On the tree-depth and tree-width in heterogeneous random graphs

By Yilun Shang

Department of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, U.K.

(Communicated by Kenji FUKAYA, M.J.A., Oct. 12, 2022)

Abstract: In this note, we investigate the tree-depth and tree-width in a heterogeneous random graph obtained by including each edge e_{ij} $(i \neq j)$ of a complete graph K_n over n vertices independently with probability $p_n(e_{ij})$. When the sequence of edge probabilities satisfies some density assumptions, we show both tree-depth and tree-width are of linear size with high probability. Moreover, we extend the method to random weighted graphs with non-identical edge weights and capture the conditions under which with high probability the weighted tree-depth is bounded by a constant.

Key words: Tree-depth; tree-width; random graph; heterogeneous graph.

1. Introduction. For a simple connected graph G, an elimination tree T of G is a rooted tree on the vertices of G in which G has no edges connecting two different branches in T. Note that Tand G have the same sets of vertices but T does not need to be a subgraph of G. Elimination tree, firstly used by Duff [7], is one of the most important concepts in scientific computing and numerical linear algebra. It plays a pivotal role in areas including Cholesky factorization of sparse matrices, combinatorial optimization algorithms, and data structures [5,16,23]. Equivalently, a rooted tree T on the sets of vertices of G becomes an elimination tree of G if G is a subgraph of the closure of T, where the closure of a rooted tree T is obtained from T by adding all (and only) edges between an ancestor and its descendant. The height of a rooted tree is the number of vertices on the longest path between the root and a leaf. Tree-depth of G, denoted by td(G), is the minimum height of an elimination tree of G. If G is not connected, td(G)is defined as the maximum tree-depth among its connected components. It is known that the maximum tree-depth for a graph over n vertices is only attained by the complete graph K_n with $td(K_n) = n$ and $td(T) \leq |\log_2 n| + 1$ for a tree T. Moreover, the path P_n attains the upper bound among all tree graphs [8]. An example is shown in Fig. 1.

A related concept is the tree-width, denoted by tw(G), which captures the closeness of a graph

relative to a tree while tree-depth captures the closeness of a graph relative to a star. Tree-width, put forward by Robertson and Seymour [20] in 1986, is a useful parameter in the parameterized complexity analysis of many graph algorithms [1,11,22]. A graph G has tree-width tw(G) = k if it is a subgraph of a k-tree with minimum k. Here, a k-tree is obtained by beginning with the complete graph K_{k+1} and repeatedly adding vertices so that each newly added vertex is adjacent to every vertex of an existing k-clique. By definition, it is clear that $tw(K_n) = n - 1$ and tw(T) = 1 for any tree T. However, determining tree-width for a general graph is NP-complete. Tree-width is related to tree-depth through the following inequality [2,11]

(1.1) $\operatorname{tw}(G) \le \operatorname{td}(G) \le (1 + \log_2 n)\operatorname{tw}(G).$

Here, we are interested in the two graph invariants td(G) and tw(G) in the context of heterogeneous random graphs. Consider a complete graph K_n over the vertex set $V = \{1, 2, \dots, n\}$. Let $e_{ij} = e_{ji}$ denote the edge connecting vertices *i* and *j* for $i \neq j$. Given a set of edge probabilities $\mathbf{p}_n =$ $\{p_n(e_{ij})\}_{1 \le i \le j \le n}$, the heterogeneous random graph model $G(n, \mathbf{p}_n)$ can be defined by including each edge e_{ij} of K_n independently with edge probability $p_n(e_{ij})$. Clearly, when $p_n(e_{ij}) \equiv p_n$ for all *i* and *j* $(i \neq j)$, we reproduce the ordinary Erdős-Rényi random graph $G(n, p_n)$. A closely related model is called the uniform random graph $G(n, m_n)$, where each graph with m_n edges occurs with the same probability. Many results of random graphs can be transferred equivalently between $G(n, p_n)$ and

²⁰¹⁰ Mathematics Subject Classification. Primary 05C80, 60C05, 62E10, 90B15.

