the root of T 0) with

the decoration �0ð�0Þ ¼ d and edges ej ¼ �0 ! �j
ðj ¼ 1; � � � ; ‘Þ from �0 to �j, where �j is the root of Tj.

The trimming operator B� : T D ! FD is defined as

follows: for ~T 2 T D, B�ð ~T Þ is defined by removing

the root � of ~T and the edges whose tail is � and

restricting the decoration to the forest.

In what follows, we set

D ¼ fd ¼ ðd0; d1Þ 2 Zn
�0 � Zn

�0 j jd0j ¼ 1g:

Let ~F ¼ ðF; � ¼ ð�0; �1ÞÞ be a D-decorated rooted

forest. The degree degð ~F Þ 2 Z�0 of ~F is defined by

the cardinality of the set of vertices V of ~F . It is also

denoted by j ~F j. Next, we define the weight wtð ~F Þ 2
Zn of ~F . Let �in, �ex : V ! Zn

�0 be maps defined by

�inðvÞ :¼
X
v!v0

�0ðv0Þ;ð7Þ

�exðvÞ :¼ �1ðvÞ � �inðvÞ;

where the sum in (7) is taken over all the vertices v0

that is connected to v by an edge v! v0. We set

�inð ~F Þ ¼
X
v2V

�inðvÞ; �exð ~F Þ ¼
X
v2V

�exðvÞ;

rð ~F Þ ¼
X
�

�0ð�Þ;ð8Þ

where the sum in (8) is taken over all the roots of ~F .

We then define the weight wtð ~F Þ of ~F by

wtð ~F Þ ¼ �exð ~F Þ � rð ~F Þ:

It is also denoted by k ~Fk.
We introduce a subclass of D-decorated rooted

forests as follows:

FþD ¼ f ~F 2 FD j �exðvÞ 2 Zn
�0 ð8v 2 V Þg:

A D-decorated rooted forest ~F is said to be proper

if ~F 2 FþD. We see that �exð ~F Þ 2 Zn
�0 if ~F 2 FþD. We

put

FD;k;‘ :¼ f ~F 2 FD j degð ~F Þ ¼ k;wtð ~F Þ ¼ ‘g;

H :¼
M
~F2FD

C ~F; Hk;‘ :¼
M

~F2FD;k;‘

C ~F:

Similarly, we define Hþ (resp. Hþk;‘) using FþD (resp.

FþD;k;‘ :¼ FþD \ FD;k;‘) instead of FD (resp. FD;k;‘).

Remark 2.5. A proper D-decorated rooted

forest ~F is visualized by a rooted forest with

external lines. The j-th component of �inðvÞ (resp.

�exðvÞ) represents the number of internal (resp.

external) lines of color j going out of the vertex v.

Now, let CKD ¼ ðH; �; �;�; "; SÞ be the

Connes-Kreimer Hopf algebra of D-decorated root-

ed forests. The product � is defined by the disjoint

union of forests. The unit � is defined by �ð1Þ ¼ �.

The coproduct � is given for ~T 2 T D by

�ð ~T Þ ¼
X

c2Admð ~T Þ

Pcð ~T Þ 	 Rcð ~T Þ

and extended to ~F 2 FD algebraically. The counit

" is defined for ~F 2 FD by "ð ~F Þ ¼ 1 if ~F ¼ � and

"ð ~F Þ ¼ 0 otherwise. The antipode S is recursively

determined by the bialgebraic structure. By the

definition of the degree and the weight, we see they

are compatible with the Hopf algebraic structure,

i.e.,
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� : Hk;‘ 	Hk0;‘0 ! Hkþk0;‘þ‘0 ;ð9Þ

� : Hk;‘ !
M

k0þk00¼k
‘0þ‘00¼‘

Hk0;‘0 	Hk00;‘00 ;ð10Þ

S : Hk;‘ ! Hk;‘:ð11Þ
Let CKþD be the restriction of CKD to the subspace

Hþ. Then, we see that CKþD is a sub Hopf algebra of

CKD (cf. [5]).

