On the tree-depth and tree-width in heterogeneous random graphs

By Yilun Shang
Department of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, U.K.

(Communicated by Kenji Fukaya, M.J.A., Oct. 12, 2022)

Abstract

In this note, we investigate the tree-depth and tree-width in a heterogeneous random graph obtained by including each edge $e_{i j}(i \neq j)$ of a complete graph K_{n} over n vertices independently with probability $p_{n}\left(e_{i j}\right)$. When the sequence of edge probabilities satisfies some density assumptions, we show both tree-depth and tree-width are of linear size with high probability. Moreover, we extend the method to random weighted graphs with non-identical edge weights and capture the conditions under which with high probability the weighted tree-depth is bounded by a constant.

Key words: Tree-depth; tree-width; random graph; heterogeneous graph.

1. Introduction. For a simple connected graph G, an elimination tree T of G is a rooted tree on the vertices of G in which G has no edges connecting two different branches in T. Note that T and G have the same sets of vertices but T does not need to be a subgraph of G. Elimination tree, firstly used by Duff [7], is one of the most important concepts in scientific computing and numerical linear algebra. It plays a pivotal role in areas including Cholesky factorization of sparse matrices, combinatorial optimization algorithms, and data structures $[5,16,23]$. Equivalently, a rooted tree T on the sets of vertices of G becomes an elimination tree of G if G is a subgraph of the closure of T, where the closure of a rooted tree T is obtained from T by adding all (and only) edges between an ancestor and its descendant. The height of a rooted tree is the number of vertices on the longest path between the root and a leaf. Tree-depth of G, denoted by $\operatorname{td}(G)$, is the minimum height of an elimination tree of G. If G is not connected, $\operatorname{td}(G)$ is defined as the maximum tree-depth among its connected components. It is known that the maximum tree-depth for a graph over n vertices is only attained by the complete graph K_{n} with $\operatorname{td}\left(K_{n}\right)=n$ and $\operatorname{td}(T) \leq\left\lfloor\log _{2} n\right\rfloor+1$ for a tree T. Moreover, the path P_{n} attains the upper bound among all tree graphs [8]. An example is shown in Fig. 1.

A related concept is the tree-width, denoted by $\operatorname{tw}(G)$, which captures the closeness of a graph

[^0]relative to a tree while tree-depth captures the closeness of a graph relative to a star. Tree-width, put forward by Robertson and Seymour [20] in 1986, is a useful parameter in the parameterized complexity analysis of many graph algorithms $[1,11,22]$. A graph G has tree-width $\operatorname{tw}(G)=k$ if it is a subgraph of a k-tree with minimum k. Here, a k-tree is obtained by beginning with the complete graph K_{k+1} and repeatedly adding vertices so that each newly added vertex is adjacent to every vertex of an existing k-clique. By definition, it is clear that $\operatorname{tw}\left(K_{n}\right)=n-1$ and $\operatorname{tw}(T)=1$ for any tree T. However, determining tree-width for a general graph is NP-complete. Tree-width is related to tree-depth through the following inequality $[2,11]$
\[

$$
\begin{equation*}
\operatorname{tw}(G) \leq \operatorname{td}(G) \leq\left(1+\log _{2} n\right) \operatorname{tw}(G) \tag{1.1}
\end{equation*}
$$

\]

Here, we are interested in the two graph invariants $\operatorname{td}(G)$ and $\operatorname{tw}(G)$ in the context of heterogeneous random graphs. Consider a complete graph K_{n} over the vertex set $V=\{1,2, \cdots, n\}$. Let $e_{i j}=e_{j i}$ denote the edge connecting vertices i and j for $i \neq j$. Given a set of edge probabilities $\mathbf{p}_{n}=$ $\left\{p_{n}\left(e_{i j}\right)\right\}_{1 \leq i<j \leq n}$, the heterogeneous random graph model $G\left(n, \mathbf{p}_{n}\right)$ can be defined by including each edge $e_{i j}$ of K_{n} independently with edge probability $p_{n}\left(e_{i j}\right)$. Clearly, when $p_{n}\left(e_{i j}\right) \equiv p_{n}$ for all i and j $(i \neq j)$, we reproduce the ordinary Erdős-Rényi random graph $G\left(n, p_{n}\right)$. A closely related model is called the uniform random graph $G\left(n, m_{n}\right)$, where each graph with m_{n} edges occurs with the same probability. Many results of random graphs can be transferred equivalently between $G\left(n, p_{n}\right)$ and

