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Abstract: Let E=K be an elliptic curve with j-invariant 1728 defined over a number field

K. In this note, we give a simple condition on K which determines whether all quartic twists of

E=K have the same root number or not. This completes a series of works on the same root

number of twists begun in [DD1] and [BK].
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1. Introduction and results. Let K be a

number field, E=K an elliptic curve defined over K,

and LðE=K; sÞ its Hasse-Weil L-function defined

for RðsÞ > 3
2. Then LðE=K; sÞ conjecturally satisfies

a functional equation under s$ 2� s with the sign

given by the (global) root number wðE=KÞ ¼ �1.

The functional equation implies that wðE=KÞ ¼
ð�1Þords¼1LðE=K;sÞ. The root number wðE=KÞ is the

product of the local root numbers over all places v

of K,

wðE=KÞ ¼
Y
v

wðE=KvÞ:

It is well known that there are four types of

twists of elliptic curves;

Quadratic twist. For an elliptic curve E=K : y2 ¼
x3 þ axþ b and D 2 K�=ðK�Þ2, the quadratic twist

of E=K by D is ED=K : y2 ¼ x3 þ aD2xþ bD3.

Cubic twist. For an elliptic curve E=K with

j-invariant 0 defined by the equation E=K : y2 ¼
x3 þ a and D 2 K�=ðK�Þ3, the cubic twist of E=K

by D is ED=K : y2 ¼ x3 þ aD2.

Quartic twist. For an elliptic curve E=K with

j-invariant 1728 defined by the equation E=K :

y2 ¼ x3 þ ax and D 2 K�=ðK�Þ4, the quartic twist

of E=K by D is ED=K : y2 ¼ x3 þ aDx.

Sextic twist. For an elliptic curve E=K with

j-invariant 0 defined by the equation E=K : y2 ¼
x3 þ a and D 2 K�=ðK�Þ6, the sextic twist of E=K

by D is ED=K : y2 ¼ x3 þ aD.

In [DD1], Dokchitser and Dokchitser give a

sufficient and necessary condition on E=K : y2 ¼
x3 þ axþ b that its quadratic twist ED=K : y2 ¼

x3 þ aD2xþ bD3 has the same root number for all

D 2 K�=ðK�Þ2. In [BK], using Kobayashi’s compu-

tation of root numbers in [Ko], Byeon and Kim

prove that for E=K : y2 ¼ x3 þ a, its cubic twist

ED=K : y2 ¼ x3 þ aD2 has the same root number

for all D 2 K�=ðK�Þ3 if and only if
ffiffiffiffiffiffiffi
�3
p

2 K. It is

easily seen that this condition is also applied to

sextic twist.

The aim of this note is to give a simple

condition on K which determines whether all

quartic twists of E=K : y2 ¼ x3 þ ax have the same

root number or not. This completes a series of works

on the same root number of twists.

Theorem 1.1. Let E=K be an elliptic curve

with j-invariant 1728 defined by the equation E=K :

y2 ¼ x3 þ ax, where a 2 K�. For an element D 2
K�=ðK�Þ4, let ED : y2 ¼ x3 þ aDx be the quartic

twist of E. Then the root number wðED=KÞ is con-

stant for all D 2 K�=ðK�Þ4 if and only if
ffiffiffiffiffiffiffi
�1
p

2 K.

In particular, if K contains
ffiffiffiffiffiffiffi
�1
p

, then wðED=KÞ ¼
þ1 for all D 2 K�=ðK�Þ4, and if K does not con-

tain
ffiffiffiffiffiffiffi
�1
p

, then there are infinitely many ED=K

such that wðED=KÞ ¼ þ1, and wðED=KÞ ¼ �1,

respectively.

Remark. Várilly-Alvarado [V�a] and

Desjardins [De] consider the behaviour of the

root number in the family given by the twists of

an elliptic curve E=Q by the rational values of a

polynomial fðT Þ and present a criterion for the

family to have a constant root number over Q.

2. Preliminaries. To prove Theorem 1.1,

we need the following propositions. Before we state

them, we introduce some notation for a place v of K

above 2.

Kv: a local field with respect to a place vj2,

L ¼ KvðE½3�Þ,
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G ¼ GalðL=KvÞ,
�ðxÞ ¼ x8 þ 288ax4 � 6912a2,

ðdeg �iÞi: the tuple of degrees of irreducible

factors of �ðxÞ ¼
Q

i �iðxÞ over Kv,

�m � �Kv: the set of m-th roots of unity.

Proposition 2.1. Let Kv be a local field at

a place vj2. Let E=K be an elliptic curve with

j-invariant 1728 defined by the equation E=K : y2 ¼
x3 þ ax. Then the structure of G is given by the

above table.

Here, Cm is the cyclic group of order m, D8 is

the dihedral group of order 8, Q8 is the quaternion

group of order 8, and H16 is the 2-Sylow subgroup of

GL2ðZ=3ZÞ.
Proof. The elliptic curve E=K has potentially

good reduction because its j-invariant is integral

(see [Si, p. 197, Proposition 5.5]) and additive re-

duction because � ¼ ð�4aÞ3, c4 ¼ �48a, c6 ¼ 0.