3. Arbomoulds and coarbomoulds. Let

ðA; �A; �AÞ be a unital commutative C-algebra. An

A-valued arbomould M
� is a map M

� : FD ! A. By

linearly extending M
� to H, M

� defines a C-linear

map M 2 LðH;AÞ, where LðH;AÞ denotes the set of

C-linear maps from H to A. We write the value of

M
� (resp. M) at ~F 2 FD (resp. h 2 H) by M

~F (resp.

MðhÞ). The product P
� ¼M

� �N
� of arbomoulds

M
� and N� is defined by the convolution product of

M and N, i.e., P
~F ¼M 
Nð ~F Þ for ~F 2 FD, where

the convolution product M 
N of M and N is

defined by M 
N :¼ �A � ðM	NÞ ��.

Definition 3.1. (1) An arbomould M
� is

said to be separative if M is a character, i.e., M

satisfies M � � ¼ �A � ðM	MÞ. (2) An arbomould

M
� is said to be antiseparative if M is an

infinitesimal character, i.e., M satisfies M � � ¼
M	 eA þ eA 	M, where eA :¼ �A � ".

Let ðB; �B; �BÞ be a unital commutative A-al-

gebra. A coarbomould B� is a map B� : FD !
EndAðBÞ. We write the image of ’ 2 B by the

morphism � 2 EndAðBÞ by � � ’.

In what follows, we take A ¼ C½½x�� and B ¼
C½½x; y�� and

B� : FD ! C½y; @y� � EndAðBÞ

is fixed by the one constructed by the following

rules (cf. [5] and [6]).

i) B� ¼ 1.

ii) For the forest �d 2 FD ðd ¼ ðd0; d1Þ 2 DÞ con-

sisting of a single vertex v with the decoration

�ðvÞ ¼ d, we put

B�d ¼ yd1@d0
y :

iii) When ~T ¼ Bþd ð ~F Þ with d ¼ ðd0; d1Þ 2 D and
~F 2 FD, we put

B ~T ¼ ðB ~F � yd1Þ@d0
y :

iv) When ~F ¼ ~Tk1

1 � � � ~Tk‘‘ for ~T1; � � � ; ~T‘ 2 FD with
~Ti 6¼ ~Tj ði 6¼ jÞ and k1; � � � ; k‘ 2 Z�0, we put

B ~F ¼
Y‘
j¼1

ðB ~Tj
� yrð ~TjÞÞkj

kj!

 !
@rð

~F Þ
y :

By the construction of B�, we see that B�
satisfies the following properties.

B ~F is written in the form 	 ~Fy
�exð ~F Þ@

rð ~F Þ
y withð12Þ

a constant 	 ~F 2 Q:

B ~F ¼ 0 if ~F 2 FD n FþD:ð13Þ

For any ~F 2 FD and ’;  2 C½½x; y��;ð14Þ

B ~F ð’ Þ ¼
X
~F 0; ~F 00

B ~F 0 ð’ÞB ~F 00 ð Þ;

where the sum is taken over all the pairs

ð ~F 0; ~F 00Þ 2 FD � FD satisfying ~F ¼ ~F 0 ~F 00.

4. The arbomould expansion of �. In

this section, we give an arbomould(-coarbomould)

expansion of � of the following form (see [17] for the

convergence of the expansion):

� ¼
X

M
�B� :¼

X
~F2Fþ

D

M
~FB ~F :ð15Þ

In what follows, we consider arbomoulds defined

only on FþD since their values at FD n FþD are not

used by (13). Let Ajðx; yÞ be written as follows:

Ajðx; yÞ ¼ �jyj þ
X

2Zn

�0

aj;
ðxÞy
;

where aj;
ðxÞ 2 xCfxg. We define an arbomould a� :

FþD ! C½½x�� by

a
~F ¼ aj;d1

ðxÞ if ~F ¼ �ðej;d1Þ;

0 otherwise;

