Non-left-orderability of cyclic branched covers of pretzel knots $P(3,-3,-2 k-1)$

By Lin Li ${ }^{*)}$ and Zipei Nie**
(Communicated by Kenji Fukaya, M.J.A., Nov. 14, 2022)

Abstract

We prove the non-left-orderability of the fundamental group of the n-th fold cyclic branched cover of the pretzel knot $P(3,-3,-2 k-1)$ for all integers k and $n \geq 1$. These 3manifolds are L-spaces discovered by Issa and Turner.

Key words: Branched cover; non-left-orderable group; Pretzel knot.

1. Introduction. A nontrivial group G is called left-orderable, if and only if it admits a total ordering \leq which is invariant under left multiplication, that is, $g \leq h$ if and only if $f g \leq f h$. An L-space is a rational homology 3 -sphere with minimal Heegaard Floer homology, that is, rank $\widehat{H F}=\left|H_{1}(Y)\right|$. The following equivalence relationship was conjectured by Boyer, Gordon and Watson.

Conjecture 1.1 [2]. An irreducible rational homology 3-sphere is an L-space if and only if its fundamental group is not left-orderable.

Issa and Turner [5] studied a family of pretzel knots named $P(3,-3,-2 k-1)$. They defined a family of two-fold quasi-alternating knots $L\left(k_{1}, k_{2}, \ldots, k_{n}\right)$, as shown in Fig. 1 , and constructed the homeomorphism

$$
\Sigma_{n}(P(3,-3,-2 k-1)) \cong \Sigma_{2}(L(-k,-k, \ldots,-k))
$$

Because two-fold quasi-alternating links are Khovanov homology thin [8], the double branched covers of them are L-spaces [7]. In this way, they proved that all n-th fold cyclic branched covers $\Sigma_{n}(P(3,-3,-2 k-1))$ are L-spaces.

We prove the following result which is consistent with Conjecture 1.1.

Theorem 1.2. For any integers $k_{1}, k_{2}, \ldots, k_{n}$, the double branched cover of $L\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ has a non-left-orderable fundamental group.

As a corollary, the fundamental group of the

[^0]n-th fold cyclic branched cover of the pretzel knot $P(3,-3,-2 k-1)$ is not left-orderable.

In Section 2, we derive a presentation of the fundamental group of double branched cover of $L\left(k_{1}, k_{2}, \ldots, k_{n}\right)$.

In Section 3, we prove our main result.
2. The Brunner's presentation. A tool to compute the fundamental group of the double branched cover of an unsplittable link is the Brunner's presentation [3]. One could also use the Wirtinger's presentation to derive an equivalent form, but the computation would be longer. Historically, Ito [6] used the coarse Brunner's presentation, a generalized version of Brunner's presentation, to prove the non-left-orderability of double branched covers of unsplittable alternating links. Abchir and Sabak [1] proved the non-left-orderability of double branched covers of certain kinds of quasi-alternating links in a similar way.

Consider the checkerboard coloring of the knot diagram D in Fig. 1. Let G and \tilde{G} be the decomposition graph as shown in Fig. 2 and the connectivity graph as shown in Fig. 3.

In the Brunner's presentation of the fundamental group $\pi_{1}\left(\Sigma_{2}\left(L\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right)\right)$. Let $e_{i}, f_{i}, g_{i}, b_{i}(1 \leq i \leq n)$ be the edge generators, and $a_{i}, c_{i}(1 \leq i \leq n)$ be the region generators. Then the local edge relations are $e_{i}=a_{i}^{k_{i}}, \quad b_{i}=c_{i}^{-1}, \quad f_{i}=$ $\left(a_{i}^{-1} c_{i}\right)^{-2}$ and $g_{i}=c_{i-1}^{-1} a_{i}(1 \leq i \leq n)$. And the global cycle relations are $f_{i}^{-1} e_{i} g_{i}=1$ and $f_{i}^{-1} b_{i} g_{i+1}=1$ $(1 \leq i \leq n)$. Here the subscripts are considered modulo n.

