Hidden symmetries of hyperbolic links

By Han Yoshida
Gunma National College of Technology, 580 Toba, Maebashi, Gunma 371-8530, Japan
(Communicated by Kenji Fukaya, m.J.A., Oct. 12, 2022)

Abstract

W. D. Neumann and A. W. Reid conjectured that the figure-eight knot and the two dodecahedral knots are the only hyperbolic knots admitting hidden symmetries. We construct an n-component hyperbolic link whose complement admits hidden symmetries for any $n \geq 4$.

Key words: Hyperbolic link; commensurator; hidden symmetry.

1. Introduction. Hidden symmetry of a hyperbolic manifold $M=\mathbf{H}^{3} / \Gamma$ is a homeomorphism of finite degree covers of M that does not descend to an automorphism of M. If $\operatorname{Comm}(\Gamma) \neq$ $N(\Gamma)$, we say M admits a hidden symmetry, where $\operatorname{Comm}(\Gamma)$ is the commensurator of Γ and $N(\Gamma)$ is the normalizer of it. We say a link in S^{3} admits a hidden symmetry if its complement admits a hidden symmetry. In [6], W. D. Neumann and A. W. Reid conjectured that the figure-eight knot and the two dodecahedral knots are the only hyperbolic knots admitting hidden symmetries. Many researchers concerned with this problem. M. L. Macasieb and T. W. Mattman [4] showed that $(-2,3, n)$ pretzel knot does not admit a hidden symmetry ($n \in \mathbf{N}$). By using computer, O. Goodman, D. Heard and C. Hodgson [2] have verified for hyperbolic knots with 12 or fewer crossings. A. W. Reid and G. S. Walsh [7] showed that non-arithmetic 2-bridge knots admit no hidden symmetry.

For two-component links, E. Chesebro and J. DeBlois [1] constructed infinitely many two-component non-arithmetic links admitting hidden symmetries. Let $L_{i}(i=1, \cdots, 3)$ be the links as in Figure 1. $S^{3}-L_{2}$ is obtained by cutting along the colored twice punctured disk of $S^{3}-L_{1}$, performing π-rotation and regluing it. Repeat this process about the colored twice punctured disk of $S^{3}-L_{2}$. Then we obtain $S^{3}-L_{3}$. O. Goodman, D. Heard and C. Hodgson [2] showed that L_{2} and L_{3} have hidden symmetries by using computer. J. S. Meyer, C. Millichap and R. Trapp [5] constructed n-component links admitting hidden symmetries $(n \geq 6)$. They prove this by analyzing the geometry of those

[^0]link complements, including their cusp shapes and totally geodesic surfaces inside these manifolds.

In this paper, we generalize the result of O . Goodman, D. Heard and C. Hodgson [2]. Let C be an $(n+1)$-component alternating chain link as in the top picture of Figure $2(n \geq 4)$. Cut along the colored twice punctured disk of $S^{3}-C$, perform π-rotation and reglue it. Denote the resulting n-component link by C_{n}. In section 3 , we prove the following theorem.

Theorem 1. Let Γ_{n} be a Kleinian group such that $S^{3}-C_{n}=\mathbf{H}^{3} / \Gamma_{n}$. Then Γ_{n} is non-arithmetic and we have

$$
\left|\operatorname{Comm}\left(\Gamma_{n}\right): N\left(\Gamma_{n}\right)\right|=n+1
$$

Thus we get the following corollary.
Corollary 1. The n-component link C_{n} admits hidden symmetries.
2. Commensurator and normalizer. Two subgroups $G_{1}, G_{2}<\operatorname{Isom}^{+}\left(\mathbf{H}^{3}\right)$ are said to be commensurable if their intersection $G_{1} \cap G_{2}$ has finite index in both G_{1} and $G_{2} . G_{1}$ and G_{2} are said to be commensurable in the wide sense if there is $h \in \operatorname{Isom}^{+}\left(\mathbf{H}^{3}\right)$ such that G_{1} is commensurable with $h^{-1} G_{2} h$. The notion of commensurability can be directly transported to hyperbolic orbifolds by considering the respective fundamental groups. Then, commensurable hyperbolic orbifolds admit a finite-sheeted common covering orbifold. Commensurability is an equivalence relation.

