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Abstract: Let Pk ¼ �n>0ðPkÞn ¼� F2½x1; x2; . . . ; xk� be the graded polynomial algebra over

the prime field of two elements F2, in k generators x1; x2; . . . ; xk, each of degree 1. Being the

mod-2 cohomology of the classifying space BðZ=2Þk, the algebra Pk is a module over the mod-2

Steenrod algebra A.

In this Note, we explicitly compute the hit problem of some generic degrees rð2s � 1Þ þ 2sm

in Pk, where r ¼ k� 1 ¼ 4;m 2 f8; 10; 11g and s an arbitrary non-negative integer. Moreover, as

a consequence, we get the dimension results for polynomial algebra in some generic degrees and

in the cases k ¼ 5 and 6.
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1. Introduction. Denote by Pk ¼
H�ððRP1ÞkÞ the modulo-2 cohomology algebra of

the direct product of k copies of infinite dimensional

real projective spaces RP1. Then, Pk is isomorphic

to the graded polynomial algebra F2½x1; x2; . . . ; xk�
of k variables, in which each xj is of degree 1. Here

the cohomology is taken with coefficients in the

prime field F2 of two elements.

The A-module structure of Pk is explicitly

determined by the formula

SqiðxjÞ ¼
xj; i ¼ 0;

x2
j ; i ¼ 1;

0; i > 1;

8><
>:

and the Cartan formula SqnðxyÞ ¼Pn
i¼0 Sq

iðxÞSqn�iðyÞ, where x; y 2 Pk (see Steenrod

and Epstein [18]).

A polynomial f in Pk is called hit if it can

be written as a finite sum f ¼
P

u>0 Sq
2uðhuÞ for

suitable polynomials hu. That means f belongs to

AþPk, where Aþ denotes the augmentation ideal

in A.

The Peterson hit problem is to find a minimal

generating set for Pk regarded as a module over the

mod-2 Steenrod algebra. Equivalently, this problem

is to find a basis for the vector space

F2�APk ¼� Pk=AþPk

in each degree n, where Aþ is an ideal of A
generated by all Steenrod squares of positive

degrees. Such a basis may be represented by a list

of monomials of degree n.

This problem has first been studied by

Peterson [10], Wood [28], Singer [16], Priddy [14],

who pointed out its relationship with some classical

problems in homotopy theory such as the cobordism

theory of manifolds, the modular representation

theory of linear groups, Adams spectral sequences

of stable homotopy of spheres, and stable homotopy

type of the classifying space of finite groups. Then,

this problem was investigated by Wood [28],

Carlisle and Wood [1], Silverman [17], Nam [8,9],

Mothebe [7], Sum [19,21], Cho’n and Hà [3],

Kameko [5,6] and others. Recently, the hit problem

and its applications to representations of general

linear groups have been presented in the books of

Walker and Wood [26,27].

For a positive integer n, by �ðnÞ one means the

smallest number r for which it is possible to write

n ¼
P

16i6rð2ui � 1Þ, where ui > 0. This result im-

plies a result of Wood, which originally is a

conjecture of Peterson [10].

Theorem 1.1 (See Wood [28]). If �ðnÞ > k,

then ðF2�APkÞn ¼ 0.

Let GLk be the general linear group over the

field F2. This group acts naturally on Pk by matrix

substitution. Since the two actions of A and GLk
upon Pk commute with each other, there is an

action of GLk on F2�APk. One of our main tools is

doi: 10.3792/pjaa.97.005
#2021 The Japan Academy

2010 Mathematics Subject Classification. Primary 55S10,
55S05, 55T15.

No. 4] Proc. Japan Acad., 97, Ser. A (2021) 25

http://dx.doi.org/10.3792/pjaa.97.005


Kameko’s homomorphism fSq0
� : F2�APk !

F2�APk, which is induced by an F2-linear map

�k : Pk ! Pk, given by

�kðxÞ ¼
y; if x ¼ x1x2 . . . xky

2,

0; otherwise,

�

for any monomial x 2 Pk. The map �k is not an

A-homomorphism. However, �kSq
2i ¼ Sqi�k and

�kSq
2iþ1 ¼ 0 for any non-negative integer i.

Theorem 1.2 (Kameko [4]). Let d be a non-

negative integer. If �ð2dþ kÞ ¼ k, then

fSq0
� : ðF2�APkÞ2dþk �! ðF2�APkÞd

is an isomorphism of GLk-modules.
From the results of Wood [28] and Kameko [4],

the hit problem is reduced to the case of degree n of

the form

n ¼ rð2s � 1Þ þ 2smð1:1Þ

where r; s;m are non-negative intergers such that

1 6 r < k and �ðmÞ < r.

For r ¼ k� 1 and m > 0, the problem was

studied by Crabb and Hubbuck [2], Nam [8], Repka

and Selick [15], Walker and Wood [25], Sum [21].

Now, the F2-vector space F2�APk was explic-

itly calculated by Peterson [10] for k ¼ 1; 2, by

Kameko [4] for k ¼ 3 and by Sum [20,21] for k ¼ 4.