By simplification, we get the following presentation of $\pi_{1}\left(\Sigma_{2}\left(L\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right)\right)$:

$$
\left\langle a_{i}, b_{i} \mid a_{i+1}=b_{i}^{-1} a_{i} b_{i} a_{i}, a_{i}^{k_{i}}=b_{i} a_{i} b_{i} b_{i-1}^{-1}\right\rangle
$$

where $i=1, \ldots, n$ and we view subscripts modulo n.

Fig. 1. The link $L\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ in [5].

Fig. 2. Decomposition graph G for $n=4$.

Fig. 3. Connectivity graph \tilde{G} for $n=4$.
3. The non-left-orderability. We are going to prove our non-left-orderability result. Let \leq be any total preorder on the fundamental group $\pi_{1}\left(\Sigma_{2}\left(L\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right)\right)$ which is invariant under left multiplication. Then we have the following lemmas.

Lemma 3.1. If

$$
\forall m \cdot\left(b_{i}^{-1} a_{i+1}^{m} \geq 1\right)
$$

then

$$
\forall m_{2} \exists m_{1} \cdot\left(a_{i+1}^{-m_{1}} b_{i}^{-1} a_{i}^{m_{2}} \geq 1\right)
$$

Proof. By taking $m=0$ in the assumption, we have $b_{i}^{-1} \geq 1$.

For the sake of contradiction, suppose that

$$
\neg \forall m_{2} \exists m_{1} \cdot\left(a_{i+1}^{-m_{1}} b_{i}^{-1} a_{i}^{m_{2}} \geq 1\right)
$$

which is equivalent to

$$
\exists m_{2} \forall m_{1} \cdot \neg\left(a_{i+1}^{-m_{1}} b_{i}^{-1} a_{i}^{m_{2}} \geq 1\right)
$$

By the strong connectedness of \leq, for any integers m_{1}, m_{2}, we have

$$
\neg\left(a_{i+1}^{-m_{1}} b_{i}^{-1} a_{i}^{m_{2}} \geq 1\right) \Longrightarrow\left(a_{i+1}^{-m_{1}} b_{i}^{-1} a_{i}^{m_{2}} \leq 1\right)
$$

Hence

$$
\forall m_{1} \cdot\left(a_{i+1}^{-m_{1}} b_{i}^{-1} a_{i}^{m_{2}} \leq 1\right)
$$

for some integer m_{2}.
By taking $m_{1}=0$, we have

$$
b_{i}^{-1} a_{i}^{m_{2}} \leq 1
$$

Since

$$
a_{i+1}=b_{i}^{-1} a_{i} b_{i} a_{i}
$$

we have

$$
\left(a_{i+1} a_{i}^{-1}\right)^{m_{2}} b_{i}^{-1}=b_{i}^{-1} a_{i}^{m_{2}}
$$

Hence we have $a_{i}^{m_{2}} \leq 1$ and $\left(a_{i+1} a_{i}^{-1}\right)^{m_{2}} \leq 1$, which implies $a_{i+1}^{m_{2}} \leq 1$. By assumption, we have

$$
\forall m \cdot\left(a_{i+1}^{-m} a_{i}^{m_{2}} \leq 1\right)
$$

So we have

$$
\forall\left(m \text { has same sign as } m_{2}\right) \cdot\left(a_{i+1}^{-m} a_{i}^{m_{2}} a_{i+1}^{m} \leq 1\right)
$$

If $m_{2} \geq 0$, then

$$
\begin{aligned}
& \left(a_{i+1} a_{i}^{-1}\right)^{m_{2}} \\
& \quad=a_{i+1}^{m_{2}}\left(a_{i+1}^{-m_{2}+1} a_{i}^{-1} a_{i+1}^{m_{2}-1}\right) \cdots\left(a_{i+1}^{-1} a_{i}^{-1} a_{i+1}\right) a_{i}^{-1}
\end{aligned}
$$

If $m_{2}<0$, then

$$
\begin{aligned}
& \left(a_{i+1} a_{i}^{-1}\right)^{m_{2}} \\
& \quad=a_{i+1}^{m_{2}}\left(a_{i+1}^{-m_{2}} a_{i} a_{i+1}^{m_{2}}\right) \cdots\left(a_{i+1}^{2} a_{i} a_{i+1}^{-2}\right)\left(a_{i+1} a_{i} a_{i+1}^{-1}\right)
\end{aligned}
$$