For a Kleinian group Γ, the commensurator of Γ is defined by

$$
\begin{gathered}
\operatorname{Comm}(\Gamma)=\left\{g \in \operatorname{Isom}^{+}\left(\mathbf{H}^{3}\right): g \Gamma g^{-1} \text { and } \Gamma\right. \text { are } \\
\text { commensurable. }\}
\end{gathered}
$$

Let Γ be a finitely generated Kleinian group of finite

Fig. 1. Chain links.
co-volume. It is well known that $\operatorname{Comm}(\Gamma)$ is a commensurability invariant (see [10]). Comm(Γ) contains every member of the commensurability class. G. Margulis [3] showed that $\operatorname{Comm}(\Gamma)$ is discrete if and only if Γ is non-arithmetic. For a non-arithmetic Kleinian group $\Gamma, \operatorname{Comm}(\Gamma)$ contains every member of the commensurability class in finite index.

The normalizer of Γ is

$$
N(\Gamma)=\left\{g \in \operatorname{Isom}^{+}\left(\mathbf{H}^{3}\right): g \Gamma g^{-1}=\Gamma\right\}
$$

Clearly, $N(\Gamma)<\operatorname{Comm}(\Gamma) . \quad N(\Gamma) / \Gamma \simeq \operatorname{Isom}^{+}\left(\mathbf{H}^{3} /\right.$ $\Gamma)=\operatorname{Symm}\left(\mathbf{H}^{3} / \Gamma\right)$ and $N(\Gamma)$ is discrete.

For an arithmetic Kleinian group Γ, $\operatorname{Comm}(\Gamma)$ is not discrete. Thus arithmetic Kleinian group always admits a hidden symmetry.
3. Proof of Main Theorem. To prove Theorem 1, we prepare a lemma. Let L be a link such that $S^{3}-L$ contains a twice punctured disk S. Cut $S^{3}-L$ along S, give a half-twist and reglue them together. Then we get a new link L_{S}. In general, $S^{3}-L$ and $S^{3}-L_{S}$ are not always commensurable ([11]). We have the following Lemma 1.

Lemma 1. Let L be a link as in Figure 3. Assume that a tangle τ is equivalent to the tangle

Fig. 2. The link C_{n}.

Fig. 3. Double cover of $S^{3}-L$ and $S^{3}-L_{S}$.
obtained by performing a vertical fip. Then $S^{3}-L$ and $S^{3}-L_{S}$ are commensurable.

Proof of Lemma 1. Let $\widetilde{L}, \widetilde{L_{S}}, \widetilde{L_{S}{ }^{\prime}}$ be links as in Figure 3. Then $S^{3}-\widetilde{L}$ (resp. $S^{3}-\widetilde{L_{S}}$) is a double cover of $S^{3}-L\left(\right.$ resp. $\left.S^{3}-L_{S}\right)$.

Cut $S^{3}-\widetilde{L_{S}}$ along S, give a full-twist and reglue them together as in Figure 4. Then we get $S^{3}-\widetilde{L_{S}}$. Thus $S^{3}-\widetilde{L_{S}}$ is homeomorphic to $S^{3}-$ $\widetilde{L_{S}{ }^{\prime}}$. Moreover, by the assumption on $\tau, S^{3}-\widetilde{L_{S}}{ }^{\prime}$ is homeomorphic to $S^{3}-\widetilde{L}$. Thus $S^{3}-\widetilde{L}$ is a common double cover of $S^{3}-L$ and $S^{3}-L_{S}$.

Proof of Theorem 1. Let α_{1} and α_{2} be the π-rotations of $S^{3}-C$ as in Figure 5, and α_{3} the $2 \pi /(n+1)$-rotation of it. $\operatorname{Symm}\left(S^{3}-C\right)$ is generated by $\alpha_{1}, \quad \alpha_{2}, \quad \alpha_{3}$ and $\left|\operatorname{Symm}\left(S^{3}-C\right)\right|=$ $4(n+1)[6]$. Let P and P^{\prime} be ideal polyhedra as in Figure 2 in \mathbf{H}^{3}, the top and bottom faces are regular $(n+1)$-gons, the dihedral angles θ at the edges of $(n+1)$-gons are $\arccos ((\cos \pi /(n+1)) / \sqrt{2})$ and the other angles are $\pi-2 \theta$. W. Thurston showed that