Since � 2 ðK�v Þ
3, G is determined by whether

�3 � Kv or not and what the irreducible factors

of �ðxÞ ¼ x8 þ 288ax4 � 6912a2 are (see [DD, Prop-

osition 2]).

When �3 6� Kv and �ðxÞ is irreducible, there

are two possible Galois groups (see [DD, Proposi-

tion 2]). Since � 2 ðK�v Þ
3, �3 6� Kv is equivalent

to the condition that x3 � 123� ¼ x3 þ ð48aÞ3 has

exactly one root. And we find that the root is � ¼
�48a ¼ c4. Therefore it follows that �3ðc4 � �Þ ¼ 0

is a square and �3ðc2
4 þ c4� þ �2Þ ¼ �32ð48aÞ2 is a

square if and only if �4 � Kv. From [DD, Lemma 3],

one may verify that this is equivalent to G ¼ C8.

Hence Proposition 2.1 follows from [DD, Propo-

sition 2]. �

Proposition 2.2. Let Kv be a local field at

a place vj2. Let E=K be an elliptic curve with j-

invariant 1728 defined by the equation E=K : y2 ¼
x3 þ ax.

(a) If �4 � Kv, then G ¼ C2, C4, or C8. In partic-

ular, G is abelian.

(b) If �4 6� Kv, then G ¼ C2 � C2, D8, Q8, or H16. In

particular, G is not abelian except for the case that

G ¼ C2 � C2 when ðdeg �iÞi ¼ ð2; 2; 4Þ.
Proof. (a) Suppose that �4 � Kv. If �3 � Kv,

then
ffiffiffi
3
p
2 Kv, so �ðxÞ is reducible over Kv and its

factorization is

�ðxÞ ¼ ðx4 þ 144a� 96a
ffiffiffi
3
p
Þð1Þ

� ðx4 þ 144aþ 96a
ffiffiffi
3
p
Þ:

Hence G ¼ C2 or C4 from Proposition 2.1. If

�3 6� Kv, then �ðxÞ is irreducible. From Proposi-

tion 2.1, we obtain G ¼ C8.

(b) Suppose that �4 6� Kv and
ffiffiffi
3
p
2 Kv. Then �3 6�

Kv but �ðxÞ is reducible over Kv factoring as (1).

If both factors of �ðxÞ in (1) are irreducible, then

we have G ¼ D8 from Proposition 2.1. If �ðxÞ has

an irreducible factor of degree 2, then the possible G

is only C2 � C2 when ðdeg �iÞi ¼ ð2; 2; 4Þ from Prop-

osition 2.1. Suppose that �4 6� Kv and
ffiffiffi
3
p

=2 Kv.

Then �ðxÞ is irreducible. So we have G ¼ Q8 when

�3 � Kv or H16 when �3 6� Kv from Proposition 2.1.

�

3. Proof of Theorem 1.1. Now we can

prove Theorem 1.1.

Proof of Theorem 1.1. In [�Ce, Proposition 6.3],

Česnavičius proved that if
ffiffiffiffiffiffiffi
�1
p

2 K, then any

elliptic curve with j-invariant 1728 over K has root

number 1. Now we will show that the structure of

G prevent this in the case that
ffiffiffiffiffiffiffi
�1
p

62 K. We will

use the fact that there are infinitely many principal

prime ideals (of residue class degree 1) in K, which

follows from the Frobenius density theorem.

Assume that
ffiffiffiffiffiffiffi
�1
p

=2 K. Since the factorization

of �ðxÞ over �K is following

�ðxÞ ¼
�
x2 þ 4 �

ffiffiffiffiffiffiffi
�1
p

�
ffiffiffi
a
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 6

ffiffiffi
3
pq �

�
�
x2 � 4 �

ffiffiffiffiffiffiffi
�1
p

�
ffiffiffi
a
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 6

ffiffiffi
3
pq �

�
�
x2 þ 4 �

ffiffiffiffiffiffiffi
�1
p

�
ffiffiffi
a
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 6

ffiffiffi
3
pq �

�
�
x2 � 4 �

ffiffiffiffiffiffiffi
�1
p

�
ffiffiffi
a
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 6

ffiffiffi
3
pq �

;

we may find infinitely many principal prime ideals

ð�nÞ (n 2 N) of K such that ðdeg ��n iÞi 6¼ ð2; 2; 4Þ
for a place vj2, where ��nðxÞ ¼ x8 þ 288a�nx

4 �
6912a2�n

2. Then G for E�n=Kv is not abelian by

Proposition 2.2 (b). So E�n=Kv is chaotic and

E�n=K is also chaotic, which means that there

is a �n 2 K�=ðK�Þ2 such that wðE�n�n2=KÞ ¼
�wðE�n=KÞ (see [DD1]). We note that no a�n,

a�m, a�n�n
2, a�m�m

2 (n 6¼ m 2 N) are congruent

Table

�3 � Kv �3 6� Kv

ðdeg �iÞi G ðdeg �iÞi G

ð2; 2; 2; 2Þ C2 ð2; 2; 4Þ C2 � C2

ð4; 4Þ C4 ð4; 4Þ D8

ð8Þ Q8 ð8Þ C8 if �4 � Kv

H16 if �4 6� Kv

�
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to each other modulo ðK�Þ4. This completes the

proof. �
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