Therefore, we have

$$
a_{i+1}^{-m_{2}}\left(a_{i+1} a_{i}^{-1}\right)^{m_{2}} \geq 1
$$

So we have

$$
\begin{aligned}
& a_{i+1}^{-m_{2}} b_{i}^{-1} a_{i}^{m_{2}} \\
& \quad=a_{i+1}^{-m_{2}}\left(a_{i+1} a_{i}^{-1}\right)^{m_{2}} b_{i}^{-1} \\
& \quad \geq 1,
\end{aligned}
$$

which implies the conclusion.
Lemma 3.2. If

$$
\forall m \cdot\left(b_{i}^{-1} a_{i+1}^{m} \geq 1\right)
$$

then

$$
\forall m \cdot\left(b_{i-1}^{-1} a_{i}^{m} \geq 1\right)
$$

Proof. Because

$$
a_{i+1}=b_{i}^{-1} a_{i} b_{i} a_{i}
$$

and

$$
a_{i}^{k_{i}}=b_{i} a_{i} b_{i} b_{i-1}^{-1},
$$

we have

$$
\begin{aligned}
& b_{i-1}^{-1} a_{i}^{m} \\
& \quad=b_{i}^{-1} a_{i}^{-1} b_{i}^{-1} a_{i}^{m+k_{i}} \\
& \quad=b_{i}^{-1} a_{i+1}^{-1} b_{i}^{-1} a_{i}^{m+k_{i}+1} .
\end{aligned}
$$

By Lemma 3.1, we have

$$
\exists m_{1} \cdot\left(a_{i+1}^{-m_{1}} b_{i}^{-1} a_{i}^{m+k_{i}+1} \geq 1\right)
$$

By assumption, we have $b_{i}^{-1} a_{i+1}^{m_{1}-1} \geq 1$. Therefore, we conclude that

$$
\begin{aligned}
& b_{i-1}^{-1} a_{i}^{m} \\
& \quad=\left(b_{i}^{-1} a_{i+1}^{m_{1}-1}\right)\left(a_{i+1}^{-m_{1}} b_{i}^{-1} a_{i}^{m+k_{i}+1}\right) \\
& \quad \geq 1
\end{aligned}
$$

Let us apply the fixed point method on a_{1}. This is a common technique in the proofs of many non-left-orderability results. If the fundamental group $\pi_{1}\left(\Sigma_{2}\left(L\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right)\right)$ has a left order \leq, then [4] there exists a homomorphism ρ from this group to $\mathrm{Homeo}_{+}(\mathbf{R})$ with no global fixed points, and $g \leq h$ if and only if $\rho(g)(0) \leq \rho(h)(0)$. Then for the element a_{1}, there are two situations:
(1) If $\rho\left(a_{1}\right)$ has a fixed point s, then there is a left total preorder $\leq_{a_{1}}$, defined as $g \leq h$ if and only if $\rho(g)(s) \leq \rho(h)(s)$, with $a_{1} \geq_{a_{1}} 1$ and
$a_{1}^{-1} \geq a_{1} 1$.
(2) Otherwise, any conjugate of a_{1} has the same sign as a_{1}.
We assume the first situation, then $\leq_{a_{1}}$ is a total preorder which is invariant under left multiplication. Without loss of generality, we assume that $b_{n} \leq a_{1} 1$, then

$$
\forall m \cdot\left(b_{n}^{-1} a_{1}^{m} \geq_{a_{1}} 1\right) .
$$

By inductive applications of Lemma 3.2, we have

$$
\forall m .\left(b_{i}^{-1} a_{i+1}^{m} \geq_{a_{1}} 1\right)
$$

for any $i=1, \ldots, n$. By Lemma 3.1, we have the relation

$$
\forall m_{2} \exists m_{1} \cdot\left(a_{i+1}^{-m_{1}} b_{i}^{-1} a_{i}^{m_{2}} \geq_{a_{1}} 1\right)
$$

for any $i=1, \ldots, n$.
Because

$$
a_{i+1}=b_{i}^{-1} a_{i} b_{i} a_{i}
$$

and

$$
a_{i}^{k_{i}}=b_{i} a_{i} b_{i} b_{i-1}^{-1},
$$

we have

$$
\begin{aligned}
& b_{i}^{-1} a_{i}^{k_{i}} \\
& \quad=a_{i} b_{i} b_{i-1}^{-1} \\
& \quad=b_{i} a_{i+1} a_{i}^{-1} b_{i-1}^{-1} \\
& \quad=\left(b_{i} a_{i+1}\right)\left(b_{i-1} a_{i}\right)^{-1}
\end{aligned}
$$