Fig. 1. Path graph $G=P_{11}$ has tree-depth $\operatorname{td}(G)=\left\lfloor\log _{2} 11\right\rfloor+$ $1=4$. (a) The path G; (b) The elimination tree T of G, which has height 4 ; (c) The closure of T.
$G\left(n, m_{n}\right)$ via the mapping $p_{n}=m_{n}\binom{n}{2}^{-1}$. In the past few decades, heterogeneous random graphs are gaining traction as they well underpin complex network models [18], which often have non-trivial topological structures (such as heterogeneous degree distributions, community structure and hierarchy) eliciting fascinating phenomena in nature and technology. For a recent survey of varied random graph models and their mathematical results, we refer readers to the monograph [10]. In particular, the majority dynamics over $G\left(n, \mathbf{p}_{n}\right)$ has been studied in [21].

In random graphs, we say a graph property holds with high probability (w.h.p.) if the probability that all graphs holding this property occur tends to 1 as $n \rightarrow \infty$. It is shown by Kloks [13] that $G\left(n, m_{n}\right)$ with $m_{n} / n \geq c=1.18$ has linear treewidth $\operatorname{tw}\left(G\left(n, m_{n}\right)\right)=\Theta(n)$ w.h.p. This constant c has been further improved to 1.073 in [3] and 0.5 in [14]. For $G\left(n, p_{n}\right)$ model, it is found in [24] that w.h.p. $\operatorname{tw}\left(G\left(n, p_{n}\right)\right) \geq n-o(n)$ when $n \gg n p_{n} \rightarrow \infty$. In the case of $n p_{n}=1+\varepsilon$ for a sufficiently small $\varepsilon>0$, it is shown that $\operatorname{tw}\left(G\left(n, p_{n}\right)\right)=$ $n \Omega\left(-\varepsilon^{3}(\ln \varepsilon)^{-1}\right)$ w.h.p. [6]. Tree-width has also been investigated for random intersection graphs [3] and geometric random graphs [15]. Perarnau and Serra [19] proved that $\operatorname{td}\left(G\left(n, p_{n}\right)\right)=n-$ $O\left((n / p)^{1 / 2}\right)$ when $n p_{n} \rightarrow \infty$. Tree-depth as well as tree-width of random geometric graphs has also been studied in [17].

Along the above line of research, in this short note we first study tree-depth and tree-width for
dense heterogeneous random graph $G\left(n, \mathbf{p}_{n}\right)$ in Section 2. We then extend our approach to weighted random graphs with non-identical weight distributions in Section 3. Standard Landau asymptotic notations such as O, o, Θ and \ll will be used throughout the paper by convention in random graph literature; c.f. [10].
2. Tree-depth and tree-width in heterogeneous random graphs. To begin with, we define the expected neighbor density for a vertex $i \in V$ with respect to a set of vertices. Specifically, given $\quad S \subseteq V \quad$ and $\quad i \notin S \quad$ let $\quad d_{n}(i, S)=$ $|S|^{-1} \sum_{j \in S} p_{n}\left(e_{i j}\right)$. It measures average number of neighbors of vertex i within the set S.

