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Equivalence of Kuo and Thom quantities for analytic functions
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(Communicated by Kenji FUKAYA, M.J.A., Feb. 12, 2021)

Abstract:

Sufficiency of jets is a very important notion introduced by René Thom in order

to establish the structural stability theory. The criteria for some sufficiency of jets are known as
the Kuo condition and Thom type inequality, which are defined using the Kuo quantity and
Thom quantity. Therefore these quantities are meaningful. In this paper we show the equivalence
of Kuo and Thom quantities. Then we apply this result to the relative conditions to a given closed

set.
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1. Introduction. Let f:(R",0) — (R,0)be
a C" function germ. The 7-jet of f at 0 € R", 57 f(0),
has a unique polynomial representative z of degree
not exceeding r. We do not distinguish the r-jet
7" f(0) and the polynomial representative z here.

Kuiper-Kuo condition. There is a positive
number C' > 0 such that

llgrad f(x)|| = Cllz|""

holds in some neighbourhood of 0 € R".

Note that the Kuiper-Kuo condition depends
only of its r-jet z = j" f(0), and it is independent of
the choice of representative.

The Kuiper-Kuo condition is well-known as a
criterion for CY-sufficiency and V-sufficiency of z
in C" functions (N. Kuiper [6], T. C. Kuo [7], J.
Bochnak and S. Eojasiewicz [4]). See §2 for the
definitions of C'-sufficiency and V-sufficiency of jet.

Kuo condition. There are positive numbers
C,a,w > 0 such that

lgrad f(x)[| > Cll=]"™" in H, (f;@) N {]ll] < o},

where H,(f;w) :={x € R":|f(z)] <wl|z|"} is the
horn-neighbourhood of f~1(0) of degree r and width
w (T. C. Kuo [8]).

Note that this Kuo condition is also a condition
on the r-jet z = j" f(0), and it is independent of the
representative f.
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The Kuo condition is a criterion for V-suffi-
ciency of z in C" functions.

Condition (ﬁ) There is a positive number
C > 0 such that

lzlllgrad f(@)[| +[f(x)] = Cll=]"

holds in some neighbourhood of 0 € R".

This condition is the Kuo condition in a
different way. Therefore condition (K) is also a
criterion for V-sufficiency of z in C” functions.

On the other hand, R. Thom formulated the
following condition as a sufficient condition for z to
be C%-sufficient in C"-functions.

Thom type inequality. There are positive
numbers K, > 0 such that

of of |?
>

Ti o +1f(@)* = K| for || < 5.
1<j

=
61‘] J 81‘i

It is shown in [1] that Thom type inequality
condition is equivalent to the Kuiper-Kuo condi-
tion.

Throughout this paper, we denote by N the set
of natural numbers in the sense of positive integers.
Let s € N U {oo,w}, and let £;(n,p) denote the set
of C* map-germs: (R",0) — (R?,0).

Now we introduce the Kuo quantity K, and
Thom quantity 7,,. The Thom quantity is a
generalisation of the left side of Thom type inequal-
ity, and the Kuo quantity is a generalisation of
the left side of a condition equivalent to condition
(K).
Definition 1.1. Let f € &(n,p), n > p, and
let m € N. Let us define two functions of the
variable x:
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(1.1) Kn(f,x)

. m D(fla"'vfﬂ) " m
SV det<p(xil,...,zz,,)<“>> @I,
(1.2) Tu(f.2)
L D(fl7"'7fp7p) o " m
S <7D e <.L>> @I,

where p(z) = ||z||*. Note that T,,,(f,z) = || f(z)||" in
the case where n = p.

Related to the Kuo condition and Thom type
inequality, we have shown the following result.

Theorem 1.2. ([1], Theorem 2.4). Let r€
N. For f € £,)(n,p), n > p, the following conditions
are equivalent.

(1) There are positive numbers C,a > 0 such that
Ks(f,2) > Cllz[|*" for ||z]| < .
(2) There are positive numbers K, 3 > 0 such that
To(f,2) = Kllz|” for ]| < 5.

The main purpose of this paper is to show the
equivalence of the Kuo quantity and Thom quan-
tity.

