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Abstract: We consider the Laplace-Beltrami operator �g on a smooth, compact

Riemannian manifold ðM; gÞ and the determinantal point process X� on M associated with the

spectral projection of ��g onto the subspace corresponding to the eigenvalues up to �2. We show

that the pull-back of X� by the exponential map expp : T �pM !M under a suitable scaling

converges weakly to the universal determinantal point process on T �pM as �!1.
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1. Introduction. Let ðM; gÞ be a smooth,

compact, Riemannian manifold of dimension m

with no boundary. We fix an orthonormal basis

f’igi�0 of eigenfunctions of the Laplace-Beltrami

operator �g acting on L2ðMÞ :¼ L2ðM; volgÞ:
��g’i ¼ �2

i ’i; h’i; ’jiL2ðMÞ ¼ �ij;

with 0 ¼ �2
0 � �2

1 � �2
2 � � � � % þ1. Here f�ig1i¼0

are the eigenvalues of
ffiffiffiffiffiffiffiffiffiffi
��g

p
. We denote the

eigenspace corresponding to an eigenvalue �i by

W�i . The projection operator E� on L2ðM; volgÞ
onto the closed subspace W�� :¼

L
�i�� W�i admits

the following integral kernel

E�ðx; yÞ ¼
X
�i��

’iðxÞ’iðyÞ ðx; y 2MÞ:ð1:1Þ

The projection kernel E�ðx; yÞ is the reproducing

kernel of W�� and thus defines a determinantal

point process (DPP) X� on M, which is a random

simple point configuration on M whose n-point

correlation function with respect to volg is given by

�nðx1; x2; . . . ; xnÞ ¼ detðE�ðxi; xjÞÞni;j¼1:

In particular, the 1-point correlation function, the

density of points, is

�1ðxÞ ¼ E�ðx; xÞ:

See Section 2 for the definition of DPP.

The number of points in X� on M is equal to

the eigenvalue counting function given by

Nð�Þ ¼
X
�i��

1 ¼ rankE� ¼
Z
M

E�ðx; xÞvolgðdxÞ:

Since f�ig1i¼0 are the eigenvalues of
ffiffiffiffiffiffiffiffiffiffi
��g

p
, it is

known as the classical Weyl law (cf. [11]) that

Nð�Þ �
�m

ð2�Þm
jBðmÞ1 j volgðMÞ ð�!1Þ;ð1:2Þ

where jBðmÞ1 j is the volume of a unit ball in Rm, i.e.,

jBðmÞ1 j ¼ �m=2=�ðm=2þ 1Þ. This means that the

points in X� on M become dense as �!1.

Example 1. When M ¼ S1, for every � > 0,

the DPP associated with E� is the random eigen-

values of Circular Unitary Ensemble (CUE) of size

Nð�Þ (cf. [9]). More generally, when M ¼ Sm, the

corresponding DPPs are called harmonic ensembles

on Sm (cf. [13]). These point processes are homoge-

neous in the sense that they are invariant under the

OðmÞ-action.

The quantum ergodicity theorem originated

by Šnirel’man [19,20] and also studied in [6,22]

states that if the geodesic flow on M is ergodic

then Nð�Þ�1E�ðx; xÞ volgðdxÞ converges weakly to

volgðdxÞ as �!1, in other words, so does the

normalized first correlation measure of the DPP X�.

This theorem describes the global behavior of

random points of the DPP on M.

In this paper, we focus on the local statistics of

points in the DPP by taking a scaling as in (1.4)

below so that we define a DPP ��;p on the cotangent

space T �pM by taking the pull-back of the DPP X�
on M by the exponential map.

We denote the Riemannian metric on T �pM
by h�; �igp : T �pM � T �pM ! R and the corresponding

norm by j � jgp . Here j�jgp is the same as the princi-

pal symbol of
ffiffiffiffiffiffiffiffiffiffi
��g

p
locally given by
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j�jgp ¼
Xm
i;j¼1

gijðpÞ�i�j

 !1=2

;

and ðgijðpÞÞmi;j¼1 is the inverse matrix g�1
p of gp ¼

ðgijðpÞÞmi;j¼1. The so-called pointwise Weyl law can

be expressed as follows: as �!1,

E�ðx; xÞ ¼
1

ð2�Þm
Z
j�jgx<�

d�ffiffiffiffiffiffiffiffiffiffiffiffi
det gx
p þ R�ðxÞð1:3Þ

¼ jB
ðmÞ
1 j

ð2�Þm
�m þ R�ðxÞ

with the uniform bound supx2M jR�ðxÞj � C�m�1

[11], which leads to the classical Weyl law (1.2).

