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Abstract:

A Shintani-Katok-Sarnak type correspondence for Maass cusp forms of level N

is shown to be derived from analytic properties of prehomogeneous zeta functions whose

coefficients involve periods of Maass forms.

Key words:

In [10], Shimura constructed a lifting from
holomorphic cusp forms of half-integral weight to
cusp forms of integral weight. Shimura’s original
proof depends on the Rankin-Selberg method and
Weil’s converse theorem [13]. In [11], Shintani
constructed a lifting from holomorphic cusp forms
of integral weight to cusp forms of half-integral
weight by using theta functions. In the case of non-
holomorphic modular forms, a prototype of the
lifting had already appeared in the work of Maaf [6].
Katok and Sarnak [5] developed the method of [6]
to prove the Shintani correspondence for Maass
cusp forms of weight 0 for SLy(Z). The Katok-
Sarnak formula reveals a relation between the
periods of Maass forms of weight 0 and the Fourier
coefficients of the corresponding form of weight %,
and now plays an important role in number theory.
The Katok-Sarnak formula has been extended in
many directions; we refer to Baruch-Mao [1], Biré
[2], Duke-Imamoglu-Téth [3], Imamoglu-Légeler-
T6th [4]. On the other hand, F. Sato [9] constructed
a theory of prehomogeneous zeta functions whose
coeflicients involve periods of automorphic forms.
In this note, we show that a Shintani-Katok-Sarnak
type correspondence is derived from analytic prop-
erties of a certain zeta function investigated in [9].
The proof relies on a Weil type converse theorem
for Maass forms [7].

This is an announcement whose details will
appear elsewhere.

1. Statement of the result. The group
G = SLy(R) acts on the Poincaré upper half plane
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H={z=z+iye C|y>0} via the linear frac-
tional transformation. Let N be a positive integer
and take a congruence subgroup I'g(N) of level N
defined by

To(N)={y € SLy(Z) | 721 =0 (mod N)},

where 751 the (2,1)-entry of 4. Let x be a Dirichlet
character of mod N satisfying x(—1) = 1. We use
the same symbol x to denote the induced character
of To(N) defined by x(v) = x(722) for v = (i) €
Ty(N). A C*-function ® : H — C is called a Maass
cusp form of weight 0 for T'o(N) with character
x if

(1) Ag® = A(1—X)® for a A € C, where

0? 0?
2= (5 + oy2)
is the hyperbolic Laplacian on H,
(2) ®(vz2) = x(7)®(2) for v € Ty(N), and
(3) @ has exponential decay at all cusps of T'y(V).
Let &¢(N, A, x) be the space of all such functions.
For g € G, we put ¢(g) = ®(g~" - v/—1). Let

cosf sinf y 20 1 —z

9= (—Sin9 cosH) 0 y'/? (0 1 )
be the Iwasawa decomposition of g € G. Then we
have ¢(g) = ®(z+yv—1). Let V =Symy(R) be
the space of real symmetric matrices of degree 2.
Then G = R X G acts on V by v —t-gv'q for v e
V and (t,g9) € G. Let V, ={v eV |detv >0} and
V. ={veV]|detv<0}. We have V, = G- I, and
V.=G- Jo, where

I_(1 0) J_(o 1)
*“N\o 1) 72 \1 o)
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Further, we put H, = SO(Iy) and H_ = SO(J3) so
that

cosf —sin@
H+so<z>{ke(, )‘0§0<2w},
sinf cosf

y 0
H:SO(l,l):{ay:<O _1>‘yERX}.
Y

We normalize the Haar measures duy on Hy by

do dy
duy (ke) = —, dp_(a,) =—.
Let VI (resp. V') be the set of positive (resp.
negative) definite symmetric matrices in V;. For
v € V with det v # 0, we take t, > 0 and g, € G such
that

tv(gUIZ igu) ifve Vf,
v= _tu(ngQ tgv) ifve Vf,
tv(ngQ fgv) ifveV_.