However, for k > 4, it is still unsolved, even in the

case of k ¼ 5 with the help of computers.

For r ¼ k� 1 ¼ 4 and m ¼ 0, the vector space

ðF2�AP5Þn is explicitly computed by Phuc and

Sum [11,12], and in the case r ¼ k� 2 ¼ 3, m ¼ 1 by

Phuc [13]. In the present paper, we study the hit

problem of some generic degrees rð2s � 1Þ þ 2sm
in Pk, where r ¼ k� 1 ¼ 4;m 2 f8; 10; 11g and s

an arbitrary non-negative integer. Moreover, as a

consequence, we get the dimension results for

polynomial algebra in some generic degrees and in

the cases k ¼ 5 and 6.

The proofs of the results of this Note will be

published in detail elsewhere.

2. The Main Results. From now on, we

denote by BkðnÞ the set of all admissible monomials

of degree n in Pk. The following is one of our main

results.

Theorem 2.1. Let n ¼ ðk� 1Þ:ð2s � 1Þ þ
11:2s with s an arbitrary non-negative integer. For

k ¼ 5, then

dimðF2�AP5Þ4ð2s�1Þþ11:2s ¼
315; if s ¼ 0,

1024; if s ¼ 1,

1984; if s > 2.

8<
:

Note that this theorem has been proved by

Mothebe [7] for s ¼ 0, and by Walker and Wood [26]

for s ¼ 1, and by another method.

The proof of the above theorem is too long and

very technical. It is proved by explicitly determin-

ing all admissible monomials of degree n ¼ 4ð2s �
1Þ þ 11:2s in P5, for any s > 0.

Sketch proof of Theorem 2.1. We first

recall some notations and definitions in [21]. For

any 1 6 i 6 k, define the homomorphism fi :
Pk�1 ! Pk of algebras by substituting

fiðxjÞ ¼
xj; if 1 6 j < i,

xjþ1; if i 6 j < k.

�

Then, fi is a homomorphism of A-modules.

Denote I ¼ fi1; i2; . . . ; irg and

Uk ¼ fði; IÞ : 1 6 i < i1 < . . . < ir 6 k; 0 6 r < kg:

Let ði; IÞ 2 Uk, xðI;uÞ ¼ x2r�1þ...þ2r�u

iu
�u<t6rx

2r�t
it

for r ¼ ‘ðIÞ be the length of I, xð?;1Þ ¼ 1. For a

monomial x 2 Pk�1, we define the monomial ’ði;IÞðxÞ
in Pk by setting

’ði;IÞðxÞ ¼

ðx2r�1
i fiðxÞÞ=xðI;uÞ if there exists u

such that x is

u-compatible with

ði; IÞ,
0; otherwise.

8>>>>>><
>>>>>>:

Then we have an F2-linear map ’ði;IÞ : Pk�1 !
Pk.

For k ¼ 5, we have n ¼ ðk� 1Þð2s � 1Þ þ 2sm ¼P3
i¼0ð2sþi � 1Þ and set d1 ¼ sþ 3; d2 ¼ �sþ 2; d3 ¼

sþ 1; d4 ¼ s. Thus, using the results in Sum [21] we

see that B5ð4:ð2s � 1Þ þ 11:2sÞ ¼ �ðB4ð4:ð2s � 1Þ þ
11:2sÞÞ is a minimal set of generators for A-module

P5 in degree 4:ð2s � 1Þ þ 11:2s for any s > 4. Here,

�ðB4ðnÞÞ ¼ �0ðB4ðnÞÞ [ �þðB4ðnÞÞ

where

�0ðB4ðnÞÞ ¼ [16i65’ði;?ÞðB4ðnÞÞ ¼ [16i65fiðB4ðnÞÞ;
�þðB4ðnÞÞ ¼ [ði;IÞ2U5;0<‘ðIÞ64’ði;IÞðB4ðnÞÞ n P 0

5 ;

P 0
5 ¼ hfx ¼ x

a1

1 . . . xa5

5 : a1a2 . . . a5 ¼ 0gi:
Moreover, we set m ¼ 2d1�d4 þ 2d2�d4 þ 2d3�d4 �

3 ¼ 11, using the result in Sum [21] one get
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jB5ðnÞj ¼ ð25 � 1Þ:jB4ð11Þj for any s > 4:

Based on the result in [21], we obtain ðF2�AP4Þ11 ¼
64. And therefore, dimðF2�AP5Þ4:ð2s�1Þþ11:2s ¼ 1984,

for any s > 4. Hence, we need only to prove the

theorem for s ¼ 0; 1; 2; 3 by the direct computa-

tions. The proof of the theorem in these cases is too

long and very technical. It is proved by explicitly

determining all admissible monomials of degree n ¼
4ð2s � 1Þ þ 11:2s in P5, for s 6 3. The ideas of proofs

are from Kameko’s squaring operation [4] combin-

ing with the results in Sum [19,21]. Note that the

results dimension of ðF2�AP5Þ4:ð2s�1Þþ11:2s; 2 6 s 6 3

has been verified by using a computer calculation

program of V. H. Vu in SAGE. I would like to say

thank you for his support. �

Moreover, from the results of this theorem and

in Sum [21], we get the dimension results for

polynomial algebra of six variables as follows:

