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Abstract: In this note, we investigate the tree-depth and tree-width in a heterogeneous

random graph obtained by including each edge eij ði 6¼ jÞ of a complete graph Kn over n vertices

independently with probability pnðeijÞ. When the sequence of edge probabilities satisfies some

density assumptions, we show both tree-depth and tree-width are of linear size with high

probability. Moreover, we extend the method to random weighted graphs with non-identical edge

weights and capture the conditions under which with high probability the weighted tree-depth is

bounded by a constant.
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1. Introduction. For a simple connected

graph G, an elimination tree T of G is a rooted

tree on the vertices of G in which G has no edges

connecting two different branches in T . Note that T

and G have the same sets of vertices but T does not

need to be a subgraph of G. Elimination tree, firstly

used by Duff [7], is one of the most important

concepts in scientific computing and numerical

linear algebra. It plays a pivotal role in areas

including Cholesky factorization of sparse matrices,

combinatorial optimization algorithms, and data

structures [5,16,23]. Equivalently, a rooted tree T

on the sets of vertices of G becomes an elimination

tree of G if G is a subgraph of the closure of T ,

where the closure of a rooted tree T is obtained from

T by adding all (and only) edges between an

ancestor and its descendant. The height of a rooted

tree is the number of vertices on the longest path

between the root and a leaf. Tree-depth of G,

denoted by tdðGÞ, is the minimum height of an

elimination tree of G. If G is not connected, tdðGÞ
is defined as the maximum tree-depth among its

connected components. It is known that the max-

imum tree-depth for a graph over n vertices is only

attained by the complete graph Kn with tdðKnÞ ¼ n
and tdðT Þ � blog2 nc þ 1 for a tree T . Moreover, the

path Pn attains the upper bound among all tree

graphs [8]. An example is shown in Fig. 1.

A related concept is the tree-width, denoted by

twðGÞ, which captures the closeness of a graph

relative to a tree while tree-depth captures the

closeness of a graph relative to a star. Tree-width,

put forward by Robertson and Seymour [20] in

1986, is a useful parameter in the parameterized

complexity analysis of many graph algorithms

[1,11,22]. A graph G has tree-width twðGÞ ¼ k if it

is a subgraph of a k-tree with minimum k. Here, a

k-tree is obtained by beginning with the complete

graph Kkþ1 and repeatedly adding vertices so that

each newly added vertex is adjacent to every vertex

of an existing k-clique. By definition, it is clear that

twðKnÞ ¼ n� 1 and twðT Þ ¼ 1 for any tree T .

However, determining tree-width for a general

graph is NP-complete. Tree-width is related to

tree-depth through the following inequality [2,11]

twðGÞ � tdðGÞ � ð1þ log2 nÞtwðGÞ:ð1:1Þ

Here, we are interested in the two graph

invariants tdðGÞ and twðGÞ in the context of

heterogeneous random graphs. Consider a complete

graph Kn over the vertex set V ¼ f1; 2; � � � ; ng. Let

eij ¼ eji denote the edge connecting vertices i and j

for i 6¼ j. Given a set of edge probabilities pn ¼
fpnðeijÞg1�i<j�n, the heterogeneous random graph

model Gðn;pnÞ can be defined by including each

edge eij of Kn independently with edge probability

pnðeijÞ. Clearly, when pnðeijÞ � pn for all i and j

(i 6¼ j), we reproduce the ordinary Erd}os-Rényi

random graph Gðn; pnÞ. A closely related model is

called the uniform random graph Gðn;mnÞ, where

each graph with mn edges occurs with the same

probability. Many results of random graphs can be

transferred equivalently between Gðn; pnÞ and
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Gðn;mnÞ via the mapping pn ¼ mn
n
2

� ��1
. In the past

few decades, heterogeneous random graphs are

gaining traction as they well underpin complex

network models [18], which often have non-trivial

topological structures (such as heterogeneous de-

gree distributions, community structure and hier-

archy) eliciting fascinating phenomena in nature

and technology. For a recent survey of varied

random graph models and their mathematical

results, we refer readers to the monograph [10]. In

particular, the majority dynamics over Gðn;pnÞ has

been studied in [21].