Since M is compact, the injectivity radius

inj�ðMÞ is positive, i.e., the exponential map expp :

T �pM !M is injective on the subset f� 2 T �pM :

j�jgp < inj�ðMÞg for any p 2M. We fix a point p 2
M and positive � < inj�ðMÞ. Let B� be the open ball

of radius � in T �pM centered at the origin and denote

the image exppðB�Þ by Bp;�. For � > 0, we define a

point process ��;p;� on the cotangent space T �pM by

��;p;� :¼
X

x2X�\Bp;�
�� exp�1

p ðxÞ;ð1:4Þ

which defines the pull-back of X� restricted on Bp;�
by the exponential map and is scaled by �. Here,

we identified X� with a subset in M (see Section

2.1). It turns out again to be a DPP on T �pM (see

Lemma 3).

Our main assertion in this paper is the follow-

ing

Theorem 1. As �!1, the point process

��;p;� converges weakly to the DPP �p on T �pM
associated with the kernel

KðmÞgp
ðu; vÞ ¼

1

ð2�ju� vjgpÞ
m=2

Jm=2ðju� vjgpÞð1:5Þ

and the reference measure volGðpÞ , where J�ðxÞ is the

Bessel function of the first kind defined by

J�ðxÞ ¼
X1
k¼0

ð�1Þk

k!�ðkþ �þ 1Þ
x

2

� �2kþ�

and volGðpÞ is the Riemannian measure on T �pM
with respect to the constant Riemannian metric

GðpÞ ¼ ðGðpÞu Þu2T �pM such that G
ðpÞ
u ¼ ðexp�p gÞ0 for

every u 2 T �pM.

We remark that the limiting DPP �p does not

depend on � > 0.

We consider the following correlation kernel

on Rm,

KðmÞðu; vÞ :¼
1

ð2�ju� vjÞm=2
Jm=2ðju� vjÞ

¼
1

ð2�Þm
Z
j�j<1

e
ffiffiffiffiffi
�1
p

ðu�v;�Þd�;

where ð�; �Þ (resp. j � j) is the standard inner product

(resp. norm) on Rm. The DPP on Rm associated

with KðmÞðu; vÞ is invariant under the action of the

Euclidean motion group. When m ¼ 1, Kð1Þðu; vÞ
coincides with the sinc kernel

Kð1Þðu; vÞ ¼
sinðu� vÞ
�ðu� vÞ

;

which is the reproducing kernel of the classical

Paley-Wiener space (see also Example 2 for KðmÞ

given in Section 2.2). It is well known that the point

process of eigenvalues of CUE (also GUE) under

suitable scaling converges to the DPP associated

with the sinc kernel. This DPP is also one of the

most important examples of the class of DPPs

associated with de Branges spaces discussed in [3].

In [13], we proved a special case of Theorem 1 when

M ¼ Sm by using spherical harmonics. Theorem 1

can be regarded as a generalization of these results

to compact Riemannian manifolds. For the proof

of Theorem 1, the pointwise Weyl law (1.3) plays a

central role.

Theorem 1 shows the local universality of

DPPs on Riemannian manifolds. This type of

universality has been discussed as the asymptotic

local structure of Szeg}o kernels, which is used to

analyze random spherical harmonics and random

section of holomorphic line bundles over a compact

Kähler manifold. The former corresponds to the

Euclidean class (real case) while the latter does

the Heisenberg class (complex case) (cf. [2,23,24]).

The terms ‘‘Euclidean’’ and ‘‘Heisenberg’’ are re-

lated to representations of the Euclidean and

Heisenberg motion groups. The result in this paper

falls in the Euclidean class in this terminology. It is

shown in [8] that DPPs associated with certain

Schrodinger operators on Rn fall in Euclidean class

in the semiclassical limit. Theorem 1 could also be

generalized to the case where the spectral projec-

tions of Laplace-Beltrami operators are replaced by

those of general elliptic operators.

2. Determinantal point processes. For

the necessary background for determinantal point

processes, see e.g. [12,14–18,21].