(
ð16Þ

where ej is the j-th unit vector. We set

Z ¼
X

a
�B�:ð17Þ

Then, X ¼ X 0 þ Z and the equation �X ¼ X0� is

equivalent to ½X0;�� ¼ �Z. Therefore, using

½X0;M
~FB ~F � ¼ x2 @

@x
þr�

� �
M

~F

� �
B ~F ;ð18Þ

�Z ¼
X
ðM� � a

�ÞB�;ð19Þ

the problem is reduced to constructing an arbo-

mould M
� satisfying M

� ¼ 1 and

x2 @

@x
þr�

� �
M
� ¼M

� � a
�;ð20Þ

where r�M
� is an arbomould defined by r�M

~F ¼
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ð� � k ~FkÞM ~F for ~F 2 FþD. Then, M
� is recursively

and uniquely determined by solving

x2 @

@x
þ � � k ~Tk

� �
M

~T ¼ aj;d1
ðxÞMB� ~Tð21Þ

for ~T 2 T þD with the root � having the decoration

�ð�Þ ¼ ðej; d1Þ, and by setting

M
~F :¼M

~T1 � � �M ~T‘ð22Þ

for ~F ¼ ~T1 � � � ~T‘ ð‘ � 2Þ with ~Tj 2 T þD ðj ¼ 1; � � � ; ‘Þ.
Then, we have the following

Theorem 4.1 ([10]). There exists uniquely a

separative arbomould M
� : FþD ! C½½x�� such that

� ¼
P

M
�B� defines a tangent-to-identity formal

diffeomorphism satisfying �X ¼ X0�.

5. Resurgent formal series. In this sec-

tion, we review the results in [9] and [11] related to

the resurgence of formal series. We first recall the

definition of the formal Borel transform. The formal

Borel transform B : xC½½x�� ! C½½��� is a C-linear

morphism defined by

B : ~’ðxÞ ¼
X1
k¼1

’kx
k 7! ’̂ð�Þ ¼

X1
k¼1

’k
�k�1

ðk� 1Þ!
:

It is linearly extended to B : C½½x�� ! C� �C½½���
by

B : ’0 þ ~’ðxÞ 2 C1� xC½½x�� 7! ’0� þ ’̂ð�Þ;

where the symbol � denotes the image of 1 by B. We

put C½½x��1 :¼ B
�1ðC� �Cf�gÞ. The convolution

product ’̂1 
 ’̂2 of ’̂1, ’̂2 2 Cf�g is defined by

’̂1 
 ’̂2 :¼
Z �

0

’̂1ð� � �0Þ’̂2ð�0Þd�0:

We see that ’̂1 
 ’̂2 2 Cf�g and satisfies ’̂1 
 ’̂2 ¼
Bð~’1 ~’2Þ if ~’1, ~’2 2 xC½½x��1. The multiplication � 
 �
is naturally extended to C� �Cf�g so that � is the

unit in the algebra.

For a detailed description of singular points of

holomorphic germs, we use discrete filtered sets

introduced in [1].

Definition 5.1. A discrete filtered set is a

family � ¼ ð�LÞL2R�0
of subsets in C such that

i) �L is a finite set,

ii) �L1
� �L2

if L1 
 L2,

iii) there exists R > 0 such that �R ¼ �.

Notation 5.2. (1) For a discrete filtered set

�, we put

Rð�Þ :¼ supfL 2 R�0 j �L ¼ �g;

S� :¼ fðL; !Þ 2 R�C j L � 0 and ! 2 �Lg:

(2) Let E be a discrete closed subset of C that does

not contain 0. Then, it can be regarded as a discrete

filtered set by identifying it with a discrete filtered

set � defined by �L :¼ f! 2 E j j!j 
 Lg for each

L 2 R�0. We use the same notation E to denote it.

Let � and �0 be discrete filtered sets. When

�L � �0L holds for any L 2 R�0, it is denoted by

� � �0. Next, we define � 
 �0 (resp. � [ �0) by

ð� 
 �0 ÞL :¼ f!þ !0 j ! 2 �L1
; !0 2 �L2

; L1 þ L2 ¼
Lg [ �L [ �0L (resp. ð� [ �0ÞL :¼ �L [ �0L). In par-

ticular, � 
 � � � 
 �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n times

is denoted by �
n ðn � 1Þ. Since

it consists an inductive system, a discrete filtered

set �
1 is defined by

�
1 :¼ lim�!
n

�
n:

