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Abstract: For every pair of an analytic family f ¼ ft of endomorphisms of degree > 1 of

the Berkovich projective line P1;an over an algebraically closed and complete non-trivially valued

field K and an analytically marked point a ¼ aðtÞ in P1;an both parametrized by a domain V in the

Berkovich analytification of a smooth projective algebraic curve C=K, we establish the

equidistribution of the averaged pullbacks of any value in P1;an but a subset of logarithmic

capacity 0 under the sequence of the morphisms an ¼ anðtÞ ¼ fnt ðaðtÞÞ : V ! P
1;an, towards the

activity measure �ðf;aÞ on V associated with f and a.

Key words: Analytic family of morphisms; analitically marked point; activity measure;
potential theory on Berkovich curves; equidistribution; Varilon exceptional set.

1. Introduction. Let K be an algebraically

closed field that is complete with respect to a

nontrivial and non-archimedean absolute value. Let

V be a (topological) domain in the analytification

(Berkovich [3]) of a smooth projective algebraic

curve C=K. To the pair ðf; aÞ, where f is an analytic

family

ftðzÞ ¼ fðt; zÞ : V �K P1;an ! P
1;an ¼ P1;an

K

of endomorphisms of P1;an of degree d > 1 analyti-

cally parametrized by V and a : V ! P
1;an is a

marked point in P1;an analytically parametrized by

V (i.e., an analytic map from V to P
1;an), the

activity measure

�ðf;aÞ :¼ lim
n!1

ðanÞ���0;1

dn
weakly on Vð1:1Þ

is associated ([6]), where for every n 2 N,

anðtÞ :¼ fnt ðaðtÞÞ; t 2 Vð1:2Þ

is a marked point in P1;an analytically parametrized

by V , and �0;1 is the Gauss (or canonical) point

in P1;an and �� is the Dirac measure on P1;an at a

point � 2 P1;an. The activity measures of especially

marked critical points play a key role in pluripo-

tential theoretic studies (since [4]) of bifurcation

and (un)stability in complex dynamics (foundation-

ally [7–9]). A non-archimedean version of bifurca-

tion and (un)stability including a non-archimedean

�-lemma has been studied by Thomas Silverman

[11].

Our principal result is the following, which has

been expected in [6].

Theorem 1. Let K be an algebraically closed

field that is complete with respect to a nontrivial

and non-archimedean absolute value, and V be a

domain in the (Berkovich) analytification of a

smooth projective algebraic curve C=K. Let f :

V �K P1;an ! P
1;an be a family of endomorphisms of

P
1;an of degree d > 1 and a : V ! P

1;an be a marked

point in P1;an, both analytically parametrized by V .

Then for every � 2 P1;an but a subset of logarithmic

capacity 0,

lim
n!1

ðanÞ���
dn

¼ �ðf;aÞ weakly on V :

Indeed, we would establish the following, which

is motivated by Nevanlinna theory.

Theorem 2. Under the same assumption in

Theorem 1, the Valiron exceptional set

EV ðf; aÞ

:¼ � 2 P1;an

���� there is x 2 V n V ðKÞ such that

log kanðxÞ; �k 6¼ oðdnÞ as n!1

� �

associated with the pair ðf; aÞ is of logarithmic

capacity 0 in P1;an.

For the definition of the generalized Hsia kernel

k�; �k on P
1;an with respect to �0;1 and that of a
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subset of P
1;an of logarithmic capacity 0, see

Section 2 below. A standard argument from poten-

tial theory on Berkovich curves (using a functor-

iality and a continuity of the Laplacian ddc on

Berkovich curves (see Thuillier [13, §3.2, §3.3]))

shows that for every � 2 P1;an n EV ðf; aÞ,

lim
n!1

ðanÞ�ð��0;1
� ��Þ

dn
¼ 0 weakly on V :

Hence Theorem 2 together with (1.1) yields Theo-

rem 1.

Organization of this paper. In Section 2,

we gather some background materials and notations

from potential theory on the Berkovich projective

line and curves. In Section 3, we show Theorem 2

when V is separable. In Section 4, we show Theo-

rem 2 in full generality.

2. Background. The Berkovich projective

line P
1;an ¼ P1;an

K is a compact augmentation of

P
1 ¼ P1

K , and a typical point in P1;an is written as

�a;r when it is represented by a K-closed disk

Bða; rÞ :¼ fz 2 K : jz� aj � rg in K for some a 2 K
and r � 0; K ¼ P1 n f1g is identified with the

set of all points in P
1;an written as �a;0 for some

a 2 K. The point �0;1 is called the Gauss (or

canonical) point in P
1;an. The chordal distance

kz; wk on P1 normalized as k0;1k ¼ 1 extends to a

unique upper semicontinuous and separately con-

tinuous function on P
1;an � P1;an, which is still

denoted by k�; �k and is called the generalized Hsia

kernel function on P
1;an with respect to �0;1; in

particular, k�; �k ¼ 0 if and only if � 2 P1. For every

point �0 2 P1;an, the function log k�; �0k on P1;an is

locally constant except for the closed interval

½�0; �0;1� between �0 and �0;1 in P
1;an. An analytic

map h from a domain D in the Berkovich analy-

tification of a smooth projective curve C=K to P1;an

induces a canonical pullback operator h� from the

space of Radon measures on P1;an to that of Radon

measures on D (for more details on P
1;an, see

[5, Chapter 4], [5, §3.4]).