Fig. 4. $\widetilde{L_{S}}$ and $\widetilde{L_{S}^{\prime}}$.
$S^{3}-C$ is obtained by glueing P and P^{\prime} as depicted in Figure 2. (See section 6.8 [9].) Each link component corresponds to four ideal vertices of P and P^{\prime}. M. Sakuma and J. Weeks [8] showed this ideal polyhedral decomposition is the canonical decomposition of $S^{3}-C$. Any symmetry of $S^{3}-C$ preserves the canonical decomposition. The twice punctured disk is the common image of the quadrangles labeled with the letter "A" as in Figure 2. We can see that α_{1} is the π-rotation around the diagonal of $A . \alpha_{2}$ is the π-rotation around the geodesic which is perpendicular to A and which passes through the center of $A . \alpha_{3}$ is the $2 \pi /(n+$ 1)-rotation around the geodesic which is perpendicular to the top and bottom faces of P. Assume $S^{3}-C=\mathbf{H}^{3} / \Gamma$. As $\operatorname{Comm}(\Gamma)=N(\Gamma) \quad[6], \quad \mathbf{H}^{3} /$ $\operatorname{Comm}(\Gamma) \cong\left(S^{3}-C\right) / \operatorname{Symm}\left(S^{3}-C\right)$. We have

$$
\operatorname{vol}\left(\mathbf{H}^{3} / \operatorname{Comm}(\Gamma)\right)=\operatorname{vol}(P) / 2(n+1) .
$$

The chain link C can be deformed as in Figure 6. The tangle τ in Figure 6 is equivalent to the tangle obtained by performing a vertical flip. By Lemma 1, $S^{3}-C$ and $S^{3}-C_{n}$ are commensurable. We have

$$
\begin{align*}
\operatorname{vol}\left(\mathbf{H}^{3} / \operatorname{Comm}\left(\Gamma_{n}\right)\right) & =\operatorname{vol}\left(\mathbf{H}^{3} / \operatorname{Comm}(\Gamma)\right) \tag{1}\\
& =\operatorname{vol}(P) / 2(n+1) .
\end{align*}
$$

Neumann and Reid showed $S^{3}-C$ is non-arithmetic [6]. Since commensurability preserves arithmeticity, $S^{3}-C_{n}$ is also non-arithmetic.

Let c_{i}^{\prime} be the cusp corresponding to the component of C_{n} as depicted in Figure 2. Then c_{2}^{\prime} corresponds to eight ideal vertices of P, P^{\prime} and c_{i}^{\prime} $(i=1,3, \cdots, n)$ corresponds to four ideal vertices. Let V_{i} be the set of ideal points in $\partial \mathbf{H}^{3}$ which corresponds to c_{i}^{\prime}. If $g \in \operatorname{Symm}\left(S^{3}-C_{n}\right), g\left(c_{i}^{\prime}\right)=$ $c_{\sigma(i)}^{\prime}$ for some $\sigma \in S_{n}$ where S_{n} denotes the group of

Fig. 5. The symmetries of $S^{3}-C$.

\downarrow

Fig. 6. Deformation of τ.

Fig. 7. Symmetry of $S^{3}-C_{n}$.
permutations of $\{1, \cdots, n\}$. We have $N\left(\Gamma_{n}\right)<\{\gamma \in$ $\operatorname{Comm}(\Gamma) \mid \gamma\left(V_{i}\right)=V_{\sigma(i)} \quad(i=1, \cdots, n)$ for some $\sigma \in$ $\left.S_{n}\right\}$.

Let \widetilde{P} be a lift of P and \widetilde{A} a face of \widetilde{P}, which is a lift of $A, \widetilde{P}^{\prime}$ a lift of P^{\prime} such that $\widetilde{P} \cap \widetilde{P^{\prime}}=\widetilde{A}$.

Let $\widetilde{\alpha_{1}}, \widetilde{\alpha_{2}}, \widetilde{\alpha_{3}} \in \operatorname{Isom}^{+}\left(\mathbf{H}^{3}\right)$ be a lifts of α_{1}, α_{2}, α_{3} respectively such that $\widetilde{\sim} \widetilde{\alpha_{1}}$ is the π-rotation around the diagonal of $\widetilde{A}, \widetilde{\alpha_{2}}$ is the π-rotation around the geodesic which is perpendicular to \widetilde{A} and which passes through the center of $\widetilde{A}, \widetilde{\alpha_{3}}$ is the $2 \pi /(n+1)$-rotation around the geodesic which is perpendicular to the top and bottom faces of \widetilde{P}.

