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Abstract: This paper gives an application of so-called connected sums, introduced

recently by Seki and Yamamoto [SY]. Special about our approach is that it proves a duality for

the Schlesinger–Zudilin and the Bradley–Zhao model of qMZVs simultaneously. The latter

implies the duality for MZVs and the former can be used to prove the shuffle product formula for

MZVs. Furthermore, the q-Ohno relation, a generalization of Bradley–Zhao duality, is also

obtained.
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1. Notation and definitions. For an ad-

missible index k ¼ ðk1; . . . ; krÞ 2 Nr, i.e., r � 0 and

k1 � 2, its multiple zeta value (MZV) is defined as

�ðkÞ :¼
X

m1>���>mr>0

1

mk1

1

� � �
1

mkr
r

:

To understand the algebraic structure of MZVs

better on the one hand and to get connections to

holomorphic functions, in particular, modular forms

(see [GKZ], [Bac]), on the other hand, it is useful to

introduce q-analogs of MZVs. There are several

models of q-analogs. We focus in this paper on

two of them: the Bradley–Zhao model and the

Schlesinger–Zudilin model. For further details on

these and other models, we refer to [Zha], [Bri]. In

this note q will be a formal variable or a real number

with 0 < q < 1.

The Bradley–Zhao model is defined as follows:

Set �BZ
q ð;Þ :¼ 1 and for k ¼ ðk1; . . . ; krÞ an admis-

sible index define

�BZ
q ðkÞ :¼

X
m1>���>mr>0

qm1ðk1�1Þ

ð1� qm1Þk1
� � �

qmrðkr�1Þ

ð1� qmrÞkr
:

Similarly, we define Schlesinger–Zudilin

qMZVs via �SZ
q ð;Þ :¼ 1 and for every SZ-admissible

index k, i.e., k 2 Nr
0 for some r � 0 with k1 � 1, we

set

�SZ
q ðkÞ :¼

X
m1>���>mr>0

qm1k1

ð1� qm1Þk1
� � �

qmrkr

ð1� qmrÞkr
:

2. Dualities. Write an admissible index k in

the shape k ¼ ðk1 þ 1; f1gd1�1; . . . ; kr þ 1; f1gdr�1Þ
with kj; dj � 1 unique (f1gd means that 1 is

repeated d-times). For the next two theorems, we

need the dual index,

k_ :¼ ðdr þ 1; f1gkr�1; . . . ; d1 þ 1; f1gk1�1Þ:

Theorem 1 (MZV-Duality, [Zag, §9]). For

every admissible index k, we have �ðkÞ ¼ �ðk_Þ.
The next theorem can be seen as a q-analog of

MZV-duality since MZV-duality follows immedi-

ately from it (cf. the proof):

Theorem 2 (BZ-Duality, [Bra, Thm. 5]). We

have �BZ
q ðkÞ ¼ �BZ

q ðk_Þ for every admissible index k.

A generalization of BZ-duality is the so-called

q-Ohno relation, of which BZ-duality is the special

case c ¼ 0:

Theorem 3 (q-Ohno relation, [Bra, Thm.

5]). For any admissible index k ¼ ðk1; . . . ; krÞ and

any c 2 N0 we haveX
jcj¼c

�BZ
q ðkþ cÞ ¼

X
jc0j¼c

�BZ
q ðk_ þ c0Þ;

where we sum on the left over all c ¼ ðc1; . . . ; crÞ 2
Nr

0 with jcj :¼ c1 þ � � � þ cr ¼ c and on the right we

sum over all c0 ¼ ðc01; . . . ; c0r0 Þ 2 Nr0

0 with jc0j ¼ c
where r0 is the depth of k_. The addition of indices

is to be understood componentwise.

For the SZ-model, we write an SZ-admissible

index, with kj; dj � 0 unique, in the shape k ¼
ðk1 þ 1; f0gd1 ; . . . ; kr þ 1; f0gdrÞ and define the SZ-

dual index,
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ky :¼ ðdr þ 1; f0gkr ; . . . ; d1 þ 1; f0gk1Þ:

Theorem 4 (SZ-Duality, [Zha, Thm. 8.3]).