Definition 5.3. (1) A Lipschitz continuous

path 
 : ½0; a� ! C ða > 0Þ satisfying 
ð0Þ ¼ 0 is said

to be �-allowed if it satisfies ðL
ðtÞ; 
ðtÞÞ =2 S� for

any t 2 ½0; a�, where L
ðtÞ is the length of the path


j½0;t� and S� is the closure of S� in R�C. The

set of �-allowed paths is denoted by ��. (2) A

Lipschitz continuous path 
 : ½0; a� ! C is said to be

�-adherent if it satisfies 
j½0;t� 2 �� for any t 2 ½0; aÞ
and ðL
ðaÞ; 
ðaÞÞ 2 S�. The set of �-adherent paths

is denoted by �ad
� . (3) A holomorphic germ ’̂ at

� ¼ 0 is said to be �-continuable if it is analytically

continuable along any �-allowed path. The set of

�-continuable germs is denoted by cR�. (4) An

�-continuable germ ’̂ is said to be simple if, for any

path 
 2 �ad
� , the analytic continuation cont
’̂ of ’̂

along 
 has a simple singularity at the end point !

of 
, i.e., it has the following form on the universal

covering space of f� j 0 < j� � !j < rg for sufficient-

ly small r > 0:

C


2�ið� � !Þ þ
1

2�i
�̂
ð� � !Þ logð� � !Þ þ reg
ð� � !Þ;

where C
 2 C and �̂
, reg
 2 Cf�g. We associate

such a singularity with C
� þ �̂
ð�Þ 2 C� �Cf�g,
and hence, a formal series in C½½x��1 by B

�1. The set

of simple �-continuable germs is denoted by bR simp
� .

We put

R� :¼ C1� eR�; eR� :¼ B
�1ð bR�Þ;

R simp
� :¼ C1� eR simp

� ; eR simp
� :¼ B

�1ð bR simp
� Þ
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An element of R� (resp. R simp
� ) is called �-resur-

gent formal series (resp. simple �-resurgent formal

series). By extending the results in [14] and [15], we

have the following

Theorem 5.4 ([10]). Let � and �0 be dis-

crete filtered sets. (1) For any ’̂ 2 bR simp
� and

 ̂ 2 bR simp
�0 , we have ’̂ 
  ̂ 2 bR simp

�
�0 . (2) For any ’ 2
R simp

� and  2 R simp
�0 , we have ’ 2 R simp

�
�0 .
6. The resurgence structure of M

�. In

what follows, we study the resurgence structure of

the arbomould M
� constructed in Section 4.

We inductively define a family of discrete

filtered sets � ~F ð ~F 2 FþDÞ by the following rules.

i) �� ¼ �.

ii) When ~T 2 T þD, we put

� ~T ¼
~�B� ~T if k ~Tk ¼ 0;

f�� � k ~Tkg [ �B� ~T if k ~Tk 6¼ 0;

(
where ~� is a discrete filtered set defined by

~�L ¼
�L ðL < 2Rð�ÞÞ;
f0g [ �L ðL � 2Rð�ÞÞ

�
for a discrete filtered set �.

iii) When ~F ¼ ~T1 � � � ~T‘ ð‘ � 2Þ with ~Tj 2 T þD ðj ¼
1; � � � ; ‘Þ, we put � ~F ¼ � ~T1


 � � � 
 � ~T‘
.

Then, we have the following

Theorem 6.1 ([10]). For any ~F 2 FþD, we

have M
~F 2 R simp

� ~F
.

Remark 6.2. The assumption (3) is used to

make the singularities of M
~F in the Borel plane

simple.

Let �! be the alien derivation at ! 2 C n f0g
(see [14] and [17] for the definition). Then, by

Theorem 6.1, we see �!M
~F 2 C½½x��1 for any

~F 2 FþD. We define an arbomould c�! : FþD !
C½½x��1 by

c
�
! ¼ ð�!MÞ� � ðM�ð�1ÞÞ�;ð23Þ

where ðM�ð�1ÞÞ� is the multiplicative inverse of the

separative arbomould M
� defined by M � S. Then,

we have

Theorem 6.3 ([10]). The arbomould c�! ð! 2
C n f0gÞ satisfies the following:

i) c�! is antiseparative, and hence, c
~F
! ¼ 0 for any

~F 2 FþD n T þD.

ii) c
~T
! 2 C for any ~T 2 T þD.

iii) c
~T
! ¼ 0 if ! 6¼ �� � k ~Tk.