Theorem 1. Suppose that there is a sequence $\left\{p_{n}\right\}_{n \geq 1}$ and constants α and β satisfying $p_{n} \in(0,1), 0<\alpha<\frac{2}{9 \ln 3} \beta$, and for all n large

$$
\begin{equation*}
p_{n} \geq \frac{1}{\alpha n} \quad \text { and } \quad \min _{i \in V} \min _{\substack{S: i \notin S \\|S| \geq n \\ \frac{\alpha \ln 3}{2 \beta}}} d_{n}(i, S) \geq \beta p_{n} . \tag{2.1}
\end{equation*}
$$

Then for any constant $c=c(\alpha, \beta)$ satisfying $3 \sqrt{\frac{\alpha \ln 3}{2 \beta}}<c \leq 1$ we have
(2.2) $\quad \mathbf{P}\left(n-\lfloor c n\rfloor \leq \operatorname{td}\left(G\left(n, \mathbf{p}_{n}\right)\right) \leq n\right) \geq 1-e^{-\Theta(n)}$ and similarly

$$
\begin{equation*}
\mathbf{P}\left(n-\lfloor c n\rfloor \leq \operatorname{tw}\left(G\left(n, \mathbf{p}_{n}\right)\right) \leq n\right) \geq 1-e^{-\Theta(n)} \tag{2.3}
\end{equation*}
$$

for all n large. Here, $\Theta(n)$ is a function of c.
Before proving Theorem 1, we present an example with non-trivial edge probabilities $\left\{\mathbf{p}_{n}\right\}_{n>1}$ satisfying the condition (2.1). Set $\alpha=1$, $\beta=10$, and $p_{n}=\frac{1}{n}$ for $n \geq 1$. For $1 \leq i<j \leq\left\lceil\frac{n}{10}\right\rceil$, let $p_{n}\left(e_{i j}\right)=\frac{1}{n \ln n}$, and for any other $i<j$, let $p_{n}\left(e_{i j}\right)=\frac{100}{n}$. Since $\sqrt{\frac{\alpha \ln 3}{2 \beta}}>\frac{1}{5}$, for any $i \notin S$ and $|S| \geq \frac{n}{5}$, we have

$$
\begin{aligned}
d_{n}(i, S) & \geq \frac{1}{|S|}\left(\frac{1}{n \ln n}\left\lceil\frac{n}{10}\right\rceil+\left(|S|-\left\lceil\frac{n}{10}\right\rceil\right) \frac{100}{n}\right) \\
& \geq \frac{5}{n}\left(\frac{1}{n \ln n} \cdot \frac{n}{10}+\left(\frac{n}{10}-1\right) \frac{100}{n}\right) \\
& =\frac{n+100(n-10) \ln n}{2 n^{2} \ln n} \\
& \geq \frac{1+50 \ln n}{2 n \ln n} \\
& >\beta p_{n}
\end{aligned}
$$

for all $n>20$. Therefore, (2.1) holds true and it follows from (2.2) and (2.3) that, for example, $\mathbf{P}\left(\min \left\{\operatorname{td}\left(G\left(n, \mathbf{p}_{n}\right)\right), \quad \operatorname{tw}\left(G\left(n, \mathbf{p}_{n}\right)\right)\right\} \geq 0.29 n\right) \geq 1-$
$e^{-\Theta(n)}$ for all large n.
To prove Theorem 1, we need the following lemma with regard to balanced separators [13, Lem 5.3.1, Lem 6.1.2].

Lemma 1. Let G be a graph over the vertex set V with $|V|=n . \quad$ For any number $k \in$ $[\operatorname{tw}(G), n-4], \quad G$ has a balanced $\quad k$-partition (S, A, B) in the following sense.

Mutually exclusive sets S, A and B satisfy $S \cup A \cup B=V, \quad|S|=k+1, \quad \frac{1}{3}(n-k-1) \leq|A| \leq$ $|B| \leq \frac{2}{3}(n-k-1)$, where S forms a separator in G meaning that no edges run between A and B.

