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Abstract: Denote by Gðk; nÞ the Grassmannian of linear subspaces of dimension k in Pn.

We show that if n > m then every morphism ’ : Gðk; nÞ ! Gðl;mÞ is constant.
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1. Introduction. In [11], H. Tango proved

that there are no nonconstant morphisms from Pn

to the Grassmannian Gðl;mÞ if n > m; this result

was later used by E. Sato in [10] to study uniform

vector bundles on Pn. In fact, given a uniform

vector bundle E of rank r on the projective space,

one can construct a morphism from the variety of

lines passing through a point p – which is Pn�1 – to

an appropriate Grassmannian of linear subspaces of

PðEpÞ, whose dimension depends on the splitting

type of E. If those maps are constant for every p,

then one can prove that the bundle E is decom-

posable as a sum of line bundles.

The study of uniform bundles on other Fano

manifolds brought along the problem to prove the

constancy of morphisms M ! Gðl;mÞ, where M is

the Variety of Minimal Rational Tangents (VMRT)

of the chosen Fano manifold. Tango’s proof made

use of the particular structure of the cohomology

ring of Pn, so it was first extended to varieties

whose cohomology ring is, up to some degree,

isomorphic to the one of the projective space (see

[7, Lemma 3.4]).

In [9, Theorem 4.2] X. Pan showed that, in

order to obtain a Tango type result, a weaker

property of the cohomology ring was needed, the so

called good divisibility up to some degree. A further

step – see [8, Section 4] – was to replace the notion

of good divisibility with the weaker notion of

effective good divisibility – see Section 2 for the

definitions of good divisibility and effective good

divisibility.

The notion of effective good divisibility was

used in [8, Proposition 4.7] to prove the constancy

of morphisms from a variety with ‘‘large’’ effective

good divisibility not only to Grassmannians, but

also to other rational homogeneous varieties with

Picard number one. The aim of [8] was to prove the

diagonalizability of uniform flag bundles of small

invariants on some rational homogeneous varieties.

Therefore in that paper the effective good divisi-

bility has been computed for projective spaces,

quadrics and Grassmannians of lines, since those

varieties appear as (factors of) the VMRT of the

rational homogeneous varieties considered.

However, leaving aside the applications to

uniform bundles, the problem of computing the

effective good divisibility in order to obtain Tango

type results seems worth to be considered also for

other varieties.

In the present paper we address it for the

Grassmannians Gðk; nÞ of linear subspaces of di-

mension k of Pn; this choice seems a natural

generalization of Tango’s setting, since the

Grassmannians Gðk; nÞ are rational homogenous

manifolds obtained as a quotient of the same

group as Pn; moreover, the cohomology ring of

Grassmannians has a clear description in terms of

Schubert cycles, which are effective.

We will prove that Gðk; nÞ has effective good

divisibility up to degree n, and derive from this the

main result of the paper.

Theorem 1.1. If n > m then every mor-

phism ’ : Gðk; nÞ ! Gðl;mÞ is constant.

A straightforward consequence of Theorem 1.1

is the following result.

Corollary 1.2. If n > m then every mor-

phism from Gðk; nÞ to a rational homogeneous

variety of type Am is constant.

An anonymous referee suggested us that Prop-

osition 4.1, that we prove using Schubert calculus,

can be easily deduced using the fact that the

product of two Schubert cycles is never zero in the

doi: 10.3792/pjaa.98.019
#2022 The Japan Academy

2010 Mathematics Subject Classification. Primary 14M15;
Secondary 14J45.

No. 10] Proc. Japan Acad., 98, Ser. A (2022) 101

http://dx.doi.org/10.3792/pjaa.98.019


(small) quantum cohomology ring of the Grass-

mannian. We will explain this in Remark 4.4.

2. Divisibility. In this section we will recall

the notions of good divisibility and effective good

divisibility and explain how to use them to prove

constancy of morphisms to Grassmannians.

Let M be a smooth complex projective mani-

fold. Set HjðMÞ :¼ HjðM;RÞ.
Definition 2.1 ([9, Cf. Definition 4.1]). A

variety M has good divisibility up to degree s if,

given xi 2 H2iðMÞ; xj 2 H2jðMÞ with iþ j � s and

xixj ¼ 0, we have xi ¼ 0 or xj ¼ 0. The good

divisibility of M, denoted by g:d:ðMÞ, is the

maximum integer s such that M has good divisi-

bility up to degree s.

The concept of good divisibility can be refined,

by considering only effective classes, i.e., classes

that can be written as a real linear combination of

classes of subvarieties with non negative coeffi-

cients.

