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Abstract: In [8] the first author classified automorphism groups of smooth plane curves of

degree not less than four into five types. If the curve has a unique outer Galois point, then the

quotient group of its automorphism group by the Galois group at the point, which is called the

reduced automorphism group, is a finite subgroup of one-dimensional projective linear group.

This article is a sequel of [10] and [9]. In this article, we shall determine the defining equation of

the curve when the reduced automorphism group is an icosahedral group and give a description of

the full automorphism group.
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1. Introduction.

Notation and Conventions.

. Zm: a cyclic group of order m;

. �m: a primitive m-th root of unity;

. D2m: the dihedral group of order 2m;

. Q8 ¼ ha; b j a4 ¼ 1; b2 ¼ a2; b�1ab ¼ a�1 i ¼
hi; j; k j i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1i: the quatern-

ion group;

. T ’ A4, O ’ S4, I ’ A5: the tetrahedral, octa-

hedral, icosahedral subgroups of PGLð2;CÞ;
. I ’ SLð2; 5Þ: the binary icosahedral subgroup

of SLð2;CÞ.
In this paper

PBDð2; 1Þ

:¼ A ¼
a11 a12 0

a21 a22 0

0 0 �

0B@
1CA 2 GLð3;CÞ

8><>:
9>=>;
,

C�:

Then there exists an exact sequence

1! C� ! PBDð2; 1Þ !� PGLð2;CÞ ! 1;

where � : PBDð2; 1Þ ! PGLð2;CÞ ð½A� 7! ½ðaijÞ�Þ is

the natural homomorphism and C� is the subgroup

of PBDð2; 1Þ consisting of the elements represented

by diagonal matrices of the form diagð1; 1; �Þ
ð� 6¼ 0Þ.

The group GLðn;CÞ acts on C½X1; X2; . . . ; Xn�
as follows: For A 2 GLðn;CÞ and fðX1; X2; . . . ;

XnÞ 2 C½X1; X2; . . . ; Xn�,

AðfÞðX1; X2; . . . ; XnÞ :¼ fððX1; X2; . . . ; XnÞtA
�1Þ:

In this article we consider smooth plane curves

with a unique outer Galois point. We determine

their defining equations and study the structure of

their automorphism groups when the reduced auto-

morphism group is A5 (see Definition 1). Our

method is based on the classification theorem of

automorphism groups by the first author (see

Theorem 1) and the theory of Galois points for

smooth plane curves.

First we recall known results on automorphism

groups of smooth plane curves. Let C be a smooth

plane curve of degree d � 4. Then the automor-

phism group AutðCÞ is naturally considered as a

subgroup of PGLð3;CÞ. In other words, it acts on

P2. Furthermore, we obtain a classification of

automorphism groups of smooth plane curves:

Theorem 1 ([8, Theorem 2.1]). Let C be a

smooth plane curve of degree d � 4 and G ¼ AutðCÞ.
If G has a fixed point P 2 P2, then the following

hold.

(a-i) If P 2 C then G is a cyclic group whose order

is at most dðd� 1Þ. Furthermore, if d � 5 and

jGj ¼ dðd� 1Þ, then C is projectively equiv-

alent to the curve Y Zd�1 þXd þ Y d ¼ 0.

(a-ii) If P =2 C then, under a suitable coordinate

system, there exists a commutative diagram
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1 �! C� �! PBDð2; 1Þ �!� PGLð2;CÞ �! 1

,! ,! ,!

1 �! N �! G �!� G0 �! 1;

where N is a cyclic group whose order is a

factor of d and G0 ¼ G=N is conjugate to Zm,

D2m, T , O or I, where m is an integer at most

d� 1. Moreover, if G0 ’ D2m, then mjd� 2

or N is trivial. In particular jGj �
maxf2dðd� 2Þ; 60dg.

If G has no fixed points, then one of the following

holds.

(b-i) G � AutðFdÞ, where Fd : Xd þ Y d þ Zd ¼ 0 is

Fermat curve of degree d.

(b-ii) G � AutðKdÞ, where Kd : XY d�1 þ Y Zd�1 þ
ZXd�1 ¼ 0 is Klein curve of degree d.