In random graphs, we say a graph property

holds with high probability (w.h.p.) if the proba-

bility that all graphs holding this property occur

tends to 1 as n!1. It is shown by Kloks [13] that

Gðn;mnÞ with mn=n � c ¼ 1:18 has linear tree-

width twðGðn;mnÞÞ ¼ �ðnÞ w.h.p. This constant c

has been further improved to 1.073 in [3] and 0.5

in [14]. For Gðn; pnÞ model, it is found in [24] that

w.h.p. twðGðn; pnÞÞ � n� oðnÞ when n� npn !1.

In the case of npn ¼ 1þ " for a sufficiently small

" > 0, it is shown that twðGðn; pnÞÞ ¼
n�ð�"3ðln "Þ�1Þ w.h.p. [6]. Tree-width has also

been investigated for random intersection graphs [3]

and geometric random graphs [15]. Perarnau and

Serra [19] proved that tdðGðn; pnÞÞ ¼ n�
Oððn=pÞ1=2Þ when npn !1. Tree-depth as well as

tree-width of random geometric graphs has also

been studied in [17].

Along the above line of research, in this short

note we first study tree-depth and tree-width for

dense heterogeneous random graph Gðn;pnÞ in

Section 2. We then extend our approach to weight-

ed random graphs with non-identical weight distri-

butions in Section 3. Standard Landau asymptotic

notations such as O; o;� and � will be used

throughout the paper by convention in random

graph literature; c.f. [10].

2. Tree-depth and tree-width in hetero-

geneous random graphs. To begin with, we

define the expected neighbor density for a vertex

i 2 V with respect to a set of vertices. Specifically,

given S 	 V and i =2 S let dnði; SÞ ¼
jSj�1P

j2S pnðeijÞ. It measures average number of

neighbors of vertex i within the set S.

Theorem 1. Suppose that there is a se-

quence fpngn�1 and constants � and � satisfying

pn 2 ð0; 1Þ, 0 < � < 2
9 ln 3 �, and for all n large

pn �
1

�n
and min

i2V
min
S: i=2S

jSj�n
ffiffiffiffiffiffi
� ln 3

2�

p dnði; SÞ � �pn:ð2:1Þ

Then for any constant c ¼ cð�; �Þ satisfying

3
ffiffiffiffiffiffiffiffiffi
� ln 3

2�

q
< c � 1 we have

Pðn� bcnc � tdðGðn;pnÞÞ � nÞ � 1� e��ðnÞð2:2Þ

and similarly

Pðn� bcnc � twðGðn;pnÞÞ � nÞ � 1� e��ðnÞð2:3Þ

for all n large. Here, �ðnÞ is a function of c.

Before proving Theorem 1, we present an

example with non-trivial edge probabilities

fpngn�1 satisfying the condition (2.1). Set � ¼ 1,

� ¼ 10, and pn ¼ 1
n for n � 1. For 1 � i < j � d n10e,

let pnðeijÞ ¼ 1
n lnn, and for any other i < j, let

pnðeijÞ ¼ 100
n . Since

ffiffiffiffiffiffiffiffiffi
� ln 3

2�

q
> 1

5, for any i =2 S and

jSj � n
5 , we have

dnði; SÞ �
1

jSj
1

n lnn

n

10

� �
þ jSj � n

10

� �� �
100

n

� �

�
5

n

1

n lnn
�
n

10
þ

n

10
� 1

� �
100

n

� �

¼
nþ 100ðn� 10Þ lnn

2n2 lnn

� 1þ 50 lnn

2n lnn

> �pn;

for all n > 20. Therefore, (2.1) holds true and it

follows from (2.2) and (2.3) that, for example,

PðminftdðGðn;pnÞÞ, twðGðn;pnÞÞg � 0:29nÞ � 1�

(a)

(b) (c)

Fig. 1. Path graph G ¼ P11 has tree-depth tdðGÞ ¼ blog2 11c þ
1 ¼ 4. (a) The path G; (b) The elimination tree T of G, which

has height 4; (c) The closure of T .
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e��ðnÞ for all large n.

