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Non-purely non-symplectic automorphisms of order 6 on K3 surfaces

By Nirai SHIN-YASHIKI*” and Shingo TAKI*

(Communicated by Shigefumi MORI, M.J.A., Sept. 13, 2021)

Abstract:

In this paper we study non-symplectic automorphisms of order 6 on K3

surfaces which are not purely. In particular we shall describe their fixed loci.

Key words: K3 surface; automorphism.

1. Introduction. In this paper, we treat
automorphisms of finite order on K3 surfaces. By
the definition, a K3 surface has a nowhere vanishing
holomorphic 2-form. An automorphism on a K3
surface is called symplectic or non-symplectic if it
acts trivially or non-trivially on a nowhere vanish-
ing holomorphic 2-form, respectively. Moreover an
automorphism of order n of a K3 surface is called
purely non-symplectic if it multiplies a nowhere
vanishing holomorphic 2-form by a primitive n-th
root of unity.

Symplectic automorphisms of finite order were
first studied by Nikulin [11], and purely non-
symplectic automorphisms have been studied by
many mathematicians. However, non-purely non-
symplectic automorphisms have not been studied
much, just [3, Proposition 2] and [1, Theorem 0.1].
What we can say in common is that studies of fixed
loci are essential as characterizations for automor-
phisms.

This paper is devoted to a study of non-purely
non-symplectic automorphisms of order 6 on K3
surfaces. In this case, we remark that such an
automorphism acts on a nowhere vanishing holo-
morphic 2-form as an automorphism of order 2 or
3. The following is the main theorem of this
paper.

Main Theorem. Let X be a K3 surface, wy
a nowhere vanishing holomorphic 2-form of X and
o a non-purely non-symplectic automorphisms of
order 6 on X. Then its fixed locus X7 is zero-
dimensional and the following holds:

(1) If o satisfies o*wx = (wx then X7 consists of 2,

5 or 8 points,
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(2) If o satisfies c*wy = —wx then X7 is ( or
consists of 2, 4 or 6 points.
Here (3 is a primitive 3rd root of unity.

Note that symplectic automorphisms of order 6
were studied by [11] (see also Proposition 2.1) and
purely non-symplectic automorphisms of order 6
were studied by [8].

We summarize the contents of this paper.
Section 2 is a preliminary section. We recall some
basic results about automorphisms on K3 surfaces.
Section 3 gives a proof of Main Theorem and
examples of K3 surfaces with a non-purely non-
symplectic automorphism of order 6. There exist
different automorphisms with the same fixed locus.
In order to distinguish them, we study the action of
an automorphism for the 2nd cohomology of a K3
surface in Section 4.

The results of this paper are partially con-
tained in the master thesis of the first-named author
under the supervision of the second-named author.

2. Basic results for automorphisms on K3
surfaces. Let o be an automorphism of order n on
a K3 surface X, (,, a primitive n-th root of unity and
(x,y) alocal coordinate centered at a point in X7. If
o acts on the point as mapping (z,y) to (¢'z,(ly)
then we denote it B ;. In this case, the action of o
for wx(= dx A dy) is multiplication by ¢(**/, hence
o*wy = ("Pwyx. Note that if ¢ =0 mod n then P,
lies on a fixed curve given by y = 0. Thus a fixed
locus of a symplectic automorphism consists of
isolated fixed points, and a fixed locus of a non-
symplectic automorphism generally consists of non-
singular curves and isolated points.

Proposition 2.1 [11]. Let o be a symplectic
automorphism of order n on X. Then n < 8. More-
over, the set of fized points of o has cardinality
8,6,4,4,2.3, or 2, if n=2,3,4,5,6,7, or 8, respec-
tively.

There are many results for non-symplectic
automorphisms but we only use them in cases of
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order 2 and of order 3 in this paper, so we omit the
others. See also [4,7,10].
Proposition 2.2 [2,12,13].
(1) Let o be a non-symplectic involution. Then the
fized locus of o is of the form

¢
cO 110
CYTNPHIT-. TP

(2) Let o be a non-symplectic automorphism of
order 3. Then the fixed locus of o is of the form

X =CYNP'I---IPII{P,...,P,}.

X7 =

Here CY is a genus g curve and P; are isolated
points.