For v € Vo N V., we define the period M(v) of ¢ by
Motw) = [ Sy s (1),
H, /9[ T0.090

where Ty, = {y € Ty(N) | yo'y = v}. Then M¢(v)
is absolutely convergent and does not depend on
the choice of g,. By [9, Lemma 6.3], for v € V., we
have

Mo(v) = . ®(2y),
e(v)
where ¢(v) = #(Tg,) and 2, = g, - vV—1. Note that 2,
coincides with the so-called Heegner point associ-
ated with v. If v € V_, then {g,a,- vV—1|y > 0} is
the Heegner cycle associated with v, and thus
Me(v) coincides (up to constant) with a certain
cycle integral of ®. Following the formulation of
Shintani, we take a lattice Ly defined by

v NUQ
EN = v =
N’UQ N'U3
(see [11, p. 109]). We note that T'g(N) acts on Ly via
the restriction of the representation (G, V). Name-

ly, v — yvly for v € Ty(N) and v € Ly. Further, for
v € Ly, we put

V1, V9,V3 € Z}.

dy(v) := N(vy)* — vyvs (: - %det v).

Let Vz be the set of half-integral symmetric
matrices of degree 2:
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* “’;
w -
; 12

Vz=<w" = wy,wy,wy €Z »,

wl
Wy *
2 W3

and for w* € Vg, we put
disc(w*) == (wh)? — dwiw} (= —4detw").

Note that I'y(N) also acts on Vz in the same way
as above. We take an automorphic factor J(v, z) of
weight 1 defined by

o2 & |
1) with 0(z) = Z exp(27in?z).

n=—0o0

0? 0? wy (0 0
A = | — + — LA (Y S
3 4 (6372 * (‘3y2> * 2 (835 +18y>
be the hyperbolic Laplacian of weight % on H, and
1 a Dirichlet character of mod 4N. A C*-function
F:H — C is called a Maass cusp form of weight %

for T'y(4N) with character v if
(1) A F = (p—7)(G—p)F forapeC,

J(’Ya Z) -

Let

1

(2) F(12) = 0(3)1(3, 2)F(2) for 7 € Ty(4N), and

(3) F(z) has exponential decay at all cusps of
To(4N).

We denote by &1(4N, u,v) the space of all such

functions. Any 127661(4N,u,1p) has a Fourier

expansion of the form ’

o0

Z c(n) - Wi u(n,y)e[nz],

11)  F(z) =

where e[z] = exp(2mv—1x) and for ¢ € Z,
(12) (4alnly).

Here W, ,(z) denotes the Whittaker function. For a
Dirichlet character x of mod N, let

> xme| ]
mmod N N
(m,N)=1

_L
vaﬂ (’I’L, Z/) =Y 4I/I/sgu(n)é e
4 N

1
2

be the Gauss sum associated with x. Now we state
our main theorem.

Theorem 1. Let \# % and assume that
®(z) € Go(N, \, x?). We put

=2 =0 (3)

Then there exists an F(2) € 61(4N, p, xan) such that
2

the Fourier coefficients c¢(n) in (1.1) are given by
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1 3
cn)=2r7-n71 Y x(v1)Mg(v),
veTo(N)\Ly
dy(v)=n
@ v
(emy=nt Y X2E)
erimiey €W
dy(v)=—n
forn=1,23,.... Furthermore, if we put

T (wg) Mo (w"),

w*ely(N)\Vz
discw*=n

w*ely(N)\Vz
discw*=—n

forn=1,2,3,..., and define a function G(z) on H
by

G(z) = NI c'(n) - Wi u(n,y)enz],
"z
then we have G(2) € 61(4N, u,X) and
2

F(— 4]1\72) (VN2) 2 =e {— %] LG(2).