2.1. Definition. Let S be a locally compact
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Hausdorff space with countable base. A configura-

tion � on S is a non-negative integer-valued Radon

measure and it can be expressed as � ¼P
i �xi ðxi 2 SÞ. We denote by ConfðSÞ the totality

of configurations on S, which we call a configuration

space over S. An element � of ConfðSÞ is sometimes

regarded as an at most countable subset in S

without accumulation, possibly with multiple

points. Thus, �ðAÞ is equal to the number of points

in A 2 BðSÞ with counted multiplicity, where BðSÞ
is the totality of all bounded (i.e., relatively

compact) sets in S. The configuration space

ConfðSÞ equipped with vague topology turns out

to be a Polish space, i.e., a complete, separable

metrizable space. We equip the configuration space

ConfðSÞ with the Borel structure with respect to

this topology, which coincides with the Borel

structure generated by the mapping ConfðSÞ 3 � 7!
�ðAÞ 2 Z�0 :¼ f0; 1; 2; . . .g for all bounded A 2
BðSÞ. A point process on S is a ConfðSÞ-valued

random variable � ¼ �! defined on a probability

space ð�;F ;PÞ. If �ðfxgÞ � 1 for every x 2 S a.s.,

then � is called a simple point process. In this case,

by identifying � with its support, we use the

notation x 2 � meaning that �ðfxgÞ ¼ 1.

We fix a Radon measure 	 on S as a reference

measure. A symmetric measure 	n on Sn is called

the n-th correlation measure if it satisfies

E
Yp
i¼1

�ðAiÞ!
ð�ðAiÞ � kiÞ!

" #
¼ 	nðAk1

1 � � � � �Akp
p Þ

for any disjoint bounded sets A1; . . . ; Ap 2 BðSÞ
and any k1; . . . ; kp 2 Z�0 with

Pp
i¼1 ki ¼ n. If 	n is

absolutely continuous with respect to the product

measure 		n, the Radon-Nikodym derivative �n :¼
d	n=d	

	n is called the n-point correlation function

with respect to the reference measure 	;

	nðdx1 . . . dxnÞ ¼ �nðx1; . . . ; xnÞ		nðdx1 . . . dxnÞ:

Let I 1ðS; 	Þ be the ideal of trace class oper-

ators K:L2ðS; 	Þ ! L2ðS; 	Þ; we denote the

I 1-norm of the operator K by jjKjjI 1
. Let

I 1;locðS; 	Þ be the space of operators K:L2ðS; 	Þ !
L2ðS; 	Þ such that 1AK1A 2 I 1ðS; 	Þ for any

bounded Borel subset A 
 S, where 1A is the

indicator function of a set A. Such an operator K

is called a locally trace class operator. We endow

the space I 1;locðS; 	Þ with a countable family of

semi-norms k1AK1AkI 1
where A runs through an

exhausting family An of bounded sets, i.e., An is

increasing and
S1
n¼1 An ¼ S. A locally trace class

operator K admits a kernel (cf. [10,14]), for which,

slightly abusing notation, we use the same symbol

K.

A point process is called a determinantal point

process associated with K and 	 if there exists an

operator K 2 I 1;locðS; 	Þ such that for any bounded

measurable function h, for which h� 1 is supported

in a bounded set A, we have

E�h ¼ detð1þ ðh� 1ÞK1AÞ;ð2:1Þ

where �hð�Þ ¼
Q
x2�

hðxÞ for � 2 ConfðSÞ. The

Fredholm determinant in (2.1) is well-defined since

K 2 I 1;locðS; 	Þ. For example, if K is a positive

contraction operator K 2 I 1;locðS; 	Þ, then there

exists a DPP associated with K and 	. Equa-

tion (2.1) determines the law of the DPP uniquely

([16,17,21]). For the DPP associated with K, the

n-th correlation function with respect to 	 is given

by

�nðx1; . . . ; xnÞ ¼ detðKðxi; xjÞÞni;j¼1:

Kðx; yÞ is often called the correlation kernel and 	

the reference measure. When S ¼ Rm, if 	 is the

Lebesgue measure and Kðx; yÞ ¼ kðx� yÞ for some

k, then the law of the DPP associated with K and

	 is invariant under the action of the Euclidean

motion group.

Weak convergence for DPPs is characterized

by the convergence of operators (cf. Proposition

3.10 in [17]) as follows:

Lemma 2. Let �n (resp. �) be a DPP on S

associated with Kn (resp. K) and 	. Suppose Kn

converges to K in I 1;locðS; 	Þ as n!1. Then �n

converges weakly to � as n!1. In particular, if

the kernel Knðx; yÞ converges to Kðx; yÞ uniformly

on any compact set in S � S, then the convergence

above takes place.