These allow us to judge whether an automor-
phism is symplectic or non-symplectic via its fixed
locus.

Lemma 2.3. Let o be a non-purely non-
symplectic automorphisms of order 6 on a K3
surface. Then its fixed locus has no curves.

Proof. If there exists a fixed curve of ¢ then it
is fixed by ¢ and ¢? too. But it is a contradiction for
Proposition 2.1. ]

3. Fixed loci. Let o be a non-purely non-
symplectic automorphisms of order 6. Then o
satisfies o*wx = Gwx or c'wy = —wx. We shall
study o in each case.

3.1. The case of c*wx = (3wx. Let o be an
automorphism on X of order 6 which satisfies
o*wx = Cawyx. Hence the fixed locus of ¢ consists
of exactly 8 points, and the fixed locus of ¢ may
have some non-singular curves and some isolated
points.

Proposition 3.1.
fized loci of o:

{Ps5, P35}
{Pi1,Ps5, P35, P35, P35}
{Pi1,P11,Ps5,Ps5,Ps5,Ps5,Ps5, P35}

There exists three types of

X7 =

Proof. We see the action of o on a fixed point
P,;. Since o satisfies o*wy = Céﬂwx = Gy, we
have ¢+ j =2 mod 6. Note that a fixed point of
type P lies on a fixed curve of 0. Thus X? consists
of at most 8 isolated points of type Py 1, P35 or Pya.

We apply the holomorphic Lefschetz formula
([5,p. 542] and [6, p. 567]):

(—1)* tr(o" | HH (X, 0x)) = 3

k=0 i

mij

1-¢)-a)

[Vol. 97(A),

where m;; is the number of isolated fixed points of
type P,;. Using the Serre duality H*(X,Ox) ~
H°(X,0x(Kx))", we can calculate the left-hand
side as 1+ Cgl. This implies

{ —2my1 +mgs +6myy =2

dmyg — 2mas +4myy = —4,
hence we have m3s = 2m;; + 2 and mgq = 0. O
Example 3.2. Let X be a quartic surface

given by the homogeneous equation: XoX? +

Xo X3+ X3+ X3 =0.

(1) We consider an automorphism o: [Xp: X :
X2 : Xs] — [X() : C§X1 : _X2 : CGXS] on X. It is
easy to see that o is non-symplectic and o? is
symplectic. Moreover we have

X7 =XN({Xo=X, =0} I{X, = X3 =0})
= (X0 X3 4+ X2 = 0} 1T {XX? + X! = 0}
:{[O:O:Cézl],[O:O:Ozl}}
I{[¢{:1:0:0,[0:1:0:0]} (i =1,3,5),

X7 = XN({Xo= Xy =0} I1{X; = X3 = 0})
={[0: X1 :0: X3} I {X{ + X3 =0}
=PI{[1:0:¢:0]} (j=1,3,5,7)

and
X ={[0:1:0:0],[0:0:0:1]}.
(2) Put o:[Xo: X7 :Xo: X5]—[Xo:X7:—Xy:
(6X3]. Then o is an automorphism on X

satisfying o*wx = (3wyx. It is easy to check
the following

X" =XNn({Xo=X, =0} I{X, = X3 =0})
= {Xo X3 + X5 =0} 1 { XX} + X, =0}
={[0:0:¢:1],[0:0:0:1]}
I{[¢:1:0:0,[0:1:0:0]} (i =1,3,5),

X7 = {Xo X} + X, + X2 =0} 11{[0:0:0:1]}
=COTM{[0:0:0:1]}

and

X =XnN{Xo=X3=0})II{[0:0:0:1]}
={Xo X} +X;=0}11{[0:0:0:1]}
={[¢;:1:0:0],[0:1:0:0],[0:0:0:1]}

(i=1,3,5).