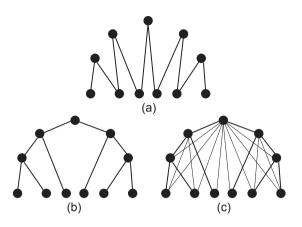


Fig. 1. Path graph $G = P_{11}$ has tree-depth $td(G) = \lfloor \log_2 11 \rfloor + 1 = 4$. (a) The path G; (b) The elimination tree T of G, which has height 4; (c) The closure of T.

 $G(n, m_n)$ via the mapping $p_n = m_n {\binom{n}{2}}^{-1}$. In the past few decades, heterogeneous random graphs are gaining traction as they well underpin complex network models [18], which often have non-trivial topological structures (such as heterogeneous degree distributions, community structure and hierarchy) eliciting fascinating phenomena in nature and technology. For a recent survey of varied random graph models and their mathematical results, we refer readers to the monograph [10]. In particular, the majority dynamics over $G(n, \mathbf{p}_n)$ has been studied in [21].

In random graphs, we say a graph property holds with high probability (w.h.p.) if the probability that all graphs holding this property occur tends to 1 as $n \to \infty$. It is shown by Kloks [13] that $G(n, m_n)$ with $m_n/n \ge c = 1.18$ has linear treewidth $tw(G(n, m_n)) = \Theta(n)$ w.h.p. This constant c has been further improved to 1.073 in [3] and 0.5in [14]. For $G(n, p_n)$ model, it is found in [24] that w.h.p. $\operatorname{tw}(G(n, p_n)) \ge n - o(n)$ when $n \gg np_n \to \infty$. In the case of $np_n = 1 + \varepsilon$ for a sufficiently small $\varepsilon > 0$, it is shown that $\operatorname{tw}(G(n, p_n)) = n\Omega(-\varepsilon^3(\ln \varepsilon)^{-1})$ w.h.p. [6]. Tree-width has also been investigated for random intersection graphs [3] and geometric random graphs [15]. Perarnau and [19] proved that $td(G(n, p_n)) = n -$ Serra $O((n/p)^{1/2})$ when $np_n \to \infty$. Tree-depth as well as tree-width of random geometric graphs has also been studied in [17].

Along the above line of research, in this short note we first study tree-depth and tree-width for dense heterogeneous random graph $G(n, \mathbf{p}_n)$ in Section 2. We then extend our approach to weighted random graphs with non-identical weight distributions in Section 3. Standard Landau asymptotic notations such as O, o, Θ and \ll will be used throughout the paper by convention in random graph literature; c.f. [10].

2. Tree-depth and tree-width in heterogeneous random graphs. To begin with, we define the expected neighbor density for a vertex $i \in V$ with respect to a set of vertices. Specifically, given $S \subseteq V$ and $i \notin S$ let $d_n(i, S) =$ $|S|^{-1} \sum_{j \in S} p_n(e_{ij})$. It measures average number of neighbors of vertex i within the set S.

Theorem 1. Suppose that there is a sequence $\{p_n\}_{n\geq 1}$ and constants α and β satisfying $p_n \in (0,1), \ 0 < \alpha < \frac{2}{9 \ln 3} \beta$, and for all n large

(2.1)
$$p_n \ge \frac{1}{\alpha n}$$
 and $\min_{i \in V} \min_{\substack{S: i \notin S \\ |S| \ge n} \sqrt{\frac{\alpha \ln 3}{2\beta}}} d_n(i, S) \ge \beta p_n.$

Then for any constant $c = c(\alpha, \beta)$ satisfying $3\sqrt{\frac{\alpha \ln 3}{2\beta}} < c \le 1$ we have

(2.2)
$$\mathbf{P}(n - \lfloor cn \rfloor \leq \operatorname{td}(G(n, \mathbf{p}_n)) \leq n) \geq 1 - e^{-\Theta(n)}$$

and similarly

(2.3)
$$\mathbf{P}(n - \lfloor cn \rfloor \leq \operatorname{tw}(G(n, \mathbf{p}_n)) \leq n) \geq 1 - e^{-\Theta(n)}$$

for all n large. Here, $\Theta(n)$ is a function of c.