Proof of Theorem 1. Fix any constant $c>3 \sqrt{\frac{\alpha \ln 3}{2 \beta}}$. The assumption $0<\alpha<\frac{2}{9 \ln 3} \beta$ ensures $c<1$. If $G\left(n, \mathbf{p}_{n}\right)$ has a balanced k-partition (S, A, B) as described in Lemma 1 with $|S|=k+$ $1 \leq(1-c) n, \quad$ then $\quad|B| \geq|A| \geq \frac{1}{3}(n-k-1) \geq \frac{c n}{3}$. Hence, we have

$$
\begin{equation*}
|A||B| \geq|A|(c n-|A|) \geq \frac{2}{9} c^{2} n^{2} \tag{2.4}
\end{equation*}
$$

Define $\mathcal{E}(S, A, B)$ to be the event that $G\left(n, \mathbf{p}_{n}\right)$ admits a balanced k-partition (S, A, B) with $|S|=k+1 \leq(1-c) n$. We obtain

$$
\begin{align*}
\mathbf{P}(\mathcal{E}(S, A, B)) & =\prod_{i \in A, j \in B}\left(1-p_{n}\left(e_{i j}\right)\right) \tag{2.5}\\
& \leq e^{-\sum_{i \in A, j \in B} p_{n}\left(e_{i j}\right)} \\
& =e^{-\sum_{i \in A}|B| d_{n}(i, B)} \\
& \leq e^{-p_{n} \beta|A| \cdot|B|} \\
& \leq e^{-\frac{2}{9} p_{n} \beta c^{2} n^{2}}
\end{align*}
$$

where in the second inequality above we used the estimate $|B| \geq \frac{c n}{3} \geq n \sqrt{\frac{\alpha \ln 3}{2 \beta}}$ and (2.1), and in the last inequality we applied (2.4).

Let \mathcal{C} be the collection of all balanced k-partitions (S, A, B) with $|S|=k+1 \leq(1-c) n$. A simple upper bound is given by $|\mathcal{C}| \leq 3^{n}$ since each vertex is allowed for three options in a balanced k-partition. In the light of (2.5) we can bound the probability of existing such a partition as

$$
\begin{align*}
\mathbf{P}\left(\cup_{(S, A, B) \in \mathcal{C}} \mathcal{E}(S, A, B)\right) & \leq \sum_{(S, A, B) \in \mathcal{C}} \mathbf{P}(\mathcal{E}(S, A, B)) \tag{2.6}\\
& \leq 3^{n} e^{-\frac{2}{9} p_{n} \beta c^{2} n^{2}} \\
& \leq e^{n\left(\ln 3-\frac{2 \beta c^{2}}{9 \alpha}\right)}
\end{align*}
$$

where in the last inequality the assumption $p_{n} \geq \frac{1}{\alpha n}$ in (2.1) is utilized. Recall that $c>3 \sqrt{\frac{\alpha \ln 3}{2 \beta}}$. There-
fore, the probability in (2.6) is tantamount to $e^{-\Theta(n)}$. Consequently, it follows from Lemma 1 that

$$
\begin{aligned}
\mathbf{P}\left(\operatorname{tw}\left(G\left(n, \mathbf{p}_{n}\right)\right)\right. & \leq\lfloor(1-c) n\rfloor) \\
& \leq \mathbf{P}\left(\cup_{(S, A, B) \in \mathcal{C}} \mathcal{E}(S, A, B)\right) \leq e^{-\Theta(n)}
\end{aligned}
$$

which yields (2.3). Combining it with (1.1), we know that the result (2.2) also holds.

By taking $\beta=1,0<\alpha<\frac{2}{9 \ln 3}$, and $p_{n}\left(e_{i j}\right)=p_{n}$ for all $i<j$ in Theorem 1, we obtain the following result for homogeneous random graph $G\left(n, p_{n}\right)$.

Corollary 1. Suppose that $p_{n} \geq \frac{1}{\alpha n}$ with $\alpha \in$ $\left(0, \frac{2}{9 \ln 3}\right)$. For any constant $c>3 \sqrt{\frac{\alpha \ln 3}{2}}$ and all n large, we have

$$
\mathbf{P}\left(n-\lfloor c n\rfloor \leq \operatorname{td}\left(G\left(n, p_{n}\right)\right) \leq n\right) \geq 1-e^{-\Theta(n)}
$$

and

$$
\mathbf{P}\left(n-\lfloor c n\rfloor \leq \operatorname{tw}\left(G\left(n, p_{n}\right)\right) \leq n\right) \geq 1-e^{-\Theta(n)}
$$

In particular, w.h.p. $\quad \operatorname{td}\left(G\left(n, p_{n}\right)\right)=\Theta(n) \quad$ and $\operatorname{tw}\left(G\left(n, p_{n}\right)\right)=\Theta(n)$.