Hence we have

$$
\forall m_{2} \exists m_{1} \cdot\left(\left(b_{i-1} a_{i}\right)^{-1} a_{i}^{m_{2}} \geq_{a_{1}}\left(b_{i} a_{i+1}\right)^{-1} a_{i+1}^{m_{1}}\right)
$$

By induction, we have

$$
\forall m_{2} \exists m_{1} \cdot\left(\left(b_{1} a_{2}\right)^{-1} a_{2}^{m_{2}} \geq_{a_{1}}\left(b_{n} a_{1}\right)^{-1} a_{1}^{m_{1}}\right)
$$

and especially we get

$$
\exists m_{1} \cdot\left(\left(b_{1} a_{2}\right)^{-1} \geq_{a_{1}}\left(b_{n} a_{1}\right)^{-1} a_{1}^{m_{1}}\right)
$$

Then we have

$$
\exists m_{1} \cdot\left(1 \geq_{a_{1}} b_{1}^{-1} a_{1}^{m_{1}+k_{1}}\right)
$$

which implies $b_{1} \geq_{a_{1}}$. Because

$$
\forall m \cdot\left(b_{i}^{-1} a_{i+1}^{m} \geq_{a_{1}} 1\right)
$$

implies $b_{1}^{-1} \geq a_{1} 1$, every fixed point of a_{1} is also a fixed point of b_{1}.

By

$$
a_{i+1}=b_{i}^{-1} a_{i} b_{i} a_{i}
$$

every fixed point of a_{1} is also a fixed point of a_{2}. By symmetry and induction, any fixed point of a_{1} is a global fixed point.

Now we assume any conjugate of a_{1} is positive. By

$$
a_{i+1}=b_{i}^{-1} a_{i} b_{i} a_{i},
$$

if any conjugate of a_{i} is positive, then any conjugate of a_{i+1} is positive. By induction, any conjugate of a_{i} is positive. Since

$$
a_{i+1} a_{i}^{-1}=b_{i}^{-1} a_{i} b_{i} \geq 1,
$$

and the fact that the product of all $a_{i+1} a_{i}^{-1}$ is identity, we have $a_{i}=a_{i+1}$ for all $i=1, \ldots, n$. Furthermore, we have $a_{i}=1$. Then the fundamental group is finite, so it is not left-orderable.

Therefore, we proved the non-left-orderability.
Acknowledgements. The authors thank Wei Chen, Nathan Dunfield, Heng Liao, Luigi Lunardon and Hannah Turner for helpful discussions.

References

[1] H. Abchir and M. Sabak, Infinite family of non-left-orderable L-spaces, arXiv:2104.14930.
[2] S. Boyer, C. McA. Gordon and L. Watson, On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013), no. 4, 12131245.
[3] A. M. Brunner, The double cover of S^{3} branched along a link, J. Knot Theory Ramifications 6 (1997), no. 5, 599-619.
[4] C. Holland, The lattice-ordered groups of automorphisms of an ordered set, Michigan Math. J. 10 (1963), 399-408.
[5] A. Issa and H. Turner, Links all of whose cyclic branched covers are L-spaces, arXiv: 2008.06127.
[6] T. Ito, Non-left-orderable double branched coverings, Algebr. Geom. Topol. 13 (2013), no. 4, 1937-1965.
[7] P. Ozsváth and Z. Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1-33
[8] C. Scaduto and M. Stoffregen, Two-fold quasialternating links, Khovanov homology and instanton homology, Quantum Topol. 9 (2018), no. 1, 167-205.

[^0]: 2020 Mathematics Subject Classification. Primary 57M05, 57M12.
 *) Huawei HiSilicon, 1599 Xinjinqiao Road, Pudong District, Shanghai 200216, China.
 **) Lagrange Mathematics and Computing Research Center, Huawei, 103 Rue Grenelle, Paris 75007, France.