Before proving Theorem 1, we present an example with non-trivial edge probabilities $\{\mathbf{p}_n\}_{n\geq 1}$ satisfying the condition (2.1). Set $\alpha = 1$, $\beta = 10$, and $p_n = \frac{1}{n}$ for $n \geq 1$. For $1 \leq i < j \leq \left\lceil \frac{n}{10} \right\rceil$, let $p_n(e_{ij}) = \frac{1}{n \ln n}$, and for any other i < j, let $p_n(e_{ij}) = \frac{100}{n}$. Since $\sqrt{\frac{\alpha \ln 3}{2\beta}} > \frac{1}{5}$, for any $i \notin S$ and $|S| \geq \frac{n}{5}$, we have

$$\begin{split} d_n(i,S) &\geq \frac{1}{|S|} \left(\frac{1}{n \ln n} \left\lceil \frac{n}{10} \right\rceil + \left(|S| - \left\lceil \frac{n}{10} \right\rceil \right) \frac{100}{n} \right) \\ &\geq \frac{5}{n} \left(\frac{1}{n \ln n} \cdot \frac{n}{10} + \left(\frac{n}{10} - 1 \right) \frac{100}{n} \right) \\ &= \frac{n + 100(n - 10) \ln n}{2n^2 \ln n} \\ &\geq \frac{1 + 50 \ln n}{2n \ln n} \\ &> \beta p_n, \end{split}$$

for all n > 20. Therefore, (2.1) holds true and it follows from (2.2) and (2.3) that, for example, $\mathbf{P}(\min\{\operatorname{td}(G(n,\mathbf{p}_n)), \operatorname{tw}(G(n,\mathbf{p}_n))\} \ge 0.29n) \ge 1 -$ To prove Theorem 1, we need the following lemma with regard to balanced separators [13, Lem 5.3.1, Lem 6.1.2].

Lemma 1. Let G be a graph over the vertex set V with |V| = n. For any number $k \in$ [tw(G), n - 4], G has a balanced k-partition (S, A, B) in the following sense.

Mutually exclusive sets S, A and B satisfy $S \cup A \cup B = V$, |S| = k + 1, $\frac{1}{3}(n - k - 1) \le |A| \le |B| \le \frac{2}{3}(n - k - 1)$, where S forms a separator in G meaning that no edges run between A and B.

Proof of Theorem 1. Fix any constant $c > 3\sqrt{\frac{\alpha \ln 3}{2\beta}}$. The assumption $0 < \alpha < \frac{2}{9\ln 3}\beta$ ensures c < 1. If $G(n, \mathbf{p}_n)$ has a balanced k-partition (S, A, B) as described in Lemma 1 with $|S| = k + 1 \le (1-c)n$, then $|B| \ge |A| \ge \frac{1}{3}(n-k-1) \ge \frac{cn}{3}$. Hence, we have

(2.4)
$$|A||B| \ge |A|(cn - |A|) \ge \frac{2}{9}c^2n^2.$$

Define $\mathcal{E}(S, A, B)$ to be the event that $G(n, \mathbf{p}_n)$ admits a balanced k-partition (S, A, B) with $|S| = k + 1 \le (1 - c)n$. We obtain

(2.5)
$$\mathbf{P}(\mathcal{E}(S, A, B)) = \prod_{i \in A, j \in B} (1 - p_n(e_{ij}))$$
$$\leq e^{-\sum_{i \in A, j \in B} p_n(e_{ij})}$$
$$= e^{-\sum_{i \in A} |B|d_n(i, B)}$$
$$\leq e^{-p_n\beta|A| \cdot |B|}$$
$$\leq e^{-\frac{2}{3}p_n\beta c^2 n^2},$$

where in the second inequality above we used the estimate $|B| \ge \frac{cn}{3} \ge n\sqrt{\frac{\alpha \ln 3}{2\beta}}$ and (2.1), and in the last inequality we applied (2.4).

