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Abstract: Let � be a discontinuous group for the 3-dimensional anti-de Sitter space

AdS3 :¼ SO0ð2; 2Þ=SO0ð2; 1Þ. In this article, we discuss a growth rate of the counting of �-orbits

at infinity and the discrete spectrum of the hyperbolic Laplacian of the complete anti-de Sitter

manifold �nAdS3.
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1. Introduction. The 3-dimensional anti-de

Sitter space AdS3 :¼ SO0ð2; 2Þ=SO0ð2; 1Þ is a Lor-

entzian manifold with constant sectional curvature

�1 of which the identity component of the isometry

group is the Lie group SO0ð2; 2Þ. Discontinuous

groups for AdS3 and their deformation theory

have been developed by renowned mathematicians,

William Goldman, Toshiyuki Kobayashi, and

Fanny Kassel, among others.

In this article, we discuss a growth rate of the

counting of orbits of a discontinuous group � for

AdS3 at infinity and the discrete spectrum of the

hyperbolic Laplacian of the complete anti-de Sitter

manifold �nAdS3. Detailed proofs of the results

will appear elsewhere.

2. Relationship between the sharpness of

the �-action and a growth rate of the count-

ing at infinity. In old days, the terminology

‘‘discontinuous groups’’ was used to denote the

same meaning of discrete subgroups. Indeed, the

action of a discrete group of isometries is automati-

cally properly discontinuous in the Riemannian

setting. In his study of the action of discrete groups

beyond the Riemannian setting, Kobayashi [13]

advocated to make a difference of two terminolo-

gies: discontinuous groups for the property of

actions, and discrete subgroups for the property of

groups. Following this principle, we call a discrete

subgroup � of a Lie group G a discontinuous group

for a homogeneous manifold G=H if the natural

�-action on G=H from the left is properly discon-

tinuous and free [13, Def. 1.3]. Then any �-orbit

meets a compact subset of G=H in at most finitely

many points, and thus we may consider the number

of the intersection points. Kassel-Kobayashi [6]

introduced a compact subset BðRÞ called a pseudo-

ball of radius R > 0 in any semisimple symmetric

space G=H, in particular, in AdS3, of which the

volume is of exponential growth as R!1. More-

over, they studied a growth rate of the counting

N�ðx;RÞ :¼ #ð�x \BðRÞÞ

of the �-orbit through x 2 G=H as R!1.

When the metric tensor is indefinite as in the

anti-de Sitter space AdS3, an isotropy subgroup of

the isometry group is not necessarily compact and

an orbit of a discrete subgroup � of isometries may

have accumulation points. In particular, � may not

act on G=H properly discontinuously. Generalizing

a pioneering work of Kobayashi [10] on the proper-

ness criterion by means of the Cartan projection

for homogeneous manifolds of reductive type,

Kobayashi [11] and Benoist [1] established a crite-

rion for a general discrete subgroup � of a reductive

Lie group G to act properly discontinuously on

G=H. As a slightly stronger condition than this

criterion, Kassel-Kobayashi [6] introduced the no-

tion of ðc; CÞ-sharpness (c > 0, C � 0) of a discon-

tinuous group which quantifies proper discontinu-

ity. Loosely speaking, the parameter c > 0 indicates

that the ‘‘degree of proper discontinuity’’ of the

�-action is weaker if c approaches to 0. Then they

gave an upper estimate of the counting for
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ðc; CÞ-sharp discontinuous groups for any semi-

simple symmetric space G=H, in particular, for

AdS3 by means of the two constants c and C, and

proved that the counting N�ðx;RÞ is of exponential

growth uniformly with respect to x 2 G=H as

R!1:

Fact 1 (Kassel-Kobayashi [6, Lem. 4.6 (4)]).

There exists A > 0 such that for any c > 0, C � 0,

and torsion-free ðc; CÞ-sharp discontinuous group �

for AdS3, one has

8x 2 AdS3; 8R > 0; N�ðx;RÞ � A exp
4ðRþ CÞ

c

� �
:

On the other hand, there has been no existing

literature about the counting for a non-sharp

discontinuous group (the case c ¼ 0) to the best

knowledge of the author. We find non-sharp dis-

continuous groups � with various behaviors of the

counting of �-orbits:

Theorem 2. There exists a non-sharp dis-

continuous group � for AdS3 such that

8x 2 AdS3; 8R > 0; N�ðx;RÞ � 4R:

In particular, N�ðx;RÞ is of exponential growth

uniformly with respect to x 2 AdS3 as R!1.