Example 3.3. Let X be the weighted hyper-
surface X§ + X¢ + X§ =Y?in P(1,1,1,3) and o the
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automorphism on X given by [Xp: X;: Xy : Y] —
[XQ : X1 : CGXQ : —Y] ]
Note  that [0:0:¢5:%1]=[0:0:1:=£1"
()1 =10:0:1:(F1)"]. Thus we have
X' =Xn{Xy =Y =0} II{X, = X; =0})
= {X{ + X} =0} I {X) =Y?}
={[1:¢,:0:0]}I1{[0:0:1:+1]}
(] =13, 57 77 97 11)7
X7 =Xn({Xy =0} I {X, = X; =0})

={X{+ XV =Y I {X =Y?}

={X{+ X0 =Y 1I{[0:0:1:=£1]}

=CO{0:0:1:+1]}
and

XO={[1:¢,:0:0}11{[0:0:1:=+1]}
(j=1,3,5,7.9,11).
3.2. The case of oc*wx = —wx. Let o be

an automorphism on X of order 6 which satisfies
o*wy = —wy. Hence the fixed locus of ¢° is the
empty set or consists some non-singular curves, and
the fixed locus of ¢? consists of exactly 6 points.

Proposition 3.4. There exists four types of
fized loci of o:

0

{P12, Pys}

{Pi12, P12, Py, Pys}

{P12, P12, P12, Pys5, Pys, Pys}.

Proof. We apply the same argument as Prop-
osition 3.1. Since a fixed point of type Ps4 lies on a
fixed curve of o, X7 consists of at most 6 isolated
points of type Pj 2 or Pyps.

We apply the holomorphic Lefschetz formula:

2

X7 =

m; 5
(=) tr(o" | HF (X, 05) = ——
z; Zz,]:(l—Cé)(l—Cé)
Then we have mj o = my;. O
Example 3.5. Let X be the weighted hyper-

surface X§ 4+ XV + X$ =Y?in P(1,1,1,3).

(1) Let o be the automorphism on X given by
[Xo:X1:X9:Y]— [X;:Xy: Xy:—=Y]. Then
it is of order 6 and easy to see the following

X7 =Xn{y =0}
={X{+X{+ X5 =0}
— 10

and
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X7 ={[1:1: L:+V3][1: GG +V3],
1:¢: ¢ +Val}
Generally, X7 is a subset of X N X7 = .
Thus we have X7 = ().

(2) Let o be the automorphism on X given by
[XO : X] : X2 : Y] — [XQ : CGXl : CgXQ : Y]
Then we have the following

X =Xn{X; =0}
={Y* = Xj+ X3}

20(2)7
X7 ={[1:0:0:+1],[0:1:0:+1],
0:0:1:+1]}
and
X°={[1:0:0:£1],[0:0:1:+£1]}.
Example 3.6. Let X be the Fermat quartic

surface given by the homogeneous equation: X +
X!+ X3+ X3 =0 and o the automorphism on X
satisfying o([Xo: X1 : X0 : X3)) =[X1: X2 : Xp:
—X3]. Then it is easy to see the following

X7 =XN({X5=011{[0:0:0:1]})
= {Xo+ X] + X5 =0} 110
:C’(?’),

X7 = XN({Xo=X; = X} T {X3 =0})
= {3X; + X3 =0}

I{[1:G:¢G:0L[1:¢: G0}

= {6 points}

and
X={1:¢G G 0L1:¢ G0k

Example 3.7. Let X' be the weighted hy-
persurface X0+ X0+ X3X3+ X0 X2 =0 in
P(1,1,2,2) and & be the automorphism on X’ given
by [Xo: X7 :Xo: X3]— [(6Xo: (X1 Xo: X3]. We
remark that X’ is a K3 surface with three singular-
ities of type A; at [0:0:1:0[,[0:0:1:-1],
[0:0:0:1] (See also [9,§10 and §13]), and these
are fixed points of 4.

Let X be the minimal resolution of X’ and o
the automorphism of X induced by &. Since each
singular point which is fixed by & induces 2 fixed
points of o, X7 consists of exactly 6 points.

Moreover we see fixed locus of o3. We remark
that
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(X)) = (X' N {Xo=0}) U (X' N {X; =0})
={X] + X5 X; + X X; =0}
U{X{+ X5 X5 + Xo X3 =0}
and P(1,2,2) ~ P2, hence two cubic curves inter-
sect at [0:0:1:0,[0:0:1:-1},[0:0:0:1].
Thus, after blowing-up, we can see that X7 consists
of two non-singular curves of genus 1.