Let C be the collection of all balanced k-partitions (S, A, B) with $|S| = k + 1 \leq (1 - c)n$. A simple upper bound is given by $|C| \leq 3^n$ since each vertex is allowed for three options in a balanced k-partition. In the light of (2.5) we can bound the probability of existing such a partition as

$$(2.6) \mathbf{P}(\cup_{(S,A,B)\in\mathcal{C}} \mathcal{E}(S,A,B)) \leq \sum_{(S,A,B)\in\mathcal{C}} \mathbf{P}(\mathcal{E}(S,A,B))$$
$$\leq 3^n e^{-\frac{2}{3}p_n\beta c^2 n^2}$$
$$< e^{n(\ln 3 - \frac{2\beta c^2}{9\alpha})}.$$

where in the last inequality the assumption $p_n \ge \frac{1}{\alpha n}$ in (2.1) is utilized. Recall that $c > 3\sqrt{\frac{\alpha \ln 3}{2\beta}}$. Therefore, the probability in (2.6) is tantamount to $e^{-\Theta(n)}$. Consequently, it follows from Lemma 1 that $\mathbf{P}(\operatorname{tw}(G(n, \mathbf{p})) \leq \lfloor (1 - c)n \rfloor)$

$$\operatorname{tw}(G(n, \mathbf{p}_n)) \leq \lfloor (1 - c)n \rfloor)$$

$$\leq \mathbf{P}(\cup_{(S, A, B) \in \mathcal{C}} \mathcal{E}(S, A, B)) \leq e^{-\Theta(n)},$$

which yields (2.3). Combining it with (1.1), we know that the result (2.2) also holds. \Box

By taking $\beta = 1$, $0 < \alpha < \frac{2}{9 \ln 3}$, and $p_n(e_{ij}) = p_n$ for all i < j in Theorem 1, we obtain the following result for homogeneous random graph $G(n, p_n)$.

Corollary 1. Suppose that $p_n \geq \frac{1}{\alpha n}$ with $\alpha \in (0, \frac{2}{9 \ln 3})$. For any constant $c > 3\sqrt{\frac{\alpha \ln 3}{2}}$ and all n large, we have

$$\mathbf{P}(n - \lfloor cn \rfloor \le \operatorname{td}(G(n, p_n)) \le n) \ge 1 - e^{-\Theta(n)}$$

and

$$\mathbf{P}(n - \lfloor cn \rfloor \le \operatorname{tw}(G(n, p_n)) \le n) \ge 1 - e^{-\Theta(n)}.$$

In particular, w.h.p. $td(G(n, p_n)) = \Theta(n)$ and $tw(G(n, p_n)) = \Theta(n)$.

These estimates are in line with previous results in [24] and [19] for dense Erdős-Rényi random graphs while enjoy more explicit convergence rate estimates.

It is also worth noting that Theorem 1 for heterogeneous random graphs is non-trivial. For instance, in the example above, we have chosen $p_n(e_{ij}) = \frac{1}{n \ln n} \ll \frac{1}{n}$, which in a homogeneous random graph will only lead to tree-depth (and tree-width) of $\Theta(\ln \ln n)$; see [19, Theorem 1.2].

 \mathbf{in} 3. Tree-depth weighted random graphs. In this section, we consider weighted heterogeneous random graphs by placing a random weight $w(e_{ij}) = w(e_{ij})$ on each edge e_{ij} of K_n . Given an elimination tree of G, for the longest downward path between the root and a leaf $P = (i_1, i_2, \cdots, i_\ell)$, we define $w(P) := \sum_{j=1}^{\ell-1} w(e_{i_j i_{j+1}})$ as the weight of P, i.e., w(P) is the weighted height of the elimination tree. Let $\operatorname{td}^w(G) := \min_P w(P)$ be the minimum weighted height of an elimination tree of G. We call $td^w(G)$ the weighted tree-depth of G. Tree-depth as a parameter has been intensively studied in some graph algorithms for weighted graphs including the fixed parameter tractable (FPT) algorithms [4,12]. However, most of these works concern fixed graph and deterministic weights.

For every edge e_{ij} in K_n , let F_{ij} be the cumulative distribution function of the weight $w(e_{ij})$ and set

No. 9]

$$p_n(e_{ij}) := F_{ij}\left(\frac{1}{n}\right) = \mathbf{P}\left(w(e_{ij}) \le \frac{1}{n}\right).$$

By definition, we have $F_{ij} = F_{ji}$ for $i \neq j$. The result below shows that the weighted tree-depth is bounded above by a constant w.h.p. It is worth noting that the appropriate analogous version for treewidth is assigning weight on vertices instead of edges (see e.g. [9]), and hence is not considered here.