By (12) and Theorem 6.3, we see

C! :¼
X

c
�
!B�

defines a first order differential operator of the formXn
j¼1

X

2Zn

�0

C
j;

! y
@yj ; C

j;

! ¼

X
~T2Uj;


	 ~T c
~T
! ;

where

Uj;
 :¼ f ~T 2 T þD j rð ~T Þ ¼ ej; �exð ~T Þ ¼ 
g:

For later convenience, we extend C
j;

! to 
 2 Zn by

setting C
j;

! ¼ 0 for 
 =2 Zn

�0. We obtain from (23)

the following relation as operators in EndCðR½½y��Þ:

½�!;�� ¼ C!�;ð24Þ

where R is the space of resurgent formal series

given by the union of R� over all the discrete

filtered sets. It describes explicitly the resurgence

structure of �: the singularity structure of � at any

point � ¼ ! 2 C n f0g in the Borel plane is written

by � itself though it is constructed at � ¼ 0. We can

also derive similar descriptions for the alien oper-

ator �þ! and the symbolic Stokes automorphism S�

in a direction � (see [14], [17] for the definitions of

these operators). See [10] for the details.

7. The resurgence structure of transser-

ies solutions. Let ’ ¼ ð’1; � � � ; ’nÞ be a formal

series defined by

’jðx; yÞ ¼ � � yj ¼
X

2Zn

�0

’j;
ðxÞy
 2 C½½x; y��;

where

’j;
ðxÞ ¼
X

~T2Uj;

	 ~TM

~T :

We see ’ðx; Ce��=xÞ formally gives a transseries

solution of (6), where

Ce��=x ¼ ðC1e
��1=x; � � � ; Cne��n=xÞ

with ðC1; � � � ; CnÞ 2 Cn. In particular, ’ðx; 0Þ 2
Cn½½x�� is a formal power series solution of (6).

We define discrete filtered sets �
 ð
 2 Zn
�0Þ by

�
 :¼
S
jfðej � 
Þ � �g, where the sum is taken over

j satisfying ej � 
 6¼ 0. We also define discrete

filtered sets �
 ð
 2 Zn
�0Þ by ð�0Þ
1 when 
 ¼ 0

and by

[
1
‘
j
j

[

1þ���þ
‘¼


j2Zn

�0nf0g

�
1

 � � � 
 �
‘

0BB@
1CCA 
 ð�0Þ
1
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when 
 6¼ 0. Then, we have the following

Lemma 7.1 ([10]). For any ~T 2 T þD, we

have � ~T � ~��exð ~T Þ. More precisely, we have � ~T � �0

when �exð ~T Þ ¼ 0.

The �0-resurgence of ’j;0ðxÞ was proved in [9].

Further, using the estimates in [9] for resurgent

formal series associated with rooted trees, we have

the following

Theorem 7.2 ([10]). For each j and 
, ’j;

is simple ~�
-resurgent. More precisely, ’j;0 is simple

�0-resurgent.

Remark 7.3. We can also obtain the Borel

summability of ’j;
 except for the direction derived

from �
. See [10] for the details.

By the relation (24), we have the following

bridge equation:

�!’jðx; yÞ ¼ C! � ’jðx; yÞ:ð25Þ

To be precise, we have the following

Theorem 7.4 ([10]). For each j; 
 and

! 6¼ 0, �!’j;
 is given by

�!’j;
 ¼
Xn
k¼1

�kC
k;�þek
!

 !
’j;�

if there exists � 2
Sn
k¼1ð�ek þ Zn

�0Þ and � 2 Zn
�0

satisfying ! ¼ �� � � and 
 ¼ �þ �. Otherwise,

�!’j;
 ¼ 0.

For example, �!’j;0 survives only at ! ¼ �k
ðk ¼ 1; � � � ; nÞ and we see

��k’j;0 ¼ C
k;0
�k
’j;ek :
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1981 and 1985.
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