(c) G is conjugate to one of the following

subgroups of PGLð3;CÞ: the alternating

group A5 or A6, the Klein group PSLð2; 7Þ,
the Hessian group H216 of order 216 or its

subgroup of order 36 or 72. In particular

jGj � 360.

Definition 1. The group G0 in (a-ii) of

Theorem 1 is called the reduced automorphism

group of C.
Theorem 1 is based on the classification of

finite subgroups of PGLð3;CÞ (see [3]) and leads us

to several problems:

(1) Obtain a detailed classification of automor-

phism groups of smooth plane curves of fixed

degree (see [2]).

(2) Study smooth plane curves with a fixed auto-

morphism group (see [1], [12]).

(3) Study automorphism groups of smooth plane

curves with special property, for example,

Galois points (see the next section).

2. Smooth plane curves with Galois

points. We recall basic facts on smooth plane

curves with Galois points from [13]. See also [11].

Let C be a smooth plane curve of degree d � 4 and

P a point of P2. We then have a morphism

�P :C ! P1, which is the restriction of the projec-

tion P2 --K P1 with the center P . It induces a field

extension ��P : CðP1Þ ,! CðCÞ. Put K :¼ CðCÞ and

KP :¼ ��P ðCðP1ÞÞ.
Definition 2. The point P is called a Galois

point for C if the field extension K=KP is Galois. A

Galois point P is said to be inner (resp. outer) if

P 2 C (resp. P =2 C).

Galois points (and quasi Galois points, a wider

notion (see [7])) are defined in arbitrary character-

istic and deeply related to automorphism groups

of smooth plane curves (see, for example, [4–6],

[9], [10]).

In this article we consider smooth curves with

outer Galois points.

Theorem 2 ([13, Theorem 40, Proposition

50]). Let C be a smooth plane curve of degree

d � 4. Then the number of outer Galois points for C

is 0, 1 or 3. Furthermore, it is equal to 3 if and

only if C is isomorphic to Fermat curve.

Assume that C has an outer Galois point P and

C is not isomorphic to Fermat curve. Then P is

the unique outer Galois point. In particular G ¼
AutðCÞ fixes P . Hence it follows from Theorem 1

that, under a suitable coordinate system, G �
PBDð2; 1Þ and P ¼ ð0 : 0 : 1Þ. We have an exact

sequence of groups

1! Zd ! G!� G0 ! 1;ð1Þ

where G0 is a finite subgroup of PGLð2;CÞ. Then G0

is one of the following groups: a cyclic group Zm

ðm � d� 1Þ, a dihedral group D2m ðmjd� 2Þ, the

tetrahedral group T , the octahedral group O or the

icosahedral group I. Furthermore, the following

holds.

Lemma 3. The defining equation of C is of

the form Zd ¼ F ðX;Y Þ, where F is a homogeneous

polynomial of degree d without multiple factors.

Proof. Since P ¼ ð0 : 0 : 1Þ =2 C, the defining

equation of C is as follows:

Zd þ
Xd
k¼1

akFkðX; Y ÞZd�k ¼ 0;

where ak 2 C and Fk is a homogeneous polynomial

of degree k. Note that Zd in (1) is generated by the

element represented by A ¼ diagð1; 1; �dÞ. Since Zd

is invariant under A, so is the left side of the

equation. Then we see that ak ¼ 0 for k ¼ 1; 2; . . . ;

d� 1. Thus C is defined by the equation Zd ¼
F ðX; Y Þ, where F ðX; Y Þ ¼ �adFdðX; Y Þ. Since C is

smooth, F ðX; Y Þ has no multiple factors. �

In what follows we assume that G0 ¼ I. There

exists a natural commutative diagram

1 �! C� �! SLð2;CÞ �C� �! SLð2;CÞ �! 1

 
� 	

�
�$

�
��

1 �! C� �! PBDð2; 1Þ �!
�

PGLð2;CÞ �! 1;

where � and $ are natural projections. This
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diagram induces another commutative diagram