2. A Weil type converse theorem for
Maass forms. Our proof for Theorem 1 relies
on a converse theorem given in [7]. Here let us recall
briefly the result, with some modifications. For the
convenience of readers, we give the statement for
general weights. Fix an integer ¢ and a positive
integer N. We assume that N is a multiple of 4
when ¢ is odd. Let a={a(n)},czy and 8=
{6(n)}nez\{0} be complex sequences of polynomial
growth. For a,(, we can define the L-functions

§i(as8),64(8;5) by
Eelas) = 3 2N

n=1 n n=1 n’
and the completed L-functions Zi(«a;s) and
E+(B5) by Ex(ass) = (2m) T(s)éx(ass) and

Ex(f;5) = (2m) "T(5)6=(6; 5)-
Now we assume the following two conditions:

[C1] The L-functions &4 («;s),£+(6; s) have analyt-
ic continuations to entire functions of s, and are
of finite order in any vertical strip.

[C2] The following functional equation holds:

1) 2

Zi(;8)

E_(a;9)

) = N> 5(0)
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.7(2_%_8)(E+(ﬂ;2—2u—8)>7

E_(Bi2-2u—s)

where v(s) and X(¢) are given by

wsi/2 —7si/2 0
e e 0 1
(s) = . o | B = :
<67rsz/2 67rsz/2 ) 1 0

For an odd prime number r with (N,r) = 1 and
a Dirichlet character ¥ mod r, the twisted L-func-
tions &4 (o, Ty; 8), &x (B, Ty; 8) are defined by
2, a(£n)Ty(£n)

Eelamis) =Y

9

n=1 ns
(8, ms) = 3 PEWTEN,
n=1

where 74(n) is the Gauss sum associated with
1. The complete L-functions Zi(a,7y;s) and
E.(8,1y;s) are defined by @ Ei(a,Ty;s) =
(2m) °T(s)éx (v, Ty 8) and EL (B, Ty 8) =
(2m) °T'(s)€x (8, 3 8), respectively.

Let Py be a set of odd prime numbers not
dividing N such that, for any positive integers a, b
coprime to each other, Py contains a prime number
r of the form r =am + b for some m € Z~,. For
an r € Py, denote by X, the set of all Dirichlet
characters mod r (including the principal charac-
ter). For ¢ € X, we define the Dirichlet character
Y* by

‘

vt =0 (5)

For an odd integer d, we put g4 =1 or v—1
according as d =1 or 3 (mod 4). Let

e ={
Lr — El

r

(2.2)

(¢ is even),
(¢ is odd).

In the following, we fix a Dirichlet character
y mod N that satisfies x(—1)= (vV=1)" (resp.
x(—1) = 1) when ¢ is even (resp. odd).

For an r € Py and a 9 € X,, we consider the
following conditions [C1], , —[C2],, on &x(a, Ty;s)
and &4 (5,7, 5).

[Cl],p &x(a, Ty s),€4(8,7yr;s) have analytic con-
tinuations to entire functions of s, and are of
finite order in any vertical strip.

[C2l,y Ex(a,Ty;s) and Zi(6,7y;s) satisfy the
following functional equation:
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(2.3) 7(5)( Zﬁzzg )

— X(r) . CE,T . /(/)*(_N) . /r.2l1—2 . (NT2)272;1,75 . E(f)

E ,T;,*;2—2 — S
(2 =2 —s) _+(5 1. = s) .
E_ (B2 =21 —9)

Lemma 1. Let p ¢%Z. We assume that
Ex(a; 8) and €4(B; s) satisfy the conditions [C1] and
[C2]. We assume furthermore that, for any r € Py
and ¥ € X,, Ea(o, 1y 8) and €.(B, Ty+; s) satisfy the
conditions [C1], , and [C2] . We define the func-
tion Wi, (n,y) by

11 [1

. !
Wé,y(nv y) = ) : W[ﬁ;t(nv y>>

sgn(n)¢
r (,u + gT

where Wy ,(n,y) is given as (1.2), and the functions
F,(z) and Ga(z) on H by

o0

F.(2) = E a(n) - Wg,u(n, y)enz],
e
Gy(z) = N'7" > B(n) - Wy,(n,y)e[na].
A0

Then Fo(z) (resp. Gs(z)) gives a Maass form for
Lo(N) of weight £ with character x (resp. xn ), and
eigenvalue (p— £/4)(1 — p— £/4), where

xw(d) = W(%)é

Moreover, we have

F, <— AZ) (VN2) " = Gy(2).