Theorem 3. For any monotone increasing

function f : R! R>0 and any x 2 AdS3, there exists

a discontinuous group � � �f;x for AdS3 satisfying

lim
R!1

N�ðx;RÞ
fðRÞ ¼ 1:

For example, applying Theorem 3 to fðRÞ ¼
expðeRÞ, we can construct a discontinuous group �

satisfying

lim
R!1

#ð�x \BðRÞÞ
volðBðRÞÞ ¼ 1:

It should be noted that Eskin-Mcmullen [2] also

considered the counting of a �-orbit �x for a general

semisimple symmetric space G=H. They dealt with

the case where � is a lattice of G and x is a special

point in G=H, and thus their setting is completely

different from [6] and also from ours.

3. Construction of non-sharp discontinu-

ous groups. In this section, we describe how to

construct non-sharp discontinuous groups for AdS3

used in the proofs of Theorems 2 and 3. We note

that the product group SLð2;RÞ � SLð2;RÞ acts

isometrically on AdS3 ¼ SO0ð2; 2Þ=SO0ð2; 1Þ via the

double covering SLð2;RÞ � SLð2;RÞ ! SO0ð2; 2Þ.

Generalizing a non-sharp example of Guéritaud-

Kassel [3, Sect. 10.1], we construct a family of

infinitely generated subgroups of SLð2;RÞ �
SLð2;RÞ. Our subgroup has four sequences

ða�ðkÞ; aþðkÞ; rðkÞ; RðkÞÞk2N as parameters. We find

a properness criterion and a sharpness criterion for

the actions of our subgroups on AdS3 using the

asymptotic behaviors of these sequences.

For a quadruple of real-valued sequences

ða�; aþ; r; RÞ, we define �k; �k 2 SLð2;RÞ by

�k ¼
1

rðkÞ
aþðkÞ �ða�ðkÞaþðkÞ þ rðkÞ2Þ

1 �a�ðkÞ

 !
;

�k ¼
1

RðkÞ
aþðkÞ �ða�ðkÞaþðkÞ þ RðkÞ2Þ

1 �a�ðkÞ

 !
;

and denote by ��ða�; aþ; r; RÞ for sufficiently large

� 2 N the subgroup generated by ð�k; �kÞ 2
SLð2;RÞ � SLð2;RÞ for all k ¼ �; � þ 1; . . . .

Let A�
k and B�

k for � 2 fþ;�g be respectively

the half-disks in the upper half plane H2 ¼ fz 2 C j
Im z > 0g defined by

A�
k :¼ fz 2 H2 j jz� a�ðkÞj � rðkÞg;

B�
k :¼ fz 2 H2 j jz� a�ðkÞj � RðkÞg;

see Fig. 1. Then we note

�kðA�k Þ � H2 nAþk ; �kðB�k Þ � H2 nBþk ;

where SLð2;RÞ acts on H2 as linear fractional

transformations. One can see by an elementary

argument of general topology called the ping-pong

argument that the subgroup ��ða�; aþ; r; RÞ is

discrete and free if the half-disks A�� , A��þ1, . . .
(resp. B�� , B��þ1, . . . ) are disjoint.

Let pðxÞ be a real-valued monotone increasing

C2-function defined for sufficiently large x 2 R such

that limx!1 pðxÞ ¼ 1 and that the second deriva-

tive p00ðxÞ is nowhere vanishing. In this article, for

simplicity, we assume that the pair of sequences

ðaþðkÞ; a�ðkÞÞ can be expressed as

a (k)

A−
k

B−
k

R(k)

r(k)

a+(k)

r(k)

R(k)

A+
k

B+
k

R(k)

r(k)

−

Fig. 1. A�k and B�k in H2.
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a�ðkÞ ¼ pðkÞ; aþðxÞ ¼ p kþ
1

2

� �
ð3:1Þ

for sufficiently large k 2 N. Moreover, we suppose

RðkÞ > rðkÞ;ð3:2Þ

lim
k!1

RðkÞ
minfp0ðk� 1Þ; p0ðkþ 1Þg ¼ 0:ð3:3Þ

Then B�
k 	 A�

k holds and an easy calculation shows

that the half-disks B�� , B��þ1, . . . are disjoint for

sufficiently large � 2 N, see Fig. 2.

The following are a properness criterion and a

sharpness criterion for the action on AdS3 of the

discrete subgroup ��ða�; aþ; r; RÞ:
Proposition 4. Let ða�; aþ; r; RÞ be a quad-

ruple of sequences satisfying (3.1)–(3.3) as above.

The action on AdS3 of the discrete subgroup

��ða�; aþ; r; RÞ for sufficiently large � 2 N is:

(1) properly discontinuous if and only if

lim
k!1

RðkÞ
rðkÞ

¼ 1;

(2) sharp if and only if

lim inf
k!1

log
RðkÞ
rðkÞ

� �
log

a�ðkÞaþðkÞ
rðkÞ

� ��1

6¼ 0:

Example 5. For the triples ðpðxÞ; rðkÞ; RðkÞÞ
in Table I, we form the subgroups �� �
��ða�; aþ; r; RÞ with (3.1)–(3.3). Then Proposition

4 shows that �� are all discontinuous groups for

AdS3 for sufficiently large � 2 N but not always

sharp as summarized in Table I.