Definition 2.2 ([8, Definition 4.2]). A vari-

ety M has effective good divisibility up to degree s

if, given effective xi 2 H2iðMÞ, xj 2 H2jðMÞ with

iþ j � s and xixj ¼ 0, we have xi ¼ 0 or xj ¼ 0. The

effective good divisibility of M, denoted by e:d:ðMÞ
is the maximum integer s such that M has effective

good divisibility up to degree s.

It is clear from the definition that g:d:ðMÞ �
e:d:ðMÞ � dimðMÞ.

Example 2.3. In [8, Section 4] the divisibil-

ities are computed in the following cases:

M g:d:ðMÞ e:d:ðMÞ
Pn n n

Q2n�1 2n� 1 2n� 1
Q2n n 2n� 1

Gð1; nÞ n� 1 n

The last two examples show that, in general

g:d:ðMÞ < e:d:ðMÞ.
The notion of effective good divisibility has

been used in [8, Section 4] to study morphisms to

rational homogeneous varieties of classical type of

Picard number one. The following is a special case

of [8, Proposition 4.7], that we report here for the

reader’s convenience, since it is a key step in the

proof of Theorem 1.1.

Proposition 2.4. Let M be a smooth com-

plex projective variety. If e:d:ðMÞ > m then any

morphism ’ : M ! Gðl;mÞ is constant.

Proof. Consider the exact sequence of vector

bundles on Gðl;mÞ:
0! S_ ! O�mþ1 ! Q! 0ð1Þ

where S, of rank m� l, and Q, of rank lþ 1, are the

universal subbundle and the universal quotient

bundle. Set

�i¼ ’�ciðQÞ for i ¼ 0; . . . ; rkQ;
�j¼ ’�cjðS_Þ for j ¼ 0; . . . ; rkS_:

The Chern classes of the nef bundles Q and S are

effective and non zero (see [2, Section 5.6.2]), hence

�i 6¼ 0 is effective for every i ¼ 0; . . . ; rkQ and

�j 6¼ 0 is effective or antieffective for every j ¼
0; . . . ; rkS_. Set

�ðtÞ ¼
X

i

�it
i �ðtÞ ¼

X

i

�it
i

by the exact sequence (1) we have

�ðtÞ�ðtÞ ¼ 1:

Let i0 and j0 be the maximum indexes for which

�i0 6¼ 0 and �j0
6¼ 0. If i0 þ j0 6¼ 0, then

�i0�j0
¼ 0;

but the assumption implies that i0 þ j0 � e:d:ðMÞ,
so we must have i0 ¼ j0 ¼ 0. In particular

�1 ¼ ’� detQ ¼ ’�OGðl;mÞð1Þ ¼ 0

hence ’ is constant. �

3. Schubert calculus. We will now recall

some basic facts about Schubert calculus in Gðk; nÞ.
We refer to [2] and [3] for a complete account on the

subject.

Let us identify Gðk; nÞ with the Grassmannian

Gðkþ 1; V Þ of vector subspaces of dimension kþ 1

in a vector space V of dimension nþ 1; consider a

complete flag V of vectors subspaces of V :

0 ( V1 ( V2 ( � � � ( Vn ( V :

Given a sequence of integers a ¼ ða1; . . . ; akþ1Þ such

that

n� k � a1 � a2 � � � � � akþ1 � 0

the Schubert variety �aðVÞ is defined as

�aðVÞ ¼ fW 2 Gðkþ 1; nþ 1Þ j
dimðVn�kþi�ai \W Þ � i for all ig:

The codimension of �aðVÞ is jaj :¼
P
ai, the class

½�aðVÞ� 2 H2jajðGðk; nÞÞ does not depend on the

choice of V, will be denoted by �a and called a
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Schubert cycle. The Schubert cycles form a basis for

the cohomology of Gðk; nÞ.
The cycle �a may be represented by the

corresponding Young diagram, which is a collection

of left-justified rows of boxes in which the i-th row

has length ai. The product of two Schubert cycles

can be computed using the the Littlewood–Richard-

son rule, as follows:

�a � �b ¼
X

c

�ca;b�cð2Þ

where jcj ¼ jaj þ jbj, the Young diagram of c con-

tains the Young diagram of a and �ca;b is equal to the

number of Littlewood–Richardson tableaux of skew

shape c=a and of weight b, i.e., to the number of

ways in which on can fill the boxes of c=a with

integers 1; . . . ; kþ 1 in such a way that:

. the integer i appears bi times;

. the integers are non decreasing along the rows

(from left to right);

. the integers are strictly increasing along the

columns (from up to down);

. the word obtained concatenating the reversed

rows is a lattice word, that is, in every initial

part of the sequence any number i occurs at

least as often as the number iþ 1.