To prove Theorem 1, we need the following

lemma with regard to balanced separators

[13, Lem 5.3.1, Lem 6.1.2].

Lemma 1. Let G be a graph over the vertex

set V with jV j ¼ n. For any number k 2
½twðGÞ; n� 4
, G has a balanced k-partition

ðS;A;BÞ in the following sense.

Mutually exclusive sets S, A and B satisfy

S [ A [B ¼ V , jSj ¼ kþ 1, 1
3 ðn� k� 1Þ � jAj �

jBj � 2
3 ðn� k� 1Þ, where S forms a separator in

G meaning that no edges run between A and B.

Proof of Theorem 1. Fix any constant

c > 3
ffiffiffiffiffiffiffiffiffi
� ln 3

2�

q
. The assumption 0 < � < 2

9 ln 3 � ensures

c < 1. If Gðn;pnÞ has a balanced k-partition

ðS;A;BÞ as described in Lemma 1 with jSj ¼ kþ
1 � ð1� cÞn, then jBj � jAj � 1

3 ðn� k� 1Þ � cn
3 .

Hence, we have

jAjjBj � jAjðcn� jAjÞ � 2

9
c2n2:ð2:4Þ

Define EðS;A;BÞ to be the event that Gðn;pnÞ
admits a balanced k-partition ðS;A;BÞ with

jSj ¼ kþ 1 � ð1� cÞn. We obtain

PðEðS;A;BÞÞ ¼
Y

i2A;j2B
ð1� pnðeijÞÞð2:5Þ

� e�
P

i2A;j2B pnðeijÞ

¼ e�
P

i2A jBjdnði;BÞ

� e�pn�jAj�jBj

� e�
2
9pn�c

2n2

;

where in the second inequality above we used the

estimate jBj � cn
3 � n

ffiffiffiffiffiffiffiffiffi
� ln 3

2�

q
and (2.1), and in the

last inequality we applied (2.4).

Let C be the collection of all balanced k-parti-

tions ðS;A;BÞ with jSj ¼ kþ 1 � ð1� cÞn. A simple

upper bound is given by jCj � 3n since each vertex is

allowed for three options in a balanced k-partition.

In the light of (2.5) we can bound the probability of

existing such a partition as

Pð[ðS;A;BÞ2CEðS;A;BÞÞ �
X

ðS;A;BÞ2C
PðEðS;A;BÞÞð2:6Þ

� 3ne�
2
9pn�c

2n2

� enðln 3�2�c2

9� Þ;

where in the last inequality the assumption pn � 1
�n

in (2.1) is utilized. Recall that c > 3
ffiffiffiffiffiffiffiffiffi
� ln 3

2�

q
. There-

fore, the probability in (2.6) is tantamount to

e��ðnÞ. Consequently, it follows from Lemma 1 that

PðtwðGðn;pnÞÞ � bð1� cÞncÞ
� Pð[ðS;A;BÞ2CEðS;A;BÞÞ � e��ðnÞ;

which yields (2.3). Combining it with (1.1), we

know that the result (2.2) also holds. �

By taking � ¼ 1, 0 < � < 2
9 ln 3, and pnðeijÞ ¼ pn

for all i < j in Theorem 1, we obtain the following

result for homogeneous random graph Gðn; pnÞ.
Corollary 1. Suppose that pn � 1

�n with � 2
ð0; 2

9 ln 3Þ. For any constant c > 3
ffiffiffiffiffiffiffiffiffi
� ln 3

2

q
and all n

large, we have

Pðn� bcnc � tdðGðn; pnÞÞ � nÞ � 1� e��ðnÞ

and

Pðn� bcnc � twðGðn; pnÞÞ � nÞ � 1� e��ðnÞ:

In particular, w.h.p. tdðGðn; pnÞÞ ¼ �ðnÞ and

twðGðn; pnÞÞ ¼ �ðnÞ.
These estimates are in line with previous

results in [24] and [19] for dense Erd}os-Rényi

random graphs while enjoy more explicit conver-

gence rate estimates.