Corollary 2.2 (Tin [23]). For any integer

d > 5, there exist exactly 19845 admissible mono-

mials of degree m1 ¼ 5ð2d � 1Þ þ 3:2d in P6. Con-

sequently,

dimðF2 �A P6Þm1
¼ 19845:

Corollary 2.3 (Tin [24]). For any ‘ > 4,

there exist exactly 64512 admissible monomials of

degree m2 ¼ 5ð2‘ � 1Þ þ 13:2‘þ1 in P6. Consequent-

ly, dimðF2�AP6Þm2
¼ 64512.

It is easy to check that �ð56Þ ¼ 4 ¼ �ð56þ
�ð56ÞÞ ¼ �ð60Þ and we have m2 ¼ 5ð2t � 1Þ þ
7:2tþ3 ¼ 5ð2t � 1Þ þ 56:2t hence, using the results

in [21] one get

jB6ð5ð2t � 1Þ þ 7:2tþ3Þj ¼ ð26 � 1ÞjB5ð56Þj ¼ 124992;

for any integer t > k� 1 ¼ 5. We get the corollary

following

Corollary 2.4. There exist exactly 124992

admissible monomials of degree m3 ¼ 5ð2t � 1Þ þ
7:2tþ3 in P6, for any t > 5. Consequently,

dimðF2�AP6Þm3
¼ 124992.

By a simple calculation, we have �ð116Þ ¼ 4

and �ð116þ �ð116ÞÞ ¼ 4. Using the results in [21]

one get the corollary following

Corollary 2.5. For any integer r > 4, there

exist exactly 124992 admissible monomials of degree

m4 ¼ 5ð2r � 1Þ þ 29:2rþ2 in P6. Consequently,

dimðF2�AP6Þm4
¼ 124992.

Set tðk; dÞ ¼ maxf0; k� �ðdþ kÞ � �ðdþ kÞg
where �ðnÞ the greatest integer u such that n is

divisible by 2u, that means n ¼ 2�ðnÞm, with m an

odd integer. We recall a result in [22] the following

Theorem 2.6 (Tin and Sum [22]). Let d be

an arbitrary non-negative integer. Then

ðfSq0
�Þ
s�t : ðF2 �A PkÞkð2s�1Þþ2sd

�! ðF2 �A PkÞkð2t�1Þþ2td

is an isomorphism of GLk-modules for every s > t if

and only if t > tðk; dÞ.
It is easy to check that for k ¼ 5 and d ¼ 56

then

tðk; dÞ ¼ maxf0; k� �ðdþ kÞ � �ðdþ kÞg ¼ 0:

Then, from the results of Theorems 2.1 and 2.6

we get the corollary following

Corollary 2.7. For any integer u > 0, there

exist exactly 1984 admissible monomials of

degree 5ð2u � 1Þ þ 7:2uþ3 in P5. Consequently,

dimðF2�AP5Þ5ð2u�1Þþ7:2uþ3 ¼ 1984.

Similarly, for k ¼ 5, d ¼ 116 then tðk; dÞ ¼
maxf0; k� �ðdþ kÞ � �ðdþ kÞg ¼ 0. We have the

corollary following

Corollary 2.8. For any integer v > 0, there

exist exactly 1984 admissible monomials of

degree 5ð2v � 1Þ þ 29:2vþ2 in P5. Consequently,

dimðF2�AP5Þ5ð2v�1Þþ29:2vþ2 ¼ 1984.

Next, we determine the hit problem in degree n

of the form (1.1) with r ¼ k� 1 ¼ 4, m ¼ 8 and s an

arbitrary non-negative integer.

Theorem 2.9. Let n ¼ 4:ð2s � 1Þ þ 8:2s with

s an arbitrary non-negative integer. Then

dimðF2�AP5Þ4:ð2s�1Þþ8:2s ¼

174; if s ¼ 0,

641; if s ¼ 1,

1426; if s ¼ 2,

1706; if s ¼ 3,

1705; if s > 4.

8>>>>><
>>>>>:

Similarly, the following is our third main

result.

Theorem 2.10. Let n ¼ ðk� 1Þ:ð2s � 1Þ þ
10:2s with s an arbitrary non-negative integer. For

k ¼ 5, then

dimðF2�AP5Þ4ð2s�1Þþ10:2s ¼

280; if s ¼ 0,

961; if s ¼ 1,

1905; if s ¼ 2,

2171; if s ¼ 3,

2170; if s > 4.

8>>>>><
>>>>>:

The ideas of the proofs of Theorems 2.9 and

2.10 are the same as in proof of Theorem 2.1.
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