4. Proofs. In this section we will prove

Theorem 1.1 and Corollary 1.2. In view of Propo-

sition 2.4, to prove Theorem 1.1 it is enough to

show that the effective good divisibility of Gðk; nÞ is

n. We start with a special case.

Proposition 4.1. Let �a and �b be two

Schubert cycles in Gðk; nÞ, such that jaj þ jbj � n.

Then �a � �b > 0.

Proof. Via the duality of Pn we have isomor-

phisms Gðk; nÞ ’ Gðn� k� 1; nÞ, so we may as-

sume that 2k � n� 1. In particular

n� k > n=2;ð3Þ

hence

jaj þ jbj � n < 2ðn� kÞ:ð4Þ

By formula (2), since all the �ca;b are nonnegative

and the Schubert cycles are effective, it is enough to

prove that �ca;b > 0 for some c.

We may assume that a1 þ b1 > n� k, otherwise

taking c ¼ aþ b and numbering the boxes in c=a

with the number of the row to which they belong,

we find a Littlewood–Richardson tableaux of skew

shape c=a and of weight b. By formula (4) we then

have

ai þ bj < n� k for every i; j � 2:

In particular

bj < n� k� a2 for every j � 2ð5Þ

and

Xkþ1

i¼2

ðai þ biÞ < k:

Thus akþ1 ¼ bkþ1 ¼ 0.

We can also assume, up to swap the cycles, that

jbj < jaj; in particular b1 < n� k.
Set �a ¼ ðn� k� a1; a1 � a2; . . . ; ak � akþ1Þ, and

consider the skew shape �a=a, which contains n� k
boxes, no two of which on the same row.

Mark b1 boxes of �a=a with the integer 1,

starting from the first row and moving from left to

right. Denote by �1
j the number of boxes in the j-th

row that have been marked with 1’s and by �1 the

skew Tableaux consisting of the marked boxes in

�a=a.

Set a1 ¼ ða1 þ �1
1 ; . . . ; akþ1 þ �1

kþ1Þ, and consid-

er the sequence

�a1 ¼ a1 þ ð0; �1
1 ; �

1
2; 0; . . . ; 0Þ

and the skew shape �a1=a1, which contains �1
1 þ �1

2

boxes, no two of which are on the same row, since

a3 þ �1
3 � a2. Mark b2 boxes of �a1=a1 with the

integer 2, starting from the first non empty row

and moving from left to right. This is possible since

�1
1 þ �1

2 ¼ minfb1; n� k� a2g, so, by (5), we have

b2 � �1
1 þ �1

2. Denote by �2
j the number of boxes

in the j-th row that have been marked with 2’s and

by �2 the skew Tableaux consisting of the marked

boxes in �a1=a1.

Repeat the procedure, starting at the step i

from the sequence

�ai�1 ¼ ai�1 þ ð0; . . . ; 0; �i1; �
i
2; 0; . . . ; 0Þ

where the two nonzero entries are the ones in

positions i; iþ 1. Consider the skew shape �ai�1=ai�1,

which contains �i�1
1 þ �i�1

2 boxes, no two of which

are on the same row, since aiþ1 þ �1
iþ1 � ai.

Mark bi boxes of this skew shape with the

integer i, starting from the first non empty row and

moving from left to right. This is possible since

�i�1
1 þ �i�1

2 ¼ bi�1, so, bi � �i�1
1 þ �i�1

2 . Denote by �ij
the number of boxes in the j-th row that have been

marked with i’s and by �i the skew tableaux
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consisting of the marked boxes in �ai�1=ai�1. Set

ai ¼ ai�1 þ �i.
Set c ¼ ak; we claim that �ca;b > 0. The entries of

the sequence c are

c1 ¼ a1 þ �1
1 ¼ n� k;

c2 ¼ a2 þ �1
2 þ �2

1;

� � � � � �
cj ¼ aj þ �1

j þ �
j�1
2 þ �j1;

� � � � � �
ckþ1 ¼ �1

kþ1 þ �k2 :
By construction �1

j þ aj � aj�1 and �ij � �i�1
j , hence

the sequence is not increasing.

The Young diagram of the skew shape c=a is

the diagram of the tableaux �1 þ � � � þ �k; in this

tableaux by construction the rows are non decreas-

ing and the columns are strictly increasing.