2.2. DPPs associated with reproducing ker-

nel Hilbert spaces. Let S be a non-empty set and

FðSÞ be the linear space of all complex-valued

functions on S, i.e., FðSÞ :¼ ff : S ! Cg. A sub-

space H of F ðSÞ is called a reproducing kernel

Hilbert space (RKHS) if H is endowed with an inner

product h�; �iH which makes H a Hilbert space and

the evaluation functional Es : H ! C defined by

EsðfÞ :¼ fðsÞ is bounded for every s 2 S. By the

Riesz representation theorem, for each s 2 S, there

exists a unique element ks 2 H such that EsðfÞ ¼
hf; ksiH ¼ fðsÞ. We define a kernel K : S � S ! C
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by

Kðs; tÞ :¼ ktðsÞ ¼ hkt; ksiH;

which is called the reproducing kernel for H (see [1]

for more details about RKHS). The integral oper-

ator K with kernel Kðs; tÞ defines an orthogonal

projection onto H. Therefore, the DPP is associated

with reproducing kernel Kðs; tÞ, or equivalently,

RKHS H.

Example 2. (1) For a given a > 0,

PWa :¼ ff 2 CðRÞ : supp bf 
 ½�a; a�g
is called the Paley-Wiener space or the space of

band-limited functions. Here and in (2) below bf is

the Fourier transform of f defined as

bfð�Þ :¼
Z

Rm
fðxÞe�

ffiffiffiffiffi
�1
p

ðx;�Þdx:

The corresponding reproducing kernel Ka is given

by

Kaðx; yÞ ¼
sin aðx� yÞ
�ðx� yÞ

and the corresponding DPP is the limiting DPP

obtained from CUE (also GUE) eigenvalues.

(2) A generalized Paley-Wiener space is similarly

defined as follows: for a bounded Borel set � 
 Rm,

PW� :¼ ff 2 CðRmÞ : supp bf 
 �g:

When � ¼ BðmÞ1 
 Rm, the corresponding reproduc-

ing kernel is KðmÞðx; yÞ which appeared in Theorem

1.

(3) Let ðM; gÞ be a compact, smooth, Riemannian

manifold and �g be the Laplace-Beltrami operator

on L2ðM; volgÞ. We denote the resolution of the

identity for �g by fEðAÞ : A 2 BðRÞg. Then the

integral operator E� with kernel E�ðx; yÞ given in

(1.1) coincides with the projection Eð½0; �2�Þ and

W�� turns out to be the RKHS admitting the

reproducing kernel E�ðx; yÞ.
3. Proof of the main theorem. We define


� : T �pM !M by 
�ðuÞ ¼ exppðu=�Þ for u 2 T �pM.

For u; v 2 T �pM, we write U� ¼ 
�ðuÞ and V� ¼

�ðvÞ. We consider the kernel

K�;p;�ðu; vÞð3:1Þ

¼
1

�m
E�ðU�; V�Þ1Bp;�ðU�Þ1Bp;�ðV�Þ:

We have the following

Lemma 3. The scaled point process ��;p;�

defined by (1.4) is the DPP on T �pM associated with

the kernel K�;p;�ðu; vÞ of (3.1) and �m
�� volg.
Proof. We note that X�jBp;� is the DPP asso-

ciated with the kernel E�ðx; yÞ1Bp;�ðxÞ1Bp;�ðyÞ and the

reference measure volg. Then the pull-back 
��X�jBp;�
is the DPP associated with the kernel

E�ð
�ðuÞ; 
�ðvÞÞ1Bp;�ð
�ðuÞÞ1Bp;�ð
�ðvÞÞ and 
�� volg
since 
�jB�

: B� ! Bp;� is a diffeomorphism. The

law of this DPP is the same as that of the DPP

associated with the kernel (3.1) and �m
�� volg
through the measure change by the factor �m (cf.

[14, Section 2.3]). �

We remark that since ðd
�Þu ¼ ��1ðd
1Þu=�,
the pull-back of the Riemannian metric g on M

is expressed as �2ð
��gÞu ¼ ð
�1gÞu=� for u 2 T �pM.