It is also worth noting that Theorem 1 for

heterogeneous random graphs is non-trivial. For

instance, in the example above, we have chosen

pnðeijÞ ¼ 1
n lnn � 1

n, which in a homogeneous random

graph will only lead to tree-depth (and tree-width)

of �ðln lnnÞ; see [19, Theorem 1.2].

3. Tree-depth in weighted random

graphs. In this section, we consider weighted

heterogeneous random graphs by placing a random

weight wðeijÞ ¼ wðejiÞ on each edge eij of Kn. Given

an elimination tree of G, for the longest downward

path between the root and a leaf P ¼ ði1; i2; � � � ; i‘Þ,
we define wðP Þ :¼

P‘�1
j¼1 wðeijijþ1

Þ as the weight of P ,

i.e., wðP Þ is the weighted height of the elimination

tree. Let tdwðGÞ :¼ minP wðP Þ be the minimum

weighted height of an elimination tree of G. We call

tdwðGÞ the weighted tree-depth of G. Tree-depth as

a parameter has been intensively studied in some

graph algorithms for weighted graphs including the

fixed parameter tractable (FPT) algorithms [4,12].

However, most of these works concern fixed graph

and deterministic weights.

For every edge eij in Kn, let Fij be the

cumulative distribution function of the weight

wðeijÞ and set

80 Y. SHANG [Vol. 98(A),



pnðeijÞ :¼ Fij
1

n

� �
¼ P wðeijÞ �

1

n

� �
:

By definition, we have Fij ¼ Fji for i 6¼ j. The result

below shows that the weighted tree-depth is bound-

ed above by a constant w.h.p. It is worth noting

that the appropriate analogous version for tree-

width is assigning weight on vertices instead of

edges (see e.g. [9]), and hence is not considered here.

Theorem 2. Assume that the sequence of

cumulative distribution functions fFijg1�i<j�n sat-

isfies the following two conditions:

(i) There is a sequence fpngn�1 and constants �

and � satisfying pn 2 ð0; 1Þ, 0 < � < 2
9 ln 3 �,

and for all n large the condition (2.1) holds.

(ii) There is a constant � satisfying

max1�i<j�n Ew2ðeijÞ � � for all n large.

Then we have

PðtdwðGðn;pnÞÞ � 1Þ � 1� e��ðnÞð3:1Þ

and

EðtdwðGðn;pnÞÞÞ � 1þ ffiffiffi
�
p

e��ðnÞð3:2Þ

for all n large. Here, �ðnÞ is a function of � and �.

Proof. We say an edge e in Kn is occupied if

the weight of e is less than or equal to 1
n. Define An

to be the event that there exists an occupied

elimination tree of Gðn;pnÞ having height at least

n� bcnc, where c ¼ cð�; �Þ is determined in Theo-

rem 1. When An occurs, each edge of the longest

downward rooted path in an elimination tree has

weight no more than 1
n. Therefore, the sum of

the weights is upper bounded by 1, namely,

tdwðGðn;pnÞÞ � 1. When An does not occur, the

weight of any downward rooted path in an elimi-

nation tree of Gðn;pnÞ has weight no more thanP
1�i<j�n wðeijÞ. Therefore, we have

EðtdwðGðn;pnÞÞÞ � 1 �PðAnÞ þ �n � 1þ �n;ð3:3Þ

where �n :¼ Eð
P

1�i<j�n wðeijÞ1AcnÞ, 1A presents the

indicator function of an event A, and Ac is the

complement of A.

By using the Cauchy-Schwarz inequality, we

have

�n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

X
1�i<j�n

wðeijÞ
 !2

vuut �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðAcnÞ

q
:ð3:4Þ

Notice that the inequality ab � ða2 þ b2Þ=2 < a2 þ
b2 holds for any real numbers a and b, we have the

estimate

E
X

1�i<j�n
wðeijÞ

 !2

� n

2

� � X
1�i<j�n

Ew2ðeijÞð3:5Þ

�
n

2

� �2

�

�
en

2

� �4

�;

where we used the condition (ii) and the fact that
n
k

� �
� ðenk Þ

k for any n and k (see e.g. [10, Lem 21.1]).