Theorem 2. Assume that the sequence of cumulative distribution functions $\{F_{ij}\}_{1 \le i < j \le n}$ satisfies the following two conditions:

- (i) There is a sequence {p_n}_{n≥1} and constants α and β satisfying p_n ∈ (0,1), 0 < α < 2/(9 ln 3) β, and for all n large the condition (2.1) holds.
- (ii) There is a constant γ satisfying $\max_{1 \le i < j \le n} \mathbf{E} w^2(e_{ij}) \le \gamma$ for all n large. Then we have

 $\mathbf{P}(\mathrm{td}^w(G(n,\mathbf{p}_n)) \le 1) \ge 1 - e^{-\Theta(n)}$

(3.2)
$$\mathbf{E}(\operatorname{td}^{w}(G(n,\mathbf{p}_{n}))) \leq 1 + \sqrt{\gamma}e^{-\Theta(n)}$$

for all n large. Here, $\Theta(n)$ is a function of α and β .

Proof. We say an edge e in K_n is occupied if the weight of e is less than or equal to $\frac{1}{n}$. Define \mathcal{A}_n to be the event that there exists an occupied elimination tree of $G(n, \mathbf{p}_n)$ having height at least $n - \lfloor cn \rfloor$, where $c = c(\alpha, \beta)$ is determined in Theorem 1. When \mathcal{A}_n occurs, each edge of the longest downward rooted path in an elimination tree has weight no more than $\frac{1}{n}$. Therefore, the sum of the weights is upper bounded by 1, namely, $td^w(G(n, \mathbf{p}_n)) \leq 1$. When \mathcal{A}_n does not occur, the weight of any downward rooted path in an elimination tree of $G(n, \mathbf{p}_n)$ has weight no more than $\sum_{1 \leq i < j \leq n} w(e_{ij})$. Therefore, we have

(3.3)
$$\mathbf{E}(\mathrm{td}^{w}(G(n,\mathbf{p}_{n}))) \leq 1 \cdot \mathbf{P}(\mathcal{A}_{n}) + \delta_{n} \leq 1 + \delta_{n},$$

where $\delta_n := \mathbf{E}(\sum_{1 \leq i < j \leq n} w(e_{ij}) \mathbf{1}_{\mathcal{A}_n^c}), \mathbf{1}_{\mathcal{A}}$ presents the indicator function of an event \mathcal{A} , and \mathcal{A}^c is the complement of \mathcal{A} .

By using the Cauchy-Schwarz inequality, we have

(3.4)
$$\delta_n \leq \sqrt{\mathbf{E}\left(\sum_{1\leq i< j\leq n} w(e_{ij})\right)^2} \cdot \sqrt{\mathbf{P}(\mathcal{A}_n^c)}.$$

Notice that the inequality $ab \leq (a^2 + b^2)/2 < a^2 + b^2$ holds for any real numbers a and b, we have the

estimate

(3.5)
$$\mathbf{E}\left(\sum_{1\leq i< j\leq n} w(e_{ij})\right)^2 \leq \binom{n}{2} \sum_{1\leq i< j\leq n} \mathbf{E}w^2(e_{ij})$$
$$\leq \binom{n}{2}^2 \gamma$$
$$\leq \left(\frac{en}{2}\right)^4 \gamma,$$

where we used the condition (ii) and the fact that $\binom{n}{k} \leq \left(\frac{en}{k}\right)^k$ for any n and k (see e.g. [10, Lem 21.1]). Combining (3.4) and (3.5), we arrive at

$$\delta_n \le \frac{e^2 n^2}{4} \sqrt{\gamma} e^{-\Theta(n)} = \sqrt{\gamma} e^{-\Theta(n)}$$

by using Theorem 1. Feeding this into (3.3) yields the desired estimate $\mathbf{E}(\operatorname{td}^{w}(G(n, \mathbf{p}_{n}))) \leq 1 + \sqrt{\gamma}e^{-\Theta(n)}$.

Another application of Theorem 1 yields

$$\mathbf{P}(\mathrm{td}^w(G(n,\mathbf{p}_n)) > 1) \le \mathbf{P}(\mathcal{A}_n^c) \le e^{-\Theta(n)}$$

for all *n* large. Consequently, $\mathbf{P}(\mathrm{td}^w(G(n, \mathbf{p}_n)) \leq 1) \geq 1 - e^{-\Theta(n)}$.