These estimates are in line with previous results in [24] and [19] for dense Erdős-Rényi random graphs while enjoy more explicit convergence rate estimates.

It is also worth noting that Theorem 1 for heterogeneous random graphs is non-trivial. For instance, in the example above, we have chosen $p_{n}\left(e_{i j}\right)=\frac{1}{n \ln n} \ll \frac{1}{n}$, which in a homogeneous random graph will only lead to tree-depth (and tree-width) of $\Theta(\ln \ln n)$; see [19, Theorem 1.2].
3. Tree-depth in weighted random graphs. In this section, we consider weighted heterogeneous random graphs by placing a random weight $w\left(e_{i j}\right)=w\left(e_{j i}\right)$ on each edge $e_{i j}$ of K_{n}. Given an elimination tree of G, for the longest downward path between the root and a leaf $P=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$, we define $w(P):=\sum_{j=1}^{\ell-1} w\left(e_{i_{j} i_{j+1}}\right)$ as the weight of P, i.e., $w(P)$ is the weighted height of the elimination tree. Let $\operatorname{td}^{w}(G):=\min _{P} w(P)$ be the minimum weighted height of an elimination tree of G. We call $\operatorname{td}^{w}(G)$ the weighted tree-depth of G. Tree-depth as a parameter has been intensively studied in some graph algorithms for weighted graphs including the fixed parameter tractable (FPT) algorithms [4,12]. However, most of these works concern fixed graph and deterministic weights.

For every edge $e_{i j}$ in K_{n}, let $F_{i j}$ be the cumulative distribution function of the weight $w\left(e_{i j}\right)$ and set

$$
p_{n}\left(e_{i j}\right):=F_{i j}\left(\frac{1}{n}\right)=\mathbf{P}\left(w\left(e_{i j}\right) \leq \frac{1}{n}\right)
$$

By definition, we have $F_{i j}=F_{j i}$ for $i \neq j$. The result below shows that the weighted tree-depth is bounded above by a constant w.h.p. It is worth noting that the appropriate analogous version for treewidth is assigning weight on vertices instead of edges (see e.g. [9]), and hence is not considered here.

Theorem 2. Assume that the sequence of cumulative distribution functions $\left\{F_{i j}\right\}_{1 \leq i<j \leq n}$ satisfies the following two conditions:
(i) There is a sequence $\left\{p_{n}\right\}_{n \geq 1}$ and constants α and β satisfying $p_{n} \in(0,1), 0<\alpha<\frac{2}{9 \ln 3} \beta$, and for all n large the condition (2.1) holds.
(ii) There is a constant γ satisfying $\max _{1 \leq i<j \leq n} \mathbf{E} w^{2}\left(e_{i j}\right) \leq \gamma$ for all n large .
Then we have

$$
\begin{equation*}
\mathbf{P}\left(\operatorname{td}^{w}\left(G\left(n, \mathbf{p}_{n}\right)\right) \leq 1\right) \geq 1-e^{-\Theta(n)} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{E}\left(\operatorname{td}^{w}\left(G\left(n, \mathbf{p}_{n}\right)\right)\right) \leq 1+\sqrt{\gamma} e^{-\Theta(n)} \tag{3.2}
\end{equation*}
$$