We adopt the following sign convention on

the Laplacian ddc on Berkovich curves; for every

� 2 P1;an,

�ddc log k�; �k ¼ �� � ��0;1
on P1;an:

We call a function

u�0;1;�ð�Þ :¼ �
Z
P

1;an
log k�; �k�ð�Þ 2 ½0;þ1�

�
so that ddcu�0;1;� ¼ �� �ðP1;anÞ�0;1 on P1;an

�
on P

1;an the logarithmic potential function of a

positive Radon measure � on P1;an with respect to

�0;1. The logarithmic capacity (with respect to �0;1)

of a subset E of P1;an n f�0;1g is

CapE :¼ exp �inf
�

Z
P

1;an
u�0;1;�ð�Þ�ð�Þ

� �
2 ½0; 1�;

where � ranges over all probability Radon measures

on P
1;an supported by E, and we say E is of

logarithmic capacity 0 (with respect to �0;1) if

CapE ¼ 0. If E is not of logarithmic capacity 0,

then there is a compact subset of E which is not

of logarithmic capacity 0. If a compact subset C
of P1;an n f�0;1g is not of logarithmic capacity 0, then

a unique equilibrium mass distribution �C on C with

respect to �0;1 (i.e., a probability Radon measure �

on P
1;an supported by C and satisfying Cap C ¼

expð�
R
P

1;an u�0;1;�ð�Þ�ð�ÞÞ) exists. For more details

on the logarithmic capacity theory on P
1;an, see

[2, Chapter 6].

3. Proof of Theorem 2: separable domain

case. Let V be a domain in the (Berkovich)

analytification of a smooth projective algebraic

curve C=K. Let f : V �K P1;an ! P
1;an be a family

of endomorphisms of P1;an of degree d > 1 and a :

V ! P
1;an be a marked point in P1;an, both analyti-

cally parametrized by V . Recall the definition (1.2)

of the marked point an for each n 2 N.

For every x 2 V n V ðKÞ, the subset

Ex ¼ Exðf; aÞð3:1Þ

:¼
[
j2N

\
N2N

[
n�N

n
� 2 P1;an

��� kanðxÞ; �k < e
�dn
j

o

of P1;an is the countable union of subsets of P1 of

finite Hyllengren measures for the increasing se-

quence ðdnÞn (cf. [12]), so in particular is of

logarithmic capacity 0 (for a more direct argument,

see e.g. [10, Proof of Lemma 2.1]).

Suppose now that V is separable, that is, V n
V ðKÞ contains a countable dense subset S (as in e.g.

the case that K ¼ Cp). Then the subset

ES :¼
[
x2S
Ex

of P1;an is of logarithmic capacity 0. We claim that

EV ðf; aÞ 	 ES; for, otherwise, there are �0 2
P

1;an n ES, x0 2 V n V ðKÞ, and a sequence ðnjÞ in N

tending to 1 such that
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lim
j!1

log kanjðx0Þ; �0k
dnj

< 0:

From [6], we can pick a connected open affinoid

neighborhood U of x0 in V so small that for a non-

degenerate homogeneous polynomial lift F : U �K
A

2;an ! A
2;an ¼ A2;an

K of f : U �K P1;an ! P
1;an and

an analytic lift A : U ! A
2;an n f0

A
2
K
g of a : U !

P
1;an, writing Fn ¼ ðF ðnÞ0 ; F

ðnÞ
1 Þ for each n 2 N, the

function

hðnÞðtÞ :¼
log maxfjF ðnÞ0 ðt; AðtÞÞj; jF

ðnÞ
1 ðt; AðtÞÞjg

dn

on UðKÞ extends continuously and subharmonically

to U so that �ddchðnÞ ¼ a�n��0;1
=dn on U , and the

uniform limit hðf;aÞ ¼ limn!1 h
ðnÞ on U exists and is

a continuous and subharmonic function on U . Then

for every j 2 N, the function

log kanjð�Þ; �0k
dnj

þ hðnjÞ on U

is subharmonic (using a functoriality of ddc),
and shrinking U if necessary, the family of those

subharmonic functions on U is also uniformly

bounded from above on U . Then using a non-

archimedean version of Hörmander’s version of

Hartogs’s lemma (see [2, Proposition 8.54]), ei-

ther

lim
j!1

log kanjð�Þ; �0k
dnj

¼ �1

uniformly on any compact subset of U or, taking a

subsequence of ðnjÞ if necessary, there is an upper

semicontinuous function � on U such that

� ¼ lim
j!1

log kanjð�Þ; �0k
dnj

on U n UðKÞ

(so f� < 0g in U is open and contains x0). In the

former case, we must have �0 2 ES since U \ S 6¼ ;.
In the latter case, we must still have �0 2 ES
since f� < 0g \ S 6¼ ;. In any case, this is a contra-

diction.