Theorem 1.3. (Main Theorem).
Ey(n,p), n > p. Then for any m € N,

KWI(f’ ) ~ T’m(fv )

The main result is a generalisation of Theorem 1.2
in the sense that it follows from Theorem 1.3 and
the notion of r-compatibility (cf. Definition 4.1
or [1]).

Throughout this paper, we use the equivalence
=~ in the following sense:

Let f,g:U — R be non-negative functions,
where U C RY is an open neighbourhood of 0 €
RY. If there are real numbers K >0, § > 0 with
Bs(0) cU such that f(z) < Kg(z) for any
x € Bs(0), where Bs(0) is a closed ball in R of
radius 6 centred at 0 € RY, then we write f < g (or
gz ). I fZgand f g, we write f = g.

In the next section we mention the definitions
of C'-sufficiency and V-sufficiency of jets, and give
the notion of the relative jet of a C* mapping to a
given closed set 3. We shall show our Main
Theorem in §3, and apply the theorem to the
relative conditions to a closed set X in §4.

2. Preliminaries.

Let fe

2.1. Sufficiency of jets. Let s € N U {oo,w}.
Let us recall &(n,p), the set of C* map-germs:
(R",0) — (R?,0). Let 57f(0) denote the r-jet (r €
N) of f at 0 € R" for f e E(n,p), s>, and let
J'(n,p) denote the set of r-jets in E(n, p).
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We say that f,g € E(n,p) are C'-equivalent
(resp. SV-equivalent), if there exists a local homeo-
morphism o : (R",0) — (R",0) such that f=goo
(resp. o(f71(0)) = g7(0)). In addition, we say that
f,9 € Eg(n,p) are V-equivalent, if f£7%(0) is homeo-
morphic to g71(0) as germs at 0 € R™.

Let w € J"(n,p). We call the r-jet w C°-suffi-
cient, SV-sufficient and V-sufficient in C® map-
pings, s > r, if any two realisations f, g € £y(n,p)
of w, namely j"f(0) = j"g(0) = w, are C’-equiva-
lent, SV-equivalent and V-equivalent, respectively.

Let us recall the Thom type inequality for
f € g[ﬁ](”ap)» n > p:

There are positive numbers K,«a,3 > 0 such

that Ty(f,z) > K||z||” for ||z| < 8.
As mentioned in the Introduction, R. Thom con-
sidered this condition with @ = 2r in the function
case as a sufficient condition for z = j"f(0) to be
C%-sufficient in C” functions. On the other hand, he
considered this condition in the mapping case as a
sufficient condition for SV-sufficiency of jet.

On the other hand, the Kuo condition is a
criterion for V-sufficiency of z=j"f(0) in C"
functions. This condition is generalised to the
mapping case, as a criterion for V-sufficiency of z =
4" f(0) in C" mappings: (R",0) — (R?,0), n > p. For
the details, see T. C. Kuo [9].

2.2. Relative jet to a given closed set.
Throughout this paper, let ¥ be a germ of a given
closed subset of R" at 0 € R" such that 0 € . Then
we denote by d(x, ) the distance from a point = €
R" to the subset X.

We consider on E(n,p) the following equiv-
alence relation:

Two map-germs f,g € E(n,p) are r-E-equiv-
alent, denoted by f ~ g, if there exists a neighbour-
hood U of 0 in R" such that the r-jet extensions of f
and g satisfy 77 f(XNU) = j7g(XNU).

We denote by j"f(3;0) the equivalence class of f,
and by J§(n,p) the quotient set £ (n, p)/~.

We can define the notions of CY-sufficiency,
SV-sufficiency and V-sufficiency of relative jets to
Y, similarly to in the non-relative case. In [2] we
gave criteria for the relative r-jet to be C’-sufficient
and V-sufficient in Eyj(n, p) or £y11)(n,p), using the
relative Kuiper-Kuo condition and relative Kuo
condition (or condition (Ks)), respectively.

3. Proof of Main Theorem. In this section
we show the equivalence between the Kuo quantity
K,, and the Thom quantity 7,,, namely Theo-
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rem 1.3. Before we give the proof, let us examine an
example.

Example 3.1. Let f=(f,f): (R?0)—
(R%,0) be a polynomial mapping defined by
filz,y) =2 — 1% fo(r,y) =2>. Then we have
fl(x’y)Z + f2($,y)2 = (.’13 - y2)2 + $47

D(flva) — 4y
det(m((%?ﬂ)) = dzy.