For all k SZ-admissible, we have �SZ
q ðkÞ ¼ �SZ

q ðkyÞ.
Note that BZ- and SZ-duality on algebraic level

look the same, both can be obtained by the same

anti-automorphism on the non-commutative free

algebra in two variables (see, e.g., [Bri, Thm. 3.5,

Thm. 3.16]). But they imply different things. BZ-

duality gives direct duality for MZVs, while SZ-

duality does not. However, SZ-duality implies

another important result in the theory of MZVs,

namely the shuffle product formula (cf. [EMS],

[Sin], for details [Bri, Thm. 3.46]).

For some calculations in the next section we

need the connection between admissible and SZ-

admissible index: An index k is admissible if and

only if k� 1 is SZ-admissible (kþ 1 is the index,

which is k with every entry increased by 1; similar

for k� 1). Furthermore, we have for k admissible

ðk� 1Þy ¼ k_ � 1:ð2:1Þ

3. Connected sums & proof of dualities.

As a new tool for proving identities among (q-)mul-

tiple zeta values, Seki and Yamamoto introduced

the concept of so-called connected sums (this notion

is independent of connected sums in topology).

With connected sums, they have proven, e.g., the

duality of MZVs, Hoffman’s identity, and the

q-analog of Ohno’s relation, cf. [Sek] or [SY].
Using connected sums, we give a proof of the

duality of Schlesinger–Zudilin qMZVs, the duality

of Bradley–Zhao qMZVs and the usual duality of

MZVs. It turns out that the connected sum defined

below has the power to prove all three statements

at once. As a by-product, we also get a proof for

the q-Ohno relation. The proof is inspired by the

one of Seki and Yamamoto ([SY]), where the

authors proved q-Ohno’s relation for non-modified

Bradley–Zhao qMZVs and hence, in particular,

also BZ-duality. We work with modified qMZVs,

which will be here the reason that we can prove all

the mentioned dualities at the same time. In

Remark 6 (v), we refer to Seki–Yamamotos con-

nected sum.

Definition 5 (Connected sum). Let be r; s �
0, k ¼ ðk1; . . . ; krÞ 2 Nr

0, ‘ ¼ ð‘1; . . . ; ‘sÞ 2 Ns
0 and

x 2 ½0; 1Þ. Define the connected sum as

Zqðk; ‘;xÞ

:¼
X

m1>���>mr>mrþ1¼0
n1>���>ns>nsþ1¼0

Yr
i¼1

qmiki

ð1� qmixÞð1� qmiÞki

�
Ys
j¼1

qnj‘j

ð1� qnjxÞð1� qnjÞ‘j

�
qm1n1fqðm1;xÞfqðn1;xÞ

fqðm1 þ n1;xÞ
;

where fqðm;xÞ :¼
Qm
h¼1

ð1� qhxÞ.

Remark 6. (i) The connected sum Zq is

symmetric in k and ‘ by definition.

(ii) Notice that the connected sum is well-defined in

the sense that it is a series over positive real

numbers and hence either a positive real number (if

convergent) or þ1 (if not convergent).

(iii) If k1 � 1, then Zqðk; ;; 0Þ ¼ �SZ
q ðkÞ.

(iv) If k1 � 1, then lim
x!1

Zqðk; ;;xÞ ¼ �BZ
q ðkþ 1Þ.

(v) In [SY], the authors define also a connected sum.

Call it ZSY
q ðk; ‘;xÞ and assume that the indices are

in reversed order than there. Then Zq and ZSY
q are

connected via

Zqðk� 1; ‘� 1;xÞ ¼
1

ð1� qÞjkjþj‘j
ZSY
q ðk; ‘; yÞ

with x ¼ 1þ ð1� qÞy, where j � j denotes the sum of

entries of the corresponding index.

Proposition 7 (Boundary conditions). If

k1 � 1, 0 < q < 1 and x 2 ½0; 1Þ, then Zqðk; ;;xÞ is

a well-defined real number.

Proof. One has

Zqðk; ;;xÞ

¼
X

m1>���>mrþ1:¼0

Yr
i¼1

qmiki

ð1� qmixÞð1� qmiÞki

�
1

ð1� qÞr
X

m1>���>mrþ1:¼0

Yr
i¼1

qmiki

ð1� qmiÞki

¼
1

ð1� qÞr
�SZ
q ðk1; . . . ; krÞ;

which is well-defined since k1 � 1, i.e., ðk1; . . . ; krÞ is

SZ-admissible. �

After we have checked well-definedness of Zq,

we state and prove now distinguished relations

among our connected sums.