Remark 1. Here we have assumed a strong-
er condition u ¢ % Z than that given in the previous
paper [7]. This enables us to remove conditions on
zeros of L-functions (cf. [7,p. 33]).

3. Prehomogeneous zeta functions. As
an example of the theory of [9], Sato investigated
the zeta functions associated to the vector space of
symmetric matrices of degree 2 whose coefficients
involve the periods M¢(v) of Maass cusp forms ®.
In this section, we introduce twisted versions of
these zeta functions and give their analytic proper-
ties such as analytic continuations and functional
equations.

Keep the notation as in the previous sections.
We define zeta functions (. (¢, x;s) and ¢} (¢, 7y;s)

[Vol. 98(A),

by

Ca(d, x5 8) =

sgndy (v)==+
Clomss)= > (W) M (w")

w* €Ly (N)\Vg
sgn disc(w*)==+

Then we have the following lemma, whose proof is
similar to that of [9, Theorem 6.7].

Lemma 2. The zeta functions (+(¢, x; s) and
Ci(o,7y;8) have analytic continuations to entire
functions of s and satisfy the following functional
equation:

31 (C(cb,x;%— 5)

1 ggrrg_d A-1
=m2 N2 s+—2 I'(s—

A
2
3 (s) (Ci(fba TX;S))

C(D, 7y )

where Wy(s) is a 2 X 2 matriz given by
sinms

) =| _Tl-9* =
P a1 — N 2

COSTS

Let r be an odd prime number r with (N,r) =
1, and ¥ a Dirichlet character of mod r. We denote
by ¢* the Dirichlet character defined as (2.2) with
¢ =1. We define (+(¢,x,7p;5) and (i (¢, 7y, Ty+3 5)
by

o X (o) M) (dy (1))
Ci(¢) X5 T3 S) ,UEFU(XA[:)\[,N |dN('U) ‘5 ’
sgndy (v)=%

Ci(¢, Ty s Typ*3 S)
Ty (w3) Mo (w*) Ty (disc w*)
|disc w*|® '

w*ely(N)\Vz
sgn disc(w*)=+
Then we have the following lemma.

Lemma 3. The zeta functions (¢, X, Ty; S)
and (i (o, 7y, Tyr; ) have analytic continuations to
entire functions of s and satisfy the following
functional equation:
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(X Tui 5 — 5) *
. =¢&r r —4N

25—3 1 ognrs3 A-1 A
S Tag U N°T2 T s+T r 575

Ci(@b’ Ty s Top3 5))
- .
/\(S)<<*(¢a Ty s Top*3 S)

The proof of Lemma 3 goes along the same line
as Sato [8], Ueno [12]. In this case, however, it is
necessary to calculate a kind of Gauss sums that
have not appeared in the previous works. The
author has learned such calculation from unpub-
lished notes of Sato. We quote his result, which is
a key ingredient and of independent interest. Let
fux(v) be a function on Vg defined by

[ 7uldv(w) - x(v1)  (veLy)
fw,x(”) = { 0 (v ¢ EN) .

Let (v,v*) be the inner product on V defined by
{(v,v*) = tr(vwv*w™!) with w = (_01 (1)) For v* € Vg,

we define the Fourier transform ﬁ;(v*) by

(3.3)  fux(v*

> fox)el(w, o),

)= 1
[VZ : L] veVq/L

where L is a sufficiently small lattice so that L C Vg
and the value fy,(v)e[(v,v*)] depends only on the
residue class v+ L.

Lemma 4 (F. Sato). If v* ¢ ﬁVZ, then we
have fy,(v*) =0. If v* € %VZ, we have

fix (%)
Er * * . *
= —5 - xn(r) - T (=AN) 7 (W) 7y (disc(w")).