1 �! Zd �! eG �! I �! 1
 
� 	

�
�$

�
��

1 �! Zd �! G �!
�

I �! 1;

where eG :¼ $�1ðGÞ. Then Ker$ ¼ f
E3g and

Ker� ¼ f
E2g.
Remark 1. Note that I is generated by

a :¼ �
�3 0

0 �2

 !
; b :¼

0 1

�1 0

� �

and c :¼
1

�2 � �3

� þ ��1 1

1 �ð� þ ��1Þ

 !
;

where � is a primitive 5th root of unity. Further-

more, it is well known that the invariant ring

C½X; Y �I is generated by

u ¼ XY ðX10 þ 11X5Y 5 � Y 10Þ;
v ¼ X20 � 228ðX15Y 5 �X5Y 15Þ þ 494X10Y 10 þ Y 20

and

w ¼ X30 þ 522ðX25Y 5 �X5Y 25Þ
� 10005ðX20Y 10 þX10Y 20Þ þ Y 30:

In particular any polynomial in C½X; Y �I has an

even degree. The generators u; v; w of C½X; Y �I
satisfy w2 ¼ 1728u5 � v3.

3. Defining equations of curves. First we

study the defining equation of C. Recall that it is of

the form Zd ¼ F ðX; Y Þ.
Main Result 1. The polynomial F ðX; Y Þ

belongs to the ring C½X; Y �I ¼ C½u; v; w�, i.e., it is

invariant under I.

Proof. Let A be any matrix in I. Then there

exists a number � 2 C� such that ðA;�Þ 2 eG.

Note that � is unique up to multiplication by a

d-th root of unity. Thus we obtain a group homo-

morphism

� : I ! C� ðA 7! �dÞ:

Put � ¼ $ðA;�Þ. Then F ððX; Y ÞtA�1Þ ¼
��dF ðX; Y Þ since � acts on C : Zd ¼ F ðX; Y Þ. Thus

it suffices to show that � is trivial.

Put ½A� ¼ �ðAÞ. Then A is uniquely determined

by ½A� up to multiplication by 
1. Hence we obtain

another group homomorphism

� : I ! C� ð½A� 7! �2dÞ:

Put K ¼ Ker� and K ¼ Ker�. Note that I=K

and I=K are finite subgroups of C�, hence they are

cyclic. It follows that K ¼ I, since I is simple and

non-cyclic. Therefore � is trivial. It follows that

Im� � f
1g and K is a subgroup of index at most

two in I. Then K ¼ I, since I has no subgroup of

index two. Hence � is also trivial. �

Remark 2. For any homogeneous polyno-

mial F 2 C½u; v; w� without multiple factors, the

smooth plane curve C defined by the equation

Zd ¼ F ðX; Y Þ has an outer Galois point and there

exists an exact sequence

1! Zd ! AutðCÞ ! I ! 1:

By Main Result 2 below, it never splits.

Remark 3. The above result may seem

clear, but it is not trivial and related to the group

structure of I. Indeed, if G0 6¼ I then F ðX;Y Þ is not

always invariant under eG0 ¼ ��1ðG0Þ. For example,

let C be the sextic curve defined by Z6 ¼
XY ðX4 � Y 4Þ. Then G ¼ AutðCÞ satisfies the exact

sequence

1! Z6 ! G! O! 1:

Thus G0 ¼ O in this case and the polynomial

XY ðX4 � Y 4Þ is not invariant under O (the binary

octahedral subgroup of SLð2;CÞ), which is gener-

ated by

�8 0

0 ��1
8

 !
;

0 i

i 0

� �
and

1ffiffiffi
2
p

��1
8 ��1

8

�5
8 �8

 !
:

4. The structure of automorphism

groups. In this section we study the structure of

G. Recall the commutative diagram

1 �! Zd �! eG �! I �! 1

 
� 	

�
�$

�
��

1 �! Zd �! G �!
�

I �! 1:

Let d0 be the odd part of d, i.e., d ¼ 2ed0 ðe = 1Þ
and 2 - d0 and eG0 the subgroup of eG generated by

a

1

� �
;

b

1

� �
;

c

1

� �

and

1

1

�2e

0B@
1CA;

where a, b and c are those in Remark 1. Then it is

clear that �E3 2 eG0 and eG ¼ Zd0
� eG0. Hence G ¼eG=f
E3g ’ Zd0

�G0, where G0 :¼ eG0=f
E3g.
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Thus the structure of G is determined by the

one of G0, which is as follows:

Main Result 2. The group G0 ¼ Z2e
�I is a

non-split extension of I by Z2e and it is an extension

of a cyclic group Z2e�1 by I. Precisely

G0 ¼
I (if e ¼ 1),

I o Z2 (if e ¼ 2),

I�Z2e�1 (if e � 3).