Hence EV ðf; aÞ 	 ES, which completes the

proof of Theorem 2 in this case. �

4. Proof of Theorem 2: general case. Let

V be a domain in the (Berkovich) analytification

Can of a smooth projective algebraic curve C=K. Let

f : V �K P1;an ! P
1;an be a family of endomorphisms

of P1;an of degree d > 1 and a : V ! P
1;an be a

marked point in P
1;an, both analytically parame-

trized by V . Recall the definition (1.2) of the

marked point an for each n 2 N.

Lemma 4.1. For any probability Radon

measure � on P
1;an, we have CapðEV ðf; aÞ \

ðsupp �ÞÞ ¼ 0.

Proof. Pick a probability Radon measure � on

P
1;an.

Recall the profinite graph (more precisely, the

inverse limit of skeletons) structure of the Berko-

vich curve Can and the (extended) skeletal metric

on Can n CðKÞ (see [1, §5]). Here, a skeleton � of

Can is a finite subgraph in Can so that all connected

components of Can n � are open balls in Can (see

[1, §3]). In particular, by the connectedness of V

and the compactness of the topological boundary

@V of V in Can, there is a sequence ðUjÞj of relatively

compact subdomains in V increasing to V such that

for any j 2 N, Uj is a connected component of the

complement in Can of a finite subset of Can.

Let �0 be the union of all paths in V joining

distinct two points in @V . Then for every j 2 N,

�
ðjÞ
0 :¼ �0 \ Uj is an at most finitely branched and

connected subgraph in Uj. For any j; n 2 N, the

signed measure ða�nð�� ��0;1
ÞÞjUj is finite, so for

every j 2 N, by the argument in [2, Proof of Lemma

5.7], there is an increasing sequence ð�ðjÞk Þk2N of

finite and connected subgraphs in Uj such thatS
n2Nðsuppða�nð�� ��0;1

ÞÞÞ \ Uj is contained in the

closure of
S
k2N �

ðjÞ
k in V . Noting that for j
 1, Uj

contains the union L of all (finitely many non-

trivial) loops in V , for every j
 1 and every

k 2 N [ f0g, we replace �
ðjÞ
k with an at most finitely

branched and connected subgraph in Uj containing

�
ðjÞ
k [ L. Then letting

X� ¼ Xðf;aÞ� :¼
[
j2N

� [
k2N[f0g

�
ðjÞ
k

�
in V ;

we have [
�2supp �

[
n2N

a�1
n ð½�; �0;1�Þ

 !
	 X�;ð4:1Þ

and there is a countable dense subset Y� of X�. Set

EY� :¼
[
y2Y�
Ey;

which is still of logarithmic capacity 0 in P1;an. Here

for each y 2 V n V ðKÞ, the subset Ey of P1;an (indeed

of P1) is defined as in (3.1).

We claim that EV ðf; aÞ \ ðsupp �Þ 	 EY� ; for,

otherwise, there are �0 2 ððsupp �Þ \ EV ðf; aÞÞ n EY� ,
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x0 2 V n V ðKÞ, and a sequence ðnjÞ in N tending to

1 such that

lim
j!1

log kanjðx0Þ; �0k
dnj

< 0:ð4:2Þ

Suppose that x0 2 V nX�, and let U be the con-

nected component of V nX� containing x0. Then

for every j 2 N, the continuous function

ðlog kanjð�Þ; �0kÞ=dnj on V is constant on U (for,

otherwise, since the generalized Hsia kernel k�; �0k is

locally constant on P
1;an n ½�0; �0;1�, by �0 2 supp �

and (4.1), we must have ; 6¼ U \ a�1
nj
ð½�0; �0;1�Þ 	 X�,

which is impossible). This with (4.2) yields the

convergence

lim
j!1

log kanjð�Þ; �0k
dnj

� lim
j!1

log kanjðx0Þ; �0k
dnj

< 0 on U:

Hence, since ; 6¼ @U 	 X� n V ðKÞ, where @U is the

topological boundary of U in Can, we can replace

the original x0 so that x0 2 X� (without changing

the �0). Then we are done by an argument by

contradiction similar to that in the separable case in

Section 3 which involves a non-archimedean version

of Hörmander’s version of Hartogs’s lemma. Hence

the claim holds.

Once this claim is at our disposal, we are done

by CapðEY�Þ ¼ 0 and the monotonicity of the

capacity function Cap. �

If EV ðf; aÞ is not of logarithmic capacity 0, then

there must exist a probability Radon measure �

on P
1;an supported by EV ðf; aÞ and satisfyingR

P
1;an u�0;1;�ð�Þ�ð�Þ <1. By Lemma 4.1, this is im-

possible (see [2, Lemma 6.16]). Now the proof of

Theorem 2 is complete. �
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