Therefore we have

To(f, (2,9)) = (x — v*)* + 2,

Ka(f, (2,y)) = 16(2* + )2’y + (z — ") + 2.
To show that Ty(f, (x,y)) = Ka(f, (x,y)), we con-
sider two cases.

In the case where |z — 3| < 14? we have z > 142
Therefore 64x* > 16x%y* and since for any constant
C > 65, 162*y?> = o((C — 65)z*) we get

CTQ(fa (LE,y)) > KQ(fv (xay)) > TZ(fa ($7y))

in a small neighbourhood of (0,0) € R?.

In the case where |z — ?| > §4* we can see that

1 ,
(x—y") +a' > 194 +
> 162y + 162'y* = 16(2® + y*) 2

in a small neighbourhood of (0,0) € R?. Thus, for
any constant C' > 65, we have

TZ(f, (xay)) < KZ(fv (’l,’,y)) < CTZ(f; (xay))

in a small neighbourhood of (0,0) € R?, it follows

that TZ(f, (xay)) ~ KQ(fv (xvy))
Let ord(y(t)) denote the order of v in t for a C*

function v : [0,8) — R.

Proof of Theorem 1.3. It is obvious that
K. (f,.) = T(f,.). Therefore we have to show the
converse.

We first remark that if x and y are bigger than
or equal to 0, we have

+ m
@) 2oy > IO
It follows that

Ky(f,z) =v"(z) +u
Tn(f,2) = w™(2) +u"(z) = (9())",

where u(z) = || f(x)],

ofz) =] Y

1< <..<ip<n

)

D(flv"'afp)
det (D(QEZ-17 N (x))
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w(z) = Z

1<y <<..<ip+1 <n

)

det(D(fh”"fp’p) (IE))

D(.’Eil, e ’xi11+1

(where p(z) = |l2]1%),

h(z) = v(z) + u(z) and g(x) = w(z) + u(x).
Suppose now that K,,(f,.) 3 Tm(f,.) does not

hold. Then by the curve selection lemma, there is a

C¥ curve A= (\,C):[0,6) = R" x R with \(0) =

(0,0) and A(t) € (R™\ {0}) x R*, for t# 0, such

that

(3-1)  (CO)"Km(f, M) > Tn(f, A()).

We may write (3.1) as:
(32) (C()(ho M) > (go At)™.
Here we remark that the functions go A, ho A\, uo A,

voX and wo X are real analytic on [0,6) and
satisfying the conditions

goA0) =hoA(0) =uoA(0) =voA0)
=woA0)=0
and
At) #£0, C) >0, hoA(t) >0, goA(t) >0
for 0 <t <.

By (3.2), C(t)(ho A(t)) > uo A(t),
C(t)(hoA(t)) > wo A(t) and

voA(t) =hoA(t) —uoA(t) > hoA(t)(1—C(t)).
Then we have
ord(C) + ord(h o A) < ord(uo A),
ord(C) + ord(h o A) < ord(wo A),
ord(vo A) <ord(ho \).

(3.3)

Note that we are not considering the second
inequality in the case where n = p.
Let A be written as follows:

A(t) = a0 gl 4

where 1 < ¢e1(4) < e2(d) < ... and
al)V £0 if A() £0 (1<i<n)
a(i)=oc0 if NH=0 — ~ 7

C(t) :Ultbl —|—u2tb2 + ... where 1<b <by<...
and u; # 0. Since condition (3.1) is invariant under
rotation, we can assume that €;(1) < &1(¢) for ¢ # 1.
Let  f;(A(t)) = dY)th) + déj)tqgj) +..., where 1<
¢ < ¢ < ... (1<j<p). Then
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df:jo)\

a D= g P 1 4 g

< p). It follows from (3.3) that
(34) § D> or rd(C) +ord(h o A) for all j € {1,...,p}.
y (3.3) again, we have

(3.5) 61(1)+ord< > det(M(A(t))))

1<i <o <ip<n
<ord(ho ).

Therefore there is a p-tuple of integers

(ki,.. . ky) with 1 <k < < ky, < n such that
D(fla"'7fp)

< ord<

for any (iy,...

D(fi,..., fp)
ord( det <—D(%’ — 7%) (/\(t))> D