For any $\gamma \in N(\Gamma)$, there exists $\sigma \in S_{n}$ such that $\gamma\left(V_{i}\right)=V_{\sigma(i)}$ and $\gamma(\widetilde{P})$ is a lift of P or P^{\prime}. As $\alpha_{1}(P)=P^{\prime}$, there is $\gamma_{0} \in\left\langle\widetilde{\alpha_{1}}, \Gamma\right\rangle$ such that $\gamma_{0} \gamma(\widetilde{P})=$ \widetilde{P}. Since $\gamma_{0}\left(V_{i}\right)=V_{i}, \gamma_{0} \gamma\left(V_{i}\right)=V_{\sigma(i)}$ for any i. Hence $\gamma_{0} \gamma$ fixes the four ideal points of \widehat{P} which correspond to the cusp c_{2}^{\prime}. Hence $\gamma_{0} \gamma=\widetilde{\alpha_{2}}$ or identity. We get

$$
N\left(\Gamma_{n}\right)<\left\langle\widetilde{\alpha_{1}}, \widetilde{\alpha_{2}}, \Gamma\right\rangle .
$$

Thus

$$
\begin{align*}
\operatorname{vol}\left(\mathbf{H}^{3} / N\left(\Gamma_{n}\right)\right) & \geq \operatorname{vol}\left(\mathbf{H}^{3} /\left\langle\widetilde{\alpha_{1}}, \widetilde{\alpha_{2}}, \Gamma\right\rangle\right) \tag{2}\\
& =\operatorname{vol}(P) / 2
\end{align*}
$$

Let $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ be the symmetries of $S^{3}-C_{n}$ as depicted in Figure 7. It is easy to see that $\left|\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right\rangle\right|=4$. Thus we obtain

$$
\begin{equation*}
\operatorname{vol}\left(\mathbf{H}^{3} / N\left(\Gamma_{n}\right)\right) \leq \operatorname{vol}(P) / 2 \tag{3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\operatorname{vol}\left(\mathbf{H}^{3} / N\left(\Gamma_{n}\right)\right)=\operatorname{vol}(P) / 2 \tag{4}
\end{equation*}
$$

by (2), (3). Hence

$$
\left|\operatorname{Comm}\left(\Gamma_{n}\right): N\left(\Gamma_{n}\right)\right|=n+1
$$

by (1), (4).
Acknowledgements. This work was supported by the Research Institute for Mathematical

Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

[1] E. Chesebro and J. DeBlois, Hidden symmetries via hidden extensions, Proc. Amer. Math. Soc. 145 (2017), no. 8, 3629-3644.
[2] O. Goodman, D. Heard and C. Hodgson, Commensurators of cusped hyperbolic manifolds, Experiment. Math. 17 (2008), no. 3, 283-306.
[3] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991.
[4] M. L. Macasieb and T. W. Mattman, Commensurability classes of $(-2,3, n)$ pretzel knot complements, Algebr. Geom. Topol. 8 (2008), no. 3, 1833-1853.
[5] J. S. Meyer, C. Millichap and R. Trapp, Arithmeticity and hidden symmetries of fully augmented pretzel link complements, New York J. Math. 26 (2020), 149-183.
[6] W. D. Neumann and A. W. Reid, Arithmetic of hyperbolic manifolds, in Topology '90 (Columbus, OH, 1990), 273-310, Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992.
[7] A. W. Reid and G. S. Walsh, Commensurability classes of 2-bridge knot complements, Algebr. Geom. Topol. 8 (2008), no. 2, 1031-1057.
[8] M. Sakuma and J. Weeks, Examples of canonical decompositions of hyperbolic link complements, Japan. J. Math. (N.S.) 21 (1995), no. 2, 393439.
[9] W. P. Thurston, The Geometry and Topology of Three-manifolds, Lecture notes, Princeton University Press, Princeton, 1979.
[10] G. S. Walsh, Orbifolds and commensurability, in Interactions between hyperbolic geometry, quantum topology and number theory, Contemp. Math., 541, Amer. Math. Soc., Providence, RI, 2011.
[11] H. Yoshida, Invariant trace fields and commensurability of hyperbolic 3 -manifolds, in KNOTS 96 (Tokyo, 1996), 309-318, World Sci. Publ., Singapore, 1997.

[^0]: 2020 Mathematics Subject Classification. Primary 57M25.