Therefore, �m
�� volg is equal to the Riemannian

measure with respect to ð
�1gÞ�=�. For the proof of

Theorem 1, we appeal to the pointwise Weyl law

(1.3), which gives an off-diagonal asymptotics for

the projection kernel E�ðx; yÞ as �!1 as follows:

if x is close enough to y, i.e., x 2 By;� with

� < inj�ðMÞ, then

E�ðx; yÞ ¼
�m

ð2�Þm
Z
j�jgy<1

e
ffiffiffiffiffi
�1
p

� ðx;y;�Þ d�ffiffiffiffiffiffiffiffiffiffiffiffi
det gy

pð3:2Þ

þ R�ðx; yÞ;
where  ðx; y; �Þ is a phase function which is

adapted, in Hörmander’s terminology [11], to the

principal symbol j�jgy of
ffiffiffiffiffiffiffiffiffiffi
��g

p
, vanishing on the

diagonal x ¼ y. This type of asymptotics for the

spectral function was initiated by Hörmander [11]

as an application of the theory of pseudo-differential

operators and recovers the classical Weyl law (1.2).

The choice of a phase function is not unique, and

one can take

 ðx; y; �Þ ¼ hexp�1
y ðxÞ; �igyð3:3Þ

in a coordinate-independent way [4,25]. Indeed, the

integral on the right-hand side of (3.2) with (3.3)

is taken over the cotangent fiber T �yM and it

is coordinate-independent since the measure

d�=
ffiffiffiffiffiffiffiffiffiffiffiffi
det gy

p
is the quotient of the canonical sym-

plectic form d� ^ dy on T �M by the Riemannian

volume form
ffiffiffiffiffiffiffiffiffiffiffiffi
det gy

p
dy on M. There are many

papers estimating the remainder term R�ðx; yÞ.
From [4, Theorem 2], the remainder term is uni-

formly estimated as follows:

Theorem 4 ([4,5,11]). We assume (3.3).

Then, for any fixed r > 0, as �!1,
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sup
dgðx;yÞ<r=�

jR�ðx; yÞj ¼ Oð�m�1Þ;

where dgðx; yÞ is the Riemannian distance.

Before giving a proof of the main theorem, we

see a generalization of the following formula

(cf. [14])

1

ð2�Þm=2

Z
j!j<1

e
ffiffiffiffiffi
�1
p

ð�;!Þd! ¼ Fm=2ðj�jÞ;ð3:4Þ

where F�ðtÞ ¼ J�ðtÞ=t� for � > 0.

Lemma 5. Let m ¼ dimM. For � 2 T �pM,

1

ð2�Þm=2

Z
j�jgp<1

e
ffiffiffiffiffi
�1
p

h�;�igp
d�ffiffiffiffiffiffiffiffiffiffiffiffi
det gp

p ¼ Fm=2ðj�jgpÞ:

Proof. We note that

h�; �igp ¼ ðg
�1=2
p �; g�1=2

p �Þ;

where g�1=2
p is the positive definite square root of the

inverse matrix g�1
p . In particular, j�jgp ¼ jg

�1=2
p �j.

From (3.4), by change of variables ! ¼ g�1=2
p �,

we have

Fm=2ðj�jgpÞ ¼
1

ð2�Þm=2

Z
j!j<1

e
ffiffiffiffiffi
�1
p

ðg�1=2
p �;!Þd!

¼
1

ð2�Þm=2

Z
j�jgp<1

e
ffiffiffiffiffi
�1
p

h�;�igp
d�ffiffiffiffiffiffiffiffiffiffiffiffi
det gp

p :

We obtain the assertion. �

Remark 1. We have a similar formula

1

ð2�Þm=2

Z
j�jgp¼1

e
ffiffiffiffiffi
�1
p

h�;�igp
d�ffiffiffiffiffiffiffiffiffiffiffiffi
det gp

p
¼ Fðm�2Þ=2ðj�jgpÞ:

We need one more fact for the local behavior of

the Riemannian distance function.

Lemma 6. For u; v 2 T �pM, let c1 and c2 be

C1 curves in M such that c1ð0Þ ¼ c2ð0Þ ¼ p, c01ð0Þ ¼
u and c02ð0Þ ¼ v. Then,

lim
t!0þ

dgðc1ðtÞ; c2ðtÞÞ
t

¼ ju� vjgp :

Proof. See Corollary 3.1 in [7] for instance. �

Now we are in a position to give a proof of the

main theorem.