The fact that the word obtained concatenating

the reversed rows is a lattice word follows from the

inequalities �ij � �i�1
j , which say that the number of

i� 1 in row jþ i� 1 is bigger than or equal to the

number of i in row jþ i. �

Example 4.2. The following is an example

with n ¼ 9; k ¼ 4, to illustrate the case a1 þ b1 �
n� k of the proof of Proposition 4.1.

a = b = c =

c/a =

1 1
2 2

3
4

Example 4.3. The following is an example

with n ¼ 21; k ¼ 10, to illustrate the case a1 þ b1 >

n� k of the proof of Proposition 4.1.

a = b =

c/a =
1 1 1

1 2 2 2
2 3

Remark 4.4. As suggested by an anony-

mous referee, Proposition 4.1 can be proved using

the fact that the product of two Schubert cycles in

the (small) quantum cohomology ring of the Grass-

mannian Gðk; nÞ is never zero (see [1, Footnote 3,

p. 828] for a proof of this statement). In fact, the

quantum variable q has degree nþ 1 (equal to the

index of Gðk; nÞ, see [5, Section 6]), so in degree

smaller than or equal to n the quantum product

coincides with the cup product.

The nonvanishing of the product of Schubert

cycles in the (small) quantum cohomology ring has

been proved in [5, Theorem 9.1] for any rational

homogeneous space, so with a similar argument one

can obtain lower bounds on e:d:ðG=P Þ for every

G=P . However, in general, these bounds are not

optimal: for example, in the case of Q2n�1 one gets

e:d:ðQ2n�1Þ � 2n� 2, while e:d:ðQ2n�1Þ ¼ 2n� 1.

We are now ready to compute the effective

good divisibility of Gðk; nÞ.
Theorem 4.5. The effective good divisibility

of Gðk; nÞ is n.

Proof. By [4, Corollary of Theorem 1], as ex-

plained in [6, Section 3], the cones of effective

classes of a fixed codimension i in Gðk; nÞ are

polyhedral cones generated by the Schubert classes

of the same codimension. Therefore, if �i 2
H2iðGðk; nÞÞ, �j 2 H2jðGðk; nÞÞ are two effective

nonzero classes we may write:

�i ¼
X

jaj¼i
�a�a; �j ¼

X

jbj¼j
�b�b;

where �a; �b � 0.

Assume that iþ j � n; we want to show that

�i�j 6¼ 0. Since every intersection �a�b is a combi-

nation of Schubert cycles, with nonnegative coef-

ficients, due to the Littlewood–Richardson rule, it

is enough to prove the statement for �i ¼ �a and

�j ¼ �b, and this has been done in Proposition 4.1.

Therefore e:d:ðGðk; nÞÞ � n.

To show that e:d:ðGðk; nÞÞ ¼ n it is enough to

consider a ¼ ð1; 1; . . . ; 1Þ and b ¼ ðn� k; 0; . . . ; 0Þ.
For the corresponding cycles we have �a�b ¼ 0,

since there is no way of adding n� k boxes marked

with 1 to the diagram of a without having two boxes

in the same column. �

As observed at the beginning of the section,

Theorem 1.1 follows combining Theorem 4.5 and

Proposition 2.4.

Proof of Corollary 1.2. A rational homoge-

neous variety X of type Am is a variety of partial

flags of linear subspaces of dimensions ðl1; . . . ; liÞ in

the projective space Pm.
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The variety X has Picard number i, and

morphisms �j:X ! Gðlj;mÞ for every j ¼ 1; . . . ; i,
which send a partial flag �l1 	 �l2 	 � � � 	 �li to the

point of Gðlj;mÞ parametrizing �lj .

If ’: Gðk; nÞ ! X is a morphism, then �j 
 ’ is

constant for every j ¼ 1; . . . ; i by Theorem 1.1,

hence ’ is constant. �

References

[ 1 ] S. Agnihotri and C. Woodward, Eigenvalues of
products of unitary matrices and quantum
Schubert calculus, Math. Res. Lett. 5 (1998),
no. 6, 817–836.

[ 2 ] D. Eisenbud and J. Harris, 3264 and all that—a
second course in algebraic geometry, Cambridge
University Press, Cambridge, 2016.

[ 3 ] W. Fulton, Intersection theory, 2nd ed., Ergeb-
nisse der Mathematik und ihrer Grenzgebiete.
3. Folge. A Series of Modern Surveys in
Mathematics, 2, Springer-Verlag, Berlin, 1998.

[ 4 ] W. Fulton, R. D. MacPherson, F. Sottile and B.
Sturmfels, Intersection theory on spherical
varieties, J. Algebraic Geom. 4 (1995), no. 1,

181–193.
[ 5 ] W. Fulton and C. Woodward, On the quantum

product of Schubert classes, J. Algebraic Geom.
13 (2004), no. 4, 641–661.

[ 6 ] J. Kopper, Effective cycles on blow-ups of Grass-
mannians, J. Pure Appl. Algebra 222 (2018),
no. 4, 846–867.
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