Theorem 8 (Transport relations). Let be

r; s � 0 and k1; . . . ; kr; ‘1; . . . ; ‘s � 0. If s > 0,

Zqðð0; k1; . . . ; krÞ; ð‘1; . . . ; ‘sÞ;xÞð3:1Þ
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¼ Zqððk1; . . . ; krÞ; ð‘1 þ 1; ‘2; . . . ; ‘sÞ;xÞ

and if r > 0,

Zqððk1 þ 1; k2; . . . ; krÞ; ð‘1; . . . ; ‘sÞ;xÞð3:2Þ
¼ Zqððk1; . . . ; krÞ; ð0; ‘1; ‘2; . . . ; ‘sÞ;xÞ:

Proof. The second equality follows from the

first by symmetry and the first one is obtained fromX
a>m

1

1� qax
qanfqða;xÞfqðn;xÞ

fqðaþ n;xÞ

¼ qn

1� qn
X
a>m

 
qða�1Þnfqða� 1;xÞfqðn;xÞ

fqðaþ n� 1;xÞ

� q
anfqða;xÞfqðn;xÞ
fqðaþ n;xÞ

!

¼ qn

1� qn
qmnfqðm;xÞfqðn;xÞ

fqðmþ n;xÞ

and setting m ¼ m1; n ¼ n1; a ¼ m0. �

Remark 9. Theorem 8 coincides with [SY,

Thm. 2.2] under the identification of Remark 6 (v).

This theorem is the key of proving Theorems

1–4. Especially, the following corollary will be

needed, together with the connection of Zq with

�BZ
q resp. �SZ

q (Remark 6).

Corollary 10. For every SZ-admissible in-

dex k and x 2 ½0; 1Þ we have

Zqðk; ;;xÞ ¼ Zqð;; ky;xÞ:

Proof. For all indices k and ‘ and k � 1; d � 0
we obtain (by ðk; f0gd;kÞ we mean the concatina-

tion of the indices ðk; f0gdÞ and k) by applying

k-times (3.2) first and then ðdþ 1Þ-times (3.1)

Zqððk; f0gd;kÞ; ‘;xÞ

¼ Zqððf0gdþ1;kÞ; ðf0gk; ‘Þ;xÞ

¼ Zqðk; ðdþ 1; f0gk�1; ‘Þ;xÞ:

Now, set ‘ ¼ ; and write an SZ-admissible index k

in the form

k ¼ ðk1; f0gd1 ; . . . ; kr; f0gdrÞ:

Then we obtain the corollary by induction on r and

using the above calculation in the induction step.

�

With the connection of Zq and �SZ
q (Rem. 6

(iii)), SZ-duality follows directly:

Proof of Theorem 4. Take some SZ-admissible

index k. Using the symmetry of Zq and setting

x ¼ 0, the claim follows by Corollary 10:

�SZ
q ðkÞ ¼ Zqðk; ;; 0Þ ¼ Zqð;; ky; 0Þ

¼ Zqðky; ;; 0Þ ¼ �SZ
q ðkyÞ:

�

Analogously, we are able to prove BZ-duality:

Proof of Theorem 2. For an admissible index k

we have, using Remark 6 and Corollary 10,

�BZ
q ðkÞ ¼ lim

x!1
Zqðk� 1; ;;xÞ

¼ lim
x!1

Zqð;; ðk� 1Þy;xÞ

¼ lim
x!1

Zqððk� 1Þy; ;;xÞ

¼ �BZ
q ððk� 1Þy þ 1Þ ¼ �BZ

q ðk_Þ:

�

Example 11. We give a concrete example of

applying transport relations step by step to make

clear what happens:

Zqðð1; 0Þ; ;;xÞ ¼ Zqðð0; 0Þ; ð0Þ;xÞ
¼ Zqðð0Þ; ð1Þ;xÞ ¼ Zqð;; ð2Þ;xÞ

By Remark 6 (iii) respectively (iv), we obtain

�SZq ð1; 0Þ ¼ �SZq ð2Þ respectively �BZq ð2; 1Þ ¼ �BZq ð3Þ.
We have ð1; 0Þy ¼ ð2Þ and ð2; 1Þ_ ¼ ð3Þ, why these

results indeed correspond to SZ-duality resp. BZ-

duality.