for all n large. Here, $\Theta(n)$ is a function of α and β.
Proof. We say an edge e in K_{n} is occupied if the weight of e is less than or equal to $\frac{1}{n}$. Define \mathcal{A}_{n} to be the event that there exists an occupied elimination tree of $G\left(n, \mathbf{p}_{n}\right)$ having height at least $n-\lfloor c n\rfloor$, where $c=c(\alpha, \beta)$ is determined in Theorem 1. When \mathcal{A}_{n} occurs, each edge of the longest downward rooted path in an elimination tree has weight no more than $\frac{1}{n}$. Therefore, the sum of the weights is upper bounded by 1, namely, $\operatorname{td}^{w}\left(G\left(n, \mathbf{p}_{n}\right)\right) \leq 1$. When \mathcal{A}_{n} does not occur, the weight of any downward rooted path in an elimination tree of $G\left(n, \mathbf{p}_{n}\right)$ has weight no more than $\sum_{1 \leq i<j \leq n} w\left(e_{i j}\right)$. Therefore, we have
(3.3) $\quad \mathbf{E}\left(\operatorname{td}^{w}\left(G\left(n, \mathbf{p}_{n}\right)\right)\right) \leq 1 \cdot \mathbf{P}\left(\mathcal{A}_{n}\right)+\delta_{n} \leq 1+\delta_{n}$,
where $\delta_{n}:=\mathbf{E}\left(\sum_{1 \leq i<j \leq n} w\left(e_{i j}\right) 1_{\mathcal{A}_{n}^{c}}\right), 1_{\mathcal{A}}$ presents the indicator function of an event \mathcal{A}, and \mathcal{A}^{c} is the complement of \mathcal{A}.

By using the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\delta_{n} \leq \sqrt{\mathbf{E}\left(\sum_{1 \leq i<j \leq n} w\left(e_{i j}\right)\right)^{2}} \cdot \sqrt{\mathbf{P}\left(\mathcal{A}_{n}^{c}\right)} \tag{3.4}
\end{equation*}
$$

Notice that the inequality $a b \leq\left(a^{2}+b^{2}\right) / 2<a^{2}+$ b^{2} holds for any real numbers a and b, we have the
estimate

$$
\begin{align*}
\mathbf{E}\left(\sum_{1 \leq i<j \leq n} w\left(e_{i j}\right)\right)^{2} & \leq\binom{ n}{2} \sum_{1 \leq i<j \leq n} \mathbf{E} w^{2}\left(e_{i j}\right) \tag{3.5}\\
& \leq\binom{ n}{2}^{2} \gamma \\
& \leq\left(\frac{e n}{2}\right)^{4} \gamma
\end{align*}
$$

where we used the condition (ii) and the fact that $\binom{n}{k} \leq\left(\frac{e n}{k}\right)^{k}$ for any n and k (see e.g. [10, Lem 21.1]). Combining (3.4) and (3.5), we arrive at

$$
\delta_{n} \leq \frac{e^{2} n^{2}}{4} \sqrt{\gamma} e^{-\Theta(n)}=\sqrt{\gamma} e^{-\Theta(n)}
$$

by using Theorem 1. Feeding this into (3.3) yields the desired estimate $\mathbf{E}\left(\operatorname{td}^{w}\left(G\left(n, \mathbf{p}_{n}\right)\right)\right) \leq 1+$ $\sqrt{\gamma} e^{-\Theta(n)}$.

Another application of Theorem 1 yields

$$
\mathbf{P}\left(\operatorname{td}^{w}\left(G\left(n, \mathbf{p}_{n}\right)\right)>1\right) \leq \mathbf{P}\left(\mathcal{A}_{n}^{c}\right) \leq e^{-\Theta(n)}
$$

for all n large. Consequently, $\mathbf{P}\left(\operatorname{td}^{w}\left(G\left(n, \mathbf{p}_{n}\right)\right) \leq\right.$ 1) $\geq 1-e^{-\Theta(n)}$.

For homogeneous Erdős-Rényi random graphs, we have the following result.