4. Discrete spectrum of non-sharp anti-

de Sitter manifolds. Next we consider discrete

spectrum of the Laplacian of the noncompact anti-

de Sitter manifold �nAdS3 for a non-sharp discon-

tinuous group �.
Let us recall some basic notions. A pseudo-

Riemannian manifold is a C1-manifold equipped

with a smooth non-degenerate symmetric bilinear

tensor of signature ðp; qÞ. It is called Riemannian if

q ¼ 0 and Lorentzian if q ¼ 1. As in the Riemannian

case, � ¼ div 
 grad defines a second order differ-

ential operator (the Laplacian) on a pseudo-

Riemannian manifold. In contrast to the

Riemannian setting, the Laplacian on a Lorentzian

manifold is not an elliptic differential operator but

a hyperbolic differential operator, and its eigen-

function is not analytic in general.

We write L2ðMÞ for the Hilbert space of square

integrable functions with respect to the volume

form induced by the pseudo-Riemannian structure

of M, and denote by L2
�ðMÞ for � 2 C the space of

square integrable eigenfunctions

ff 2 L2ðMÞ j �Mf ¼ �f in the weak senseg:

Then the set of L2-eigenvalues

Specdð�MÞ :¼ f� 2 C j L2
�ðMÞ 6¼ 0g

is called the discrete spectrum of the Laplacian of

M.

We recall the theory of Kassel-Kobayashi [6]

on the discrete spectrum of ‘‘intrinsic’’ differential

operators on locally semisimple symmetric spaces

by limiting ourselves to the case AdS3. Let � be a

discontinuous group for AdS3. Then the quotient

space �nAdS3 is a C1-manifold and the quotient

map AdS3 ! �nAdS3 is a covering map of C1-class.

The quotient manifold �nAdS3 admits a Lorentzian

structure with constant sectional curvature �1 via

this covering map. Kassel-Kobayashi [6] and

Kobayashi [14] initiated the study of spectral

analysis on locally symmetric spaces, in particular,

that of the discrete spectrum Specdð�Þ of the

hyperbolic Laplacian � on the anti-de Sitter mani-

fold �nAdS3.

They introduced ‘‘the �-averages of non-peri-

odic eigenfunctions’’ as a generalization of Poincaré

series to construct L2-eigenvalues. If an eigenfunc-

tion ’ of the Laplacian on AdS3 is integrable, then

the generalized Poincaré series

’�ð�xÞ :¼
X
�2�

’ð��1xÞ

A−
ν

B−
ν

A+
ν

B+
ν

A−
ν+1

B−
ν+1

· · ·

Fig. 2. A�� , A��þ1, . . . and B�� , B��þ1, . . . .

Table I. Sharpness of the ��-action on AdS3.

pðxÞ rðkÞ RðkÞ the ��-action

ex e�ðkþk
2Þ e�k

2
non-sharp

ex 1 ek sharp

logx ðk2 log kÞ�1 k�2 non-sharp

logx k�3 k�2 sharp
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defines an integrable function on the anti-de Sitter

manifold �nAdS3, and is an eigenfunction of the

Laplacian with same eigenvalue. It is known that

the Laplacian on AdS3 has the following L2-eigen-

values:

�m :¼ 4mðm� 1Þ ðm 2 Z and m � 2Þ:

As an application of an upper estimate of the

counting as in Fact 1, they proved L2-convergence

and non-vanishing of the generalized Poincaré

series of eigenfunctions for sufficiently large eigen-

value �m, and obtained the following theorem:

Fact 6 [6]. For any sharp discontinuous group

� for AdS3, there exists a constant m0ð�Þ > 0 such

that

Specdð��nAdS3Þ 	 f�m j m 2 Z; m > m0ð�Þg:

A natural question would be whether the

Laplacian on an anti-de Sitter manifold �nAdS3

still has an L2-eigenvalue if the discontinuous group

� is non-sharp. As an application of an upper

estimate of the counting as in Theorem 2, we see

that there exist countably many L2-eigenvalues

for some non-sharp � by applying the machinery

developed in [6]:

Theorem 7. There exist a non-sharp dis-

continuous group � for AdS3 and a constant

m00ð�Þ > 0 such that

Specdð��nAdS3Þ 	 f�m j m 2 Z; m > m00ð�Þg:

5. Multiplicity of the discrete spec-

trum. In the final section we discuss the multi-

plicity of the L2-eigenvalue �m of the Laplacian of

an anti-de Sitter manifold �nAdS3 constructed by

the generalized Poincaré series. Here, for a pseudo-

Riemannian manifold M,

NMð�Þ :¼ dimC L
2
�ðMÞ 2 N [ f1g

is called the multiplicity of an L2-eigenvalue �. The

Laplacian on a Riemannian manifold is an elliptic

differential operator and the multiplicity of an

L2-eigenvalue is always finite if M is compact.