Recall that non-symplectic automorphisms of
order 3 are determined by only fixed loci [2,13].
Example 3.2 (1) and the following Example 3.8 give
automorphisms of order 6 which fix exactly 2
points. But fixed loci of their squares (automor-
phisms of order 3) are different. This implies that
Proposition 3.1 and Proposition 3.4 do not give the
classification of automorphisms.

Example 3.8. Let X be the complete inter-
section of the following quadric and the cubic in P*:
X2+ X2+ X34+ X2=X2+ X3+ X0 X2+ X, X3+
Xﬁi =0 and o the automorphism on X satisfying
J([XO : X1 : XQ : X3 . X4]) = [Xo : Xl : —XQ : —X3 :
(3X4]. Tt is easy to see the following
X' =XN({Xo=X3=0}I{X, = X; = X, =0})

={X;+ X} =X, + X} + X} =0}

II{X3 + X; =0}
= {8 points},
X7 = XN (X4=0)

3
= {ZX? =X+ X} + XoXo + X1 X2 = 0}
=0

— W

and

X"_Xﬁ({iXi_O}H{XO_Xl_X4_O}>
Q)H{X%J;Xg:o}
:{[O:O:l:i\/j:O]}.

4. Actions for the 2nd cohomology. We
denote by r1, 9, r3 and 74 the rank of the eigenspace
of 0* in H%(X, C) relative to the eigenvalues 1, —1,
(3 and (g respectively. Put S(o') := {zx € H*(X,Z) |
o'(x) = x}. Then relations r; = rank S(o), r1 + 72 =
rank S(0?), 7y +2r3 =rank S(o3) and 7 +ro+
2r3 + 2rg = 22 hold by [11,Theorem 3.1]. We re-
mark that r; > 0 because there is an invariant
ample divisor.

Lemma 4.1. Let x(X?) be the Euler charac-

[Vol. 97(A),

teristic of X°. Then we have x(X%) = —20+ 2r; +
r3 + 37’6.
Proof. We apply the topological Lefschetz
formula:
4
X(X7) = (=) tr(o"|H*(X, R))
k=0
=1-0+ 17+ (1) ro+ (G +E)rs
+ (G +¢)re) —0+1
=24+ (r1—rg—7r3+76)
= 7204’27’1 +r3+3r6.

O
4.1. The case of c*wx = (swx. In this case,

0? is a non-symplectic automorphism of order 3

and o¢® is a symplectic involution. Since

rank S(o3)(=ry +2r3) =14 by [11,§10], pairs

(r1,73) are (2,6), (4,5), (6,4), (8,3), (10,2), (12,1)

or (14,0).
Lemma 4.2.

not occur.

Proof. If (r1,73) = (14,0) then x(X7) = 8 4 3r¢
by Lemma 4.1. Since the order of ¢ is 6, rg # 0. It
contradicts Proposition 3.1. O

Proposition 4.3. The following hold:

(1) If X° consists of 2 points then (ry,re,r3,76) =
(2,0,6,4), (4,2,5,3), (6,4,4,2), (8,6,3,1) or
(10,8,2,0).

(2) If X° consists of 5 points then (r1,r9,73,76) =
(47 07 57 4)7 (67 27 47 3)7 (8’ 45 35 2)’ (107 67 27 1) or
(12,8,1,0).

(3) If X7 consists of 8 points then (r1,72,73,7r6) =
(6,0,4,4), (8,2,3,3), (10,4,2,2) or (12,6,1,1).
Proof. Since 19+ 2r¢ =8 and x(X7)=-13+

3r1/2 4 3rg by r1 +2r3 = 14 and Lemma 4.1, it is

easy to see all possibilities of pairs (ry,r9,73,76) in
each case. But if (x(X7),r1,7r3) =(2,12,1) then
we have rg <0, and if (x(X7?),r1,r3) = (5,2,6) or

(8,2,6) then we have 7y < 0. These are contra-

dictions. (]

The number of isolated fixed points of ¢ is
(ri1 +72—2)/2 by [2, Theorem 2.2] and [13, Theo-
rem 1.1]. Thus Example 3.2 (1) is of type
(r1,79,73,76) = (6,4, 4,2) and Example 3.8 is of type
(7"1,7‘2,7‘3,7"6) = (2,0,6,4).