For homogeneous Erdős-Rényi random graphs, we have the following result.

Corollary 2. Let F be the common cumulative distribution function for edge weights. Assume that there are constants a > 0, b > 0, and 0 < c < 1satisfying $F(x) \ge ax^c$ for all $x \in (0, b)$. If there exists a constant γ satisfying $\mathbf{E}w^2(e) \le \gamma$ for any edge $e \in K_n$, we have

$$\mathbf{P}(\mathrm{td}^w(G(n,p_n)) \le 1) \ge 1 - e^{-\Theta(n)}$$

and

(3.7)
$$\mathbf{E}(\mathrm{td}^w(G(n, p_n))) \le 1 + \sqrt{\gamma} e^{-\Theta(n)}$$

for all n large, where $p_n = F(\frac{1}{n})$.

Proof. We have $p_n = F(n^{-1}) \ge an^{-c}$ for all $n > b^{-1}$. Since $c \in (0, 1)$, $np_n \ge an^{1-c} \ge \alpha^{-1}$ for any $\alpha > 0$ for large n. Therefore, the condition of Corollary 1, i.e., (i) in Theorem 2 holds by taking $\beta = 1$ and $p_n(e_{ij}) \equiv p_n$. The condition (ii) in Theorem 2 also holds. Therefore, (3.6) and (3.7) follow from (3.1) and (3.2), respectively.

Finally, we present a example of non-trivial cumulative distribution functions that satisfy the conditions (i) and (ii) in Theorem 2. For $1 \le i < j \le \left\lceil \frac{n}{10} \right\rceil$, we set

$$F_{ij}(x) = \begin{cases} 0, & x < 0; \\ x^{\frac{3}{2}}, & 0 \le x \le 1; \\ 1, & x > 1; \end{cases}$$

and for any other i < j, set

$$F_{ij}(x) = \begin{cases} 0, & x < 0; \\ x^{\frac{1}{2}}, & 0 \le x \le 1; \\ 1, & x > 1. \end{cases}$$

Therefore, for $1 \leq i < j \leq \lceil \frac{n}{10} \rceil$, we have $p_n(e_{ij}) = F_{ij}(n^{-1}) = n^{-\frac{3}{2}}$, and for any other i < j, $p_n(e_{ij}) = F_{ij}(n^{-1}) = n^{-\frac{1}{2}}$. Let $\alpha = 1$, $\beta = 10$, and $p_n = \frac{1}{n}$ for all $n \geq 1$. Since $\sqrt{\frac{\alpha \ln 3}{2\beta} > \frac{1}{5}}$, for any $i \notin S$ and $|S| \geq \frac{n}{5}$, we have

$$d_n(i,S) \ge \frac{1}{|S|} \left(\frac{1}{n\sqrt{n}} \left\lceil \frac{n}{10} \right\rceil + \left(|S| - \left\lceil \frac{n}{10} \right\rceil \right) \frac{1}{\sqrt{n}} \right)$$
$$\ge \frac{5}{n} \left(\frac{1}{n\sqrt{n}} \cdot \frac{n}{10} + \left(\frac{n}{10} - 1 \right) \frac{1}{\sqrt{n}} \right)$$
$$\ge \frac{6}{10\sqrt{n}}$$
$$> \beta p_n,$$

for all $n \geq 278$. Therefore, (i) holds true. From the distribution function $F_{ij}(x)$ it is straightforward to see that $\gamma = \frac{3}{7}$ would satisfy the condition (ii). Thus, from (3.1) and (3.2) we can conclude that $\mathbf{P}(\operatorname{td}^w(G(n, \mathbf{p}_n)) \leq 1) \geq 1 - e^{-\Theta(n)}$ and $\mathbf{E}(\operatorname{td}^w(G(n, \mathbf{p}_n))) \leq 1 + \sqrt{\frac{3}{7}} e^{-\Theta(n)}$ for all large n.

It is worth mentioning that in the above example the distribution function F_{ij} defined for $1 \le i < j \le \left\lceil \frac{n}{10} \right\rceil$ does not satisfy the assumption of distribution function in Corollary 2.