We derive in the following the proof of MZV-

duality, Theorem 1, from BZ-duality:

Proof of Theorem 1. Let k be any admissible

index. Denote by wtðkÞ :¼ k1 þ � � � þ kr the sum of

all entries, the weight of k. Obviously, one has

wtðkÞ ¼ wtðk_Þ. We have

�ðkÞ ¼ lim
q!1
ð1� qÞwtðkÞ�BZ

q ðkÞ

¼ lim
q!1
ð1� qÞwtðk_Þ�BZ

q ðk_Þ ¼ �ðk_Þ:

�

We give in the following a proof of Theorem 3

via connected sums Zq defined in this paper. The

main point of the proof is a Taylor series expansion

at x ¼ 1, which is under the correspondence of Zq
and ZSY

q (Rem. 6 (v)) analogous to the one of

ZSY
q ðk; ;; yÞ at y ¼ 0 in [SY].

Consider in the following connected sums of

the form Zqðk; ;;xÞ and the related one of the form

Zqð;; ‘;xÞ using transport relations. In both, we

will develop all occurring terms as a Taylor series

at x ¼ 1, mainly we use that for all m 2 N, we

have
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1

1� qmx
¼

1

1� qm
1

1� qm

1�qm ðx� 1Þ

¼
1

1� qm
X
c�0

qm

1� qm

� �c
ðx� 1Þc

¼
X
c�0

qmc

ð1� qmÞcþ1
ðx� 1Þc:

Proof of Theorem 3. Let k ¼ ðk1; . . . ; krÞ be an

admissible index. Then we have

Zqðk� 1; ;;xÞ

¼
X

m1>���>mr>0

Yr
j¼1

1

1� qmjx

qmjðkj�1Þ

ð1� qmjÞkj�1

¼
X

m1>���>mr>0

Yr
j¼1

X
cj�0

qmjcjþkj�1

ð1� qmjÞcjþkj
ðx� 1Þcj

0
@

1
A

¼
X

c1;...;cr�0
m1>���>mr>0

Yr
j¼1

qmjðkjþcj�1Þ

ð1� qmjÞkjþcj

 !
ðx� 1Þc1þ���þcr

¼
X

c1;...;cr�0

�BZ
q ðkþ cÞðx� 1Þjcj:

Since k was an arbitrary admissible index and k_ is

admissible too, we get

Zqð;; k_ � 1;xÞ ¼
X

c1;...;cr0 �0

�BZ
q ðk_ þ cÞðx� 1Þjcj;

with r0 the depth of k_.
Now, since Zqðk� 1; ;;xÞ ¼ Zqð;; k_ � 1;xÞ for

every admissible index k by using the transport

relations, the result follows by comparing the

coefficient of ðx� 1Þc on both sides. �

In the same way, we can consider Zqðk�
1; ;;xÞ when developing 1

1�qmx around some a 2 R,

i.e.,

1

1� qmx
¼ 1

1� aqm � qmðx� aÞ

¼
1

1� aqm
1

1� qm

1�aqm ðx� aÞ

¼
X
c�0

qmc

ð1� aqmÞcþ1
ðx� aÞc:

Then it is

Zqðk; ;;xÞ

¼
X

m1>���>mr>0

Yr
j¼1

1

1� qmjx

qmjkj

ð1� qmjÞkj

¼
X

m1>���>mr>0

Yr
j¼1

X
cj�0

qmjcj

ð1� aqmjÞcjþ1

qmjkj

ð1� qmjÞkj

� ðx� aÞcj :
Remark 12. The seriesX

m1>���>mr>0

Yr
j¼1

qmjcj

ð1� aqmjÞcjþ1

qmjkj

ð1� qmjÞkj

for c1; . . . ; cr � 0, k1 � 2; k2; . . . ; kr � 1 and a 2 ½0; 1�
can be seen as q-analog of MZVs: For a ¼ 1 we have

seen already by proving the q-Ohno relation, how

this works. For arbitrary a, it is not clear so far,

whether we can prove more identities among

qMZVs with this shape of the connected sum. This

could be interesting for the future.
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