By the same argument, it is easy to see that
Example 3.2 (2) is of type (r1,72,73,76) = (4,0,5,4)

The case (r1,r3) = (14,0) does

and Example 3.3 is of type (r,rq,73,76) =
(67 07 47 4)'
4.2. The case of o*wx = —wx. In this case,
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02 is a symplectic automorphism of order 3 and o3

is a non-symplectic involution. Note that

rank S(0?)(= r1 +r2) = 10 by [11,§10], hence 73 +

r¢ = 6 and x(X7) = —14 + 2r; + 2r¢. By using these

equations, we have the following
Proposition 4.4. The following hold:

(1) If X7 is empty then (ry,r9,73,76) = (1,9,0,6),
(2,8,1,5), (3,7,2,4), (4,6,3,3), (5,5,4,2),
(6,4,5,1) or (7,3,6,0).

(2) If X9 consists of 2 points then (r1,r9,13,76) =
(2,8,0,6), (3,7,1,5), (4,6,2,4), (5,5,3,3),
(6,4,4,2), (7,3,5,1) or (8,2,6,0).

(3) If X9 consists of 4 points then (r1,r9,73,76) =
(3,7,0,6), (4,6,1,5), (5,5,2,4), (6,4,3,3),
(7,3,4,2), (8,2,5,1) or (9,1,6,0).

(4) If X7 consists of 6 points then (r1,72,73,76) =
(4,6,0,6), (5,5,1,5), (6,4,2,4), (7,3,3,3),
(8,2,4,2) or (9,1,5,1).

Proof. If X° =0 then we have 1<7 <7,

hence (Tl,’l”g,’l"g,’f’(}) = (1797076)7 (258a1a5)a
(37 77 274)7 (4767373)’ (5757452)7 (6’455’ 1) or
(7,3,6,0).

If x(X°) =2 then we have 2 <r; <8, hence
(’/’1,7”2,7"3,7‘6) = (2787076>, (3,7,1,5), (4,6,2,4),
(5,5,3,3), (6,4,4,2), (7,3,5,1) or (8,2,6,0).

If x(X?) =4 then we have 3 <r; <9, hence
(7"1,7‘2,7‘3,7"6) = (3,7,0,6), (4,6,1,5), (5,5,2,4),
(6,4,3,3), (7,3,4,2), (8,2,5,1) or (9,1,6,0).

If x(X?) =6 then we have 4 <r; <10, hence
(7"1,7’277'3,7“6) = (47670’6)7 (5757175)7 (6343234)3
(7,3,3,3), (8,2,4,2), (9,1,5,1) or (10,0,6,0). Since
the order of o is 6, the case (ry,ro,ry, 1) =
(10,0,6,0) does not occur. O

We remark that r; + 2r;3 is the rank of S(o?).
If X°' consists of exactly one non-singular curve of
genus 10 then we have r; +2r3 =1 by the classi-
fication of non-symplectic involutions [12]. Thus
Example 3.5 (1) is of type (r1,72,73,76) = (1,9,0,6).
By the same argument, we can check that Exam-
ple 3.5 (2) is of type (r1,72,73,76) = (5,5,2,4),
Example 3.6 is of type (ry,ro,73,76) = (4,6,2,4)

and Example 3.7 is of type (ri,re,r3,16) =
(6,4,2,4).
Remark 4.5. It is expected that there exists

an example for each remaining (ry,rs, r3,76).
Example 4.6. Let X be the complete inter-
section of the quadric and the cubic in P*:
X+ X+ X+ X2+ X=X+ X+ X5+ X5+
X3X? =0 and o the automorphism on X satisfy-
ing O’([Xg : X1 : X2 : ng : X4D = [Xl : XQ : X() : X3 :
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—X,]. Tt is easy to see the following
X" =Xn{X,=0}
= {X{ + X7 + X3 + X
=X, + X} + X5+ X; =0}
— C(l),
X7 =XNn{Xy =X = X,}
={3Y? + X] + X] =3Y* + X + X3X] =0}
= {6 points} (by the Bezout theorem)
and
X7 =0.

Since X7 consists of exactly one non-singular curve
of genus 1, we have ry 4+ 2r3 = 1. This is of type
(7‘1 ,T2,T3, 7“6) = (4, 67 3, 3)
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