Combining (3.4) and (3.5), we arrive at

�n �
e2n2

4

ffiffiffi
�
p

e��ðnÞ ¼ ffiffiffi
�
p

e��ðnÞ

by using Theorem 1. Feeding this into (3.3) yields

the desired estimate EðtdwðGðn;pnÞÞÞ � 1þffiffiffi
�
p

e��ðnÞ.
Another application of Theorem 1 yields

PðtdwðGðn;pnÞÞ > 1Þ � PðAcnÞ � e��ðnÞ

for all n large. Consequently, PðtdwðGðn;pnÞÞ �
1Þ � 1� e��ðnÞ. �

For homogeneous Erd}os-Rényi random graphs,

we have the following result.

Corollary 2. Let F be the common cumula-

tive distribution function for edge weights. Assume

that there are constants a > 0, b > 0, and 0 < c < 1

satisfying F ðxÞ � axc for all x 2 ð0; bÞ. If there exists

a constant � satisfying Ew2ðeÞ � � for any edge

e 2 Kn, we have

PðtdwðGðn; pnÞÞ � 1Þ � 1� e��ðnÞð3:6Þ

and

EðtdwðGðn; pnÞÞÞ � 1þ ffiffiffi
�
p

e��ðnÞð3:7Þ

for all n large, where pn ¼ F ð1nÞ.
Proof. We have pn ¼ F ðn�1Þ � an�c for all

n > b�1. Since c 2 ð0; 1Þ, npn � an1�c � ��1 for any

� > 0 for large n. Therefore, the condition of

Corollary 1, i.e., (i) in Theorem 2 holds by taking

� ¼ 1 and pnðeijÞ � pn. The condition (ii) in Theo-

rem 2 also holds. Therefore, (3.6) and (3.7) follow

from (3.1) and (3.2), respectively. �

Finally, we present a example of non-trivial

cumulative distribution functions that satisfy the

conditions (i) and (ii) in Theorem 2. For 1 � i <
j � d n10e, we set
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FijðxÞ ¼
0; x < 0;

x
3
2 ; 0 � x � 1;

1; x > 1;

8><
>:

and for any other i < j, set

FijðxÞ ¼
0; x < 0;

x
1
2 ; 0 � x � 1;

1; x > 1:

8><
>:

Therefore, for 1 � i < j � d n10e, we have pnðeijÞ ¼
Fijðn�1Þ ¼ n�3

2 , and for any other i < j, pnðeijÞ ¼
Fijðn�1Þ ¼ n�1

2 . Let � ¼ 1, � ¼ 10, and pn ¼ 1
n for all

n � 1. Since
ffiffiffiffiffiffiffiffiffi
� ln 3

2�

q
> 1

5, for any i =2 S and jSj � n
5 ,

we have

dnði; SÞ �
1

jSj
1

n
ffiffiffi
n
p

n

10

� �
þ jSj �

n

10

� �� �
1ffiffiffi
n
p

� �

�
5

n

1

n
ffiffiffi
n
p � n

10
þ n

10
� 1

� �
1ffiffiffi
n
p

� �

�
6

10
ffiffiffi
n
p

> �pn;

for all n � 278. Therefore, (i) holds true. From

the distribution function FijðxÞ it is straight-

forward to see that � ¼ 3
7 would satisfy the con-

dition (ii). Thus, from (3.1) and (3.2) we can

conclude that PðtdwðGðn;pnÞÞ � 1Þ � 1� e��ðnÞ

and EðtdwðGðn;pnÞÞÞ � 1þ
ffiffiffi
3
7

q
e��ðnÞ for all large

n.

It is worth mentioning that in the above

example the distribution function Fij defined for

1 � i < j � d n10e does not satisfy the assumption of

distribution function in Corollary 2.
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