Corollary 2. Let F be the common cumulative distribution function for edge weights. Assume that there are constants $a>0, b>0$, and $0<c<1$ satisfying $F(x) \geq a x^{c}$ for all $x \in(0, b)$. If there exists a constant γ satisfying $\mathbf{E} w^{2}(e) \leq \gamma$ for any edge $e \in K_{n}$, we have

$$
\begin{equation*}
\mathbf{P}\left(\operatorname{td}^{w}\left(G\left(n, p_{n}\right)\right) \leq 1\right) \geq 1-e^{-\Theta(n)} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{E}\left(\operatorname{td}^{w}\left(G\left(n, p_{n}\right)\right)\right) \leq 1+\sqrt{\gamma} e^{-\Theta(n)} \tag{3.7}
\end{equation*}
$$

for all n large, where $p_{n}=F\left(\frac{1}{n}\right)$.
Proof. We have $p_{n}=F\left(n^{-1}\right) \geq a n^{-c}$ for all $n>b^{-1}$. Since $c \in(0,1), n p_{n} \geq a n^{1-c} \geq \alpha^{-1}$ for any $\alpha>0$ for large n. Therefore, the condition of Corollary 1, i.e., (i) in Theorem 2 holds by taking $\beta=1$ and $p_{n}\left(e_{i j}\right) \equiv p_{n}$. The condition (ii) in Theorem 2 also holds. Therefore, (3.6) and (3.7) follow from (3.1) and (3.2), respectively.

Finally, we present a example of non-trivial cumulative distribution functions that satisfy the conditions (i) and (ii) in Theorem 2. For $1 \leq i<$ $j \leq\left\lceil\frac{n}{10}\right\rceil$, we set

$$
F_{i j}(x)= \begin{cases}0, & x<0 \\ x^{\frac{3}{2}}, & 0 \leq x \leq 1 \\ 1, & x>1\end{cases}
$$

and for any other $i<j$, set

$$
F_{i j}(x)= \begin{cases}0, & x<0 \\ x^{\frac{1}{2}}, & 0 \leq x \leq 1 \\ 1, & x>1\end{cases}
$$

Therefore, for $1 \leq i<j \leq\left\lceil\frac{n}{10}\right\rceil$, we have $p_{n}\left(e_{i j}\right)=$ $F_{i j}\left(n^{-1}\right)=n^{-\frac{3}{2}}$, and for any other $i<j, p_{n}\left(e_{i j}\right)=$ $F_{i j}\left(n^{-1}\right)=n^{-\frac{1}{2}}$. Let $\alpha=1, \beta=10$, and $p_{n}=\frac{1}{n}$ for all $n \geq 1$. Since $\sqrt{\frac{\alpha \ln 3}{2 \beta}}>\frac{1}{5}$, for any $i \notin S$ and $|S| \geq \frac{n}{5}$, we have

$$
\begin{aligned}
d_{n}(i, S) & \geq \frac{1}{|S|}\left(\frac{1}{n \sqrt{n}}\left\lceil\frac{n}{10}\right\rceil+\left(|S|-\left\lceil\frac{n}{10}\right\rceil\right) \frac{1}{\sqrt{n}}\right) \\
& \geq \frac{5}{n}\left(\frac{1}{n \sqrt{n}} \cdot \frac{n}{10}+\left(\frac{n}{10}-1\right) \frac{1}{\sqrt{n}}\right) \\
& \geq \frac{6}{10 \sqrt{n}} \\
& >\beta p_{n}
\end{aligned}
$$

for all $n \geq 278$. Therefore, (i) holds true. From the distribution function $F_{i j}(x)$ it is straightforward to see that $\gamma=\frac{3}{7}$ would satisfy the condition (ii). Thus, from (3.1) and (3.2) we can conclude that $\mathbf{P}\left(\operatorname{td}^{w}\left(G\left(n, \mathbf{p}_{n}\right)\right) \leq 1\right) \geq 1-e^{-\Theta(n)}$ and $\mathbf{E}\left(\operatorname{td}^{w}\left(G\left(n, \mathbf{p}_{n}\right)\right)\right) \leq 1+\sqrt{\frac{3}{7}} e^{-\Theta(n)}$ for all large n.

It is worth mentioning that in the above example the distribution function $F_{i j}$ defined for $1 \leq i<j \leq\left\lceil\frac{n}{10}\right\rceil$ does not satisfy the assumption of distribution function in Corollary 2.

Acknowledgments. The author is grateful to the anonymous referee for the careful reading and valuable comments.