Acknowledgments. The author is grateful to the anonymous referee for the careful reading and valuable comments.

References

- H. L. Bodlaender, Treewidth: characterizations, applications, and computations, in *Graph-the*oretic concepts in computer science, 1–14, Lecture Notes in Comput. Sci., 4271, Springer, Berlin, 2006, pp. 1–14.
- H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson and T. Kloks, Approximating treewidth, pathwidth, frontsize, and shortest elimination tree, J. Algorithms 18 (1995), no. 2, 238–255.
- Y. Cao, Treewidth of Erdős-Rényi random graphs, random intersection graphs, and scale-free random graphs, Discrete Appl. Math. 160 (2012), no. 4–5, 566–578.

- [4] D. Coudert, G. Ducoffe and A. Popa, Fully polynomial FPT algorithms for some classes of bounded clique-width graphs, ACM Trans. Algorithms 15 (2019), no. 3, Art. 33.
- [5] T. A. Davis, S. Rajamanickam and W. M. Sid-Lakhdar, A survey of direct methods for sparse linear systems, Acta Numer. 25 (2016), 383– 566.
- [6] T. A. Do, J. Erde and M. Kang, A note on the width of sparse random graphs, arXiv: 2202.06087.
- [7] I. S. Duff, Full matrix techniques in sparse Gaussian elimination, in *Numerical analysis* (*Dundee, 1981*), 71–84, Lecture Notes in Math., 912, Springer, Berlin, 1982.
- [8] Z. Dvořák, A. C. Giannopoulou and D. M. Thilikos, Forbidden graphs for tree-depth, European J. Combin. 33 (2012), no. 5, 969–979.
- [9] F. V. Fomin, D. Lokshtanov, S. Saurabh and M. Zehavi, Approximation schemes via width/weight trade-offs on minor-free graphs, in Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (Salt Lake City, Utah, 2020), 2299–2318, SIAM, Philadelphia, PA, 2020.
- [10] A. Frieze and M. Karoński, Introduction to random graphs, Cambridge University Press, Cambridge, 2016.
- [11] D. J. Harvey and D. R. Wood, Parameters tied to treewidth, J. Graph Theory 84 (2017), no. 4, 364–385.
- [12] I. Katsikarelis, M. Lampis and V. Th. Paschos, Structurally parameterized d-scattered set, Discrete Appl. Math. 308 (2022), 168–186.
- [13] T. Kloks, *Treewidth*, Lecture Notes in Computer Science, 842, Springer-Verlag, Berlin, 1994.
- [14] C. Lee, J. Lee and S. Oum, Rank-width of random graphs, J. Graph Theory 70 (2012), no. 3, 339– 347.
- [15] A. Li and T. Müller, On the treewidth of random geometric graphs and percolated grids, Adv. in Appl. Probab. 49 (2017), no. 1, 49–60.
- [16] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl. 11 (1990), no. 1, 134–172.
- [17] D. Mitsche and G. Perarnau, On treewidth and related parameters of random geometric graphs, SIAM J. Discrete Math. **31** (2017), no. 2, 1328–1354.
- [18] M. Newman, Networks, 2nd ed., Oxford University Press, Oxford, 2018.
- [19] G. Perarnau and O. Serra, On the tree-depth of random graphs, Discrete Appl. Math. 168 (2014), 119–126.
- [20] N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms 7 (1986), no. 3, 309–322.
- [21] Y. Shang, A note on the majority dynamics in inhomogeneous random graphs, Results Math. 76 (2021), no. 3, Paper No. 119.
- [22] H. Tamaki, Positive-instance driven dynamic programming for treewidth, J. Comb. Optim.

No. 9]

37 (2019), no. 4, 1283–1311.

- [23] L. Vandenberghe and M. S. Anderson, Chordal graphs and semidefinite optimization, in Found. Trend. Optim. 1 (2014), no. 4, 241–433.
- [24] C. Wang, T. Liu, P. Cui, and K. Xu, A note on

treewidth in random graphs, in *Combinatorial* optimization and applications, Lecture Notes in Comput. Sci., 6831, Springer, Heidelberg, 2011, pp. 491–499.