Proof of Theorem 1. It suffices to show that

the DPP associated with K�;p;�ðu; vÞ and �m
�� volg
converges as �!1. Suppose dgðx; yÞ is small

enough. First we note that there exists � 2 T �yM
such that j�jgy ¼ 1 and exp�1

y ðxÞ ¼ dgðx; yÞ�. By

using Lemma 5, we see that

1

ð2�Þm=2

Z
j�jgy<1

e
ffiffiffiffiffi
�1
p

hexp�1
y ðxÞ;�igy

d�ffiffiffiffiffiffiffiffiffiffiffiffi
det gy

p
¼ Fm=2ðdgðx; yÞÞ:

From Lemma 3 with (3.1), (3.2) with (3.3), Theo-

rem 4 and Lemma 5, as �!1, we have

K�;p;�ðu; vÞ

¼
1

ð2�Þm
Z
j�jgV� <1

e
ffiffiffiffiffi
�1
p

�hexp�1
V�
ðU�Þ;�igV�

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gV�

p
� 1Bp;�ðU�Þ1Bp;�ðV�Þ þOð��1Þ

¼
1

ð2�Þm=2
Fm=2ð�dgðU�; V�ÞÞ1Bp;�ðU�Þ1Bp;�ðV�Þ

þOð��1Þ:
We note that limt!0 F�ðtÞ ¼ 2���ð�þ 1Þ�1 and so

F�ðtÞ is a bounded continuous function on R.

Since �dgðU�; V�Þ ! ju� vjgp by Lemma 6 and

1Bp;�ðU�Þ1Bp;�ðV�Þ is equal to 1 for any sufficiently

large �, we have

K�;p;�ðu; vÞ !
1

ð2�Þm=2
Fm=2ðju� vjgpÞ

uniformly on any compact set in T �pM. From the

remark after Lemma 3, the reference measure is the

Riemannian measure with respect to ð
�1gÞ�=� and

the Radon-Nikodym derivative relative to the

Riemannian measure with respect to ð
�1gÞ0 is

uniformly close to 1 on any compact set as �!
1. Therefore, it follows from Lemma 2 that the

scaled point process ��;p;� converges weakly to the

DPP associated with the kernel K
ðmÞ
gp ðu; vÞ given by

(1.5) and the reference measure given by the

Riemannian measure with respect to the constant

metric ð
�1gÞ0. The proof is completed. �

4. Concluding remarks. We have seen the

local universality of DPPs on Riemannian mani-

folds. From this discussion, we came to several

other questions.

(a) What is the universality when we consider the

Heisenberg case in Zelditch’s terminology?

We only discussed the Euclidean case in this

article. One can expect that the Bergman

kernel is involved as in [2,13,23,24].

(b) We dealt with Laplace-Beltrami operators

corresponding to the principal symbol j�jgy .
What is the local universality result when we

consider more general DPPs associated with

the spectral projections of elliptic differential

operators possibly with potentials?
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(c) In this paper we have considered a point

process ��;p;� on T �pM at each ‘point’ p 2M.

We expect that the collection ��;� ¼
f��;p;�gp2M will be regarded as a ‘random field’

on the cotangent bundle T �M ¼ [p2MT �pM.

Theorem 1 determines the limit ��;p;� ! �p in

�!1. How can we describe the limiting

random field ��;� ! � in �!1?
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propres du laplacien, Comm. Math. Phys. 102
(1985), no. 3, 497–502.

[ 7 ] J. X. da Cruz Neto, O. P. Ferreira and L. R.
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Kôkyûroku Bessatsu B79 (2020), 123–138.

[ 14 ] M. Katori and T. Shirai, Partial isometry, duality,
and determinantal point processes, Random
Matrices: Theory and Applications 11 (2022),
no. 3, 2250025.

[ 15 ] O. Macchi, The coincidence approach to stochas-
tic point processes, Advances in Appl. Proba-
bility 7 (1975), 83–122.

[ 16 ] T. Shirai and Y. Takahashi, Fermion process and
Fredholm determinant, in Second ISAAC Con-
gress (Fukuoka, 1999), 15–23, Proceedings of
the Second ISAAC Congress, Vol. 1, Kluwer
Acad. Publ., Dordrecht, 2000.

[ 17 ] T. Shirai and Y. Takahashi, Random point fields
associated with certain Fredholm determinants.
I. Fermion, Poisson and boson point processes,
J. Funct. Anal. 205 (2003), no. 2, 414–463.

[ 18 ] T. Shirai and Y. Takahashi, Random point fields
associated with certain Fredholm determinants.
II. Fermion shifts and their ergodic and Gibbs
properties, Ann. Probab. 31 (2003), no. 3,
1533–1564.
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