2r2 N3

4. An outline of the proof of Theorem
1. We construct L-functions satisfying two con-
ditions [C1] and [C2]. In the functional equa-
tion (2.1), we let £=1 and pu= %T“, and replace
N by 4N. Then it follows from an elementary

calculation that (2.1) is transformed as

(4.1) (?EZ z;> = (41\[)3*H . 92s+A—3

5 1 3
cpstAy e[}f‘(l - s)I‘< - s>
8 2

. (—cosw(s—}—%) sin 2 )
cos ™ —sin(s + %)

2
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We put

= I'(A A
Ce(¢x38) =227 F((%))Q Gt (cb,x; s+ 2>,

~ A
C*(¢7X;S) = C* <¢’,X;5 + 5)7

> 1o I'(A)
Cipy7ys8):=22-N F(%)Z

A
<i<¢77-)(75+§>7

: A
& omas) =2 N (amas s )).

N>~

+

ol

Then (3.1) can be rewritten as

N ) T
C+(¢7 X5 S)

5 1 3
SpstATy e[—} (1-s)T (— - A= s>
8 2
—cos (s +3) sin 2
cos %A —sin7(s + %)
. <<i<¢,fx;g —A- s>>
Ci(¢,TX;% - >‘ - S)
which agrees with (4.1). Similarly, the functional
equation (3.2) of the twisted zeta functions can be
compared to (2.3) in the condition [C2], 4. Now the
converse theorem (Lemma 1) applies, and we ob-
tain a Maass form F(z). To prove the cuspidality
of F(z), we compare an integral representation of
the zeta functions (.(¢,x;s) with an integral of
some theta series. Let S(V) be the space of rapidly

decreasing functions on V = Sym,(R), and S =
{veV;detv=0}. For f(v) € S(V), we set

9(¢’£N7foo)
) ¢ fro(gv'g)dy,
~/SL2(R)/FO<N) (9) UE%SX(M) (gv'g)dg
and

2oLy foi ) = / T2, Ly, fL)dt,

0

where f! (v) = foo(tv). Then, as shown in [9, Prop-
osition 6.4], the zeta integral can be decomposed
as
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Zg(L foor8) = Y C(668) e fooi A, ),
e==%
where I'.(fso; A, $) is a certain local zeta integral. On
the other hand, let o+ r(o) be the Weil represen-
tation of G = SLy(R) on S(V) given as in [11, p. 91].
For z =z +1iy € H, we set

1 z\ [y 0
o, = 1 €q,
0 1 0o yV

and fuo:(v) = {r(0,) f }(v). We define a function
Ho(z) on 'H by

H(—)(Z) = Q(QS) Ly, foo,z) = 9(¢7 ‘CNar(O—Z)fOO)'

We observe that Hg(z) closely resembles the
theta integral (1.22) of [11,p. 97]. Since fiy(v) =
y** fo(\/yv), the Mellin transform of Heg(z) along
the imaginary axis coincides with our zeta integral
Zs(LN, fx;8), and by the Mellin inversion, Hg(iy)
equals to F(iy) up to constant. Now let v be an
arbitrary element of SLy(Z). Then, by [11,p. 98],

r(y)r(o.) = 1(0y:)r(ko),

where e = J(v,2)/|J(v,2)|. If f. satisfies the
condition (1.19) of [11], then Hg(vz) coincides with

O, Ly, r(7)7(02) fo)

up to constant, and the cuspidality of ¢ implies that

Zs(Ly,m(7)r(02) fx; 8) is an entire function of s. We

therefore observe that Hg(vz) has rapid decay as

y — oo, and this proves that F(vz) has rapid decay

at every cusp of T'y(4N). Further details will be

discussed elsewhere.
Remark 2.

(1) The argument above shows that the prehomo-
geneous zeta functions (4 (¢, x; s) can be inter-
preted as the Mellin transform of some kind
of theta lift of ¢. In this sense, our lifting
construction is not new. However, our proof
does not rely on the theta transformation
formula, and we expect that our method can
be applied to various other cases.

(2) In a paper [4] that appeared very recently, the
Katok-Sarnak formula is generalized for Maass
forms of even weight and odd level with trivial
characters. It is an interesting problem to
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combine their technique, such as use of differ-

ential operators, with our method.
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