However, in the Lorentzian setting, the multiplicity

may be finite or may not even if M is compact

(e.g., [8,14]).

If a discontinuous group � for AdS3 is standard

[6, Def. 1.4] and torsion-free, N �nAdS3ð�mÞ ¼ 1
for sufficiently large m 2 N, which is derived from

the results in Kassel-Kobayashi [7,8]. On the other

hand, there exists a non-standard discontinuous

group �, for example a finitely generated discontin-

uous group � which is Zariski-dense in the Lie group

SOð2; 2Þ [9,12]. However, it is not known whether

the multiplicities of the Laplacian are finite in this

case. We see that the multiplicities of the Laplacian

on the anti-de Sitter manifold �nAdS3 for such �

are unbounded as follows:

Theorem 8. For any finitely generated dis-

continuous group � for AdS3, there exists a constant

c� > 0 such that

N �nAdS3ð�mÞ � log3 m� c�:ð5:1Þ

In particular,

lim
m!1

N �nAdS3ð�mÞ ¼ 1:

To prove this theorem, we use SOð2Þ �
SOð2Þ-finite L2-eigenfunctions of the Laplacian on

AdS3 with eigenvalue �m vanishing at the origin.

We note that such eigenfunctions decay more

rapidly at infinity than at the origin with respect

to geodesic parameters. We choose an L2-eigen-

function with eigenvalue �m for each j ¼
0; 1; . . . ; k� 1 which decays at the origin as rapidly

as R3j when a ‘‘pseudo-distance’’ R from the origin

tends to zero, and show the linear independence of

their generalized Poincaré series when m > 3kþc� ,

which proves (5.1).

Finally we discuss a lower bound of the multi-

plicities of L2-eigenvalues under a small deforma-

tion of a discrete subgroup. The general study of

local rigidity and stability of discontinuous groups

for non-Riemannian homogeneous manifolds was

initiated by Kobayashi [12] and Kobayashi-Nasrin

[15], and has been further developed by Kassel [5]

and others in specific settings. In our AdS3 setting,

any cocompact discontinuous group is not locally

rigid and its proper discontinuity is stable under

any small deformation [9,12]. Moreover, Kassel-

Kobayashi [6] constructed infinitely many stable

L2-eigenvalues of the Laplacian of any compact

anti-de Sitter manifold �nAdS3 under any small

deformation of �. More specifically, for sufficiently

large m 2 N, one has

�m 2
\
�0

Specdð��0nAdS3Þ;

where �0 runs over a sufficiently small neighborhood

of � in the compact-open topology [6, Cor. 9.10], see

[6, Def. 1.6] for the definition of stable eigenvalues

in a much more general setting. We introduce
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a function eN �nAdS3 : C! N [ f1g satisfying the

following for the multiplicities of stable eigenvalues:

. eN �nAdS3ð�Þ 6¼ 0 if and only if � is a stable

L2-eigenvalue of ��nAdS3 ;

. N �0nAdS3ð�Þ � eN �nAdS3ð�Þ for any �0 sufficiently

close to �.

Theorem 9. For any cocompact discontinu-

ous group � for AdS3,

lim
m!1

eN �nAdS3ð�mÞ ¼ 1:

The constant c� also plays a crucial role in

the proof of Theorem 9. Here recall (5.1). The

geometric constant c� is defined by using

. a growth rate of the counting N�ðx;RÞ as

R!1;

. the ‘‘injective radius’’ of the anti-de Sitter

manifold �nAdS3.

We control these two quantities simultaneously

using Lipschitz constants associated to � intro-

duced in Kassel [4] and Kassel-Kobayashi [6], and

further investigated by Guéritaud-Kassel [3], and

show that c� depends ‘‘continuously’’ on a small

deformation of �. We prove that the larger m 2 N

is, the more linearly independent L2-eigenfunctions

of the Laplacian of the compact anti-de Sitter

manifold �nAdS3 can be constructed and that their

construction is stable under any small deformation

of �.
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[ 3 ] F. Guéritaud and F. Kassel, Maximally stretched
laminations on geometrically finite hyperbolic
manifolds, Geom. Topol. 21 (2017), no. 2, 693–
840.

[ 4 ] F. Kassel, Quotients compacts d’espaces homogè-
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