8><>:
In the rest of this section we give a proof of the

above result. First we show that the exact sequence

1 �! Z2e �! G0 �! I �! 1ð2Þ

is not split. Let eH be the subgroup of eG0 generated

by

a

1

� �
;

b

1

� �
and

c

1

� �
and eG1 the subgroup of eG0 generated by

a

1

� �
;

b

1

� �
;

c

1

� �

and

1

1

�1

0B@
1CA:

Then �E3 2 eG1 and eG0 ¼ Z2e � eH. Furthermore,eG1 is the kernel of the composite of the natural

projection eG0 ! Z2e and Z2e ! Z2e�1 ð� 7! �2Þ.
Thus we have the following commutative diagram:

1 �! eG1 �! eG0 �! Z2e�1 �! 1

�
�

�
� k

1 �! I �! G0 �!
 

Z2e�1 �! 1;

ð3Þ

where  is defined by  
A

�

� �� �� �
¼ �2.

Suppose that (2) is split. Then G0 contains a

subgroup H isomorphic to I. The map  jH is trivial

since Im ð jHÞ is cyclic and H is a non-cyclic simple

group. It follows that H � Ker ¼ I. This is a

contradiction, since I contains no subgroup isomor-

phic to I.

Next we consider the splitting of the exact

sequence (3). If e ¼ 1 then clearly G0 ¼ I. If e ¼ 2,

then the homomorphism s: Z2 ! G0 defined by

sð�1Þ ¼
1

�1
i

0@ 1A24 35 is a section of  . Thus

G0 ¼ I o Z2.

Finally suppose that e � 3 and there exists a

section 	: Z2e�1 ! G0 of  . We can write 	ð�2e�1Þ ¼
A

�

� �� �
for a matrix A 2 I and a number � such

that �2 ¼ �2e�1 . Then A2e�1 ¼ �E2 since �2e�1 ¼ �1.

Therefore the order of A in I is 2e � 8. This is a

contradiction because Sylow 2-subgroups of I are

conjugate to Q8, the quaternion group.

5. Examples. We give some examples of

Main Result 2. Let u; v and w be those in Re-

mark 1, i.e.,

u ¼ XY ðX10 þ 11X5Y 5 � Y 10Þ;
v ¼ X20 � 228ðX15Y 5 �X5Y 15Þ þ 494X10Y 10 þ Y 20

and

w ¼ X30 þ 522ðX25Y 5 �X5Y 25Þ
� 10005ðX20Y 10 þX10Y 20Þ þ Y 30:

Example 1. Let C be the plane curve of

degree 12 defined by

Z12 ¼ XY ðX10 þ 11X5Y 5 � Y 10Þ ð¼ uÞ:

Then G ¼ AutðCÞ satisfies the (non-split) exact

sequence

1! Z12 ! G! I ! 1

and G ¼ Z3 � ðI o Z2Þ.
Example 2. Let C be the plane curve of

degree 20 defined by

Z20 ¼ X20 � 228ðX15Y 5 �X5Y 15Þ
þ 494X10Y 10 þ Y 20 ð¼ vÞ:

Then G ¼ AutðCÞ satisfies the (non-split) exact

sequence

1! Z20 ! G! I ! 1

and G ¼ Z5 � ðI o Z2Þ.
Example 3. Let C be the plane curve of

degree 30 defined by

Z30 ¼ X30 þ 522ðX25Y 5 �X5Y 25Þ
� 10005ðX20Y 10 þX10Y 20Þ þ Y 30 ð¼ wÞ:

Then G ¼ AutðCÞ satisfies the (non-split) exact

sequence

1! Z30 ! G! I ! 1

and G ¼ Z15 � I.
Remark 4. For the above cases, we deter-

mined the structure of the automorphism group by
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another method in [9, Theorem 5].

Example 4. Let C be the plane curve of

degree 32 defined by Z32 ¼ uv. Then G ¼ AutðCÞ
satisfies the (non-split) exact sequence

1! Z32 ! G! I ! 1

and G ¼ I�Z16.
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