References

[1] H. L. Bodlaender, Treewidth: characterizations, applications, and computations, in Graph-theoretic concepts in computer science, 1-14, Lecture Notes in Comput. Sci., 4271, Springer, Berlin, 2006, pp. 1-14.
[2] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson and T. Kloks, Approximating treewidth, pathwidth, frontsize, and shortest elimination tree, J. Algorithms 18 (1995), no. 2, 238-255.
[3] Y. Cao, Treewidth of Erdős-Rényi random graphs, random intersection graphs, and scale-free random graphs, Discrete Appl. Math. 160 (2012), no. 4-5, 566-578.
[4] D. Coudert, G. Ducoffe and A. Popa, Fully polynomial FPT algorithms for some classes of bounded clique-width graphs, ACM Trans. Algorithms 15 (2019), no. 3, Art. 33.
[5] T. A. Davis, S. Rajamanickam and W. M. SidLakhdar, A survey of direct methods for sparse linear systems, Acta Numer. 25 (2016), 383566.
[6] T. A. Do, J. Erde and M. Kang, A note on the width of sparse random graphs, arXiv: 2202.06087.
[7] I. S. Duff, Full matrix techniques in sparse Gaussian elimination, in Numerical analysis (Dundee, 1981), 71-84, Lecture Notes in Math., 912, Springer, Berlin, 1982.
[8] Z. Dvořák, A. C. Giannopoulou and D. M. Thilikos, Forbidden graphs for tree-depth, European J. Combin. 33 (2012), no. 5, 969-979.
[9] F. V. Fomin, D. Lokshtanov, S. Saurabh and M. Zehavi, Approximation schemes via width/ weight trade-offs on minor-free graphs, in Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (Salt Lake City, Utah, 2020), 2299-2318, SIAM, Philadelphia, PA, 2020.
[10] A. Frieze and M. Karoński, Introduction to random graphs, Cambridge University Press, Cambridge, 2016.
[11] D. J. Harvey and D. R. Wood, Parameters tied to treewidth, J. Graph Theory 84 (2017), no. 4, 364-385.
[12] I. Katsikarelis, M. Lampis and V. Th. Paschos, Structurally parameterized d-scattered set, Discrete Appl. Math. 308 (2022), 168-186.
[13] T. Kloks, Treewidth, Lecture Notes in Computer Science, 842, Springer-Verlag, Berlin, 1994.
[14] C. Lee, J. Lee and S. Oum, Rank-width of random graphs, J. Graph Theory 70 (2012), no. 3, 339347.
[15] A. Li and T. Müller, On the treewidth of random geometric graphs and percolated grids, Adv. in Appl. Probab. 49 (2017), no. 1, 49-60.
[16] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl. 11 (1990), no. 1, 134-172.
[17] D. Mitsche and G. Perarnau, On treewidth and related parameters of random geometric graphs, SIAM J. Discrete Math. 31 (2017), no. 2, 1328-1354.
[18] M. Newman, Networks, 2nd ed., Oxford University Press, Oxford, 2018.
[19] G. Perarnau and O. Serra, On the tree-depth of random graphs, Discrete Appl. Math. 168 (2014), 119-126.
[20] N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms 7 (1986), no. 3, 309-322.
[21] Y. Shang, A note on the majority dynamics in inhomogeneous random graphs, Results Math. 76 (2021), no. 3, Paper No. 119.
[22] H. Tamaki, Positive-instance driven dynamic programming for treewidth, J. Comb. Optim.

37 (2019), no. 4, 1283-1311.
[23] L. Vandenberghe and M. S. Anderson, Chordal graphs and semidefinite optimization, in Found. Trend. Optim. 1 (2014), no. 4, 241-433.
[24] C. Wang, T. Liu, P. Cui, and K. Xu, A note on
treewidth in random graphs, in Combinatorial optimization and applications, Lecture Notes in Comput. Sci., 6831, Springer, Heidelberg, 2011, pp. 491-499.

[^0]: 2010 Mathematics Subject Classification. Primary 05C80, $60 \mathrm{C} 05,62 \mathrm{E} 10,90 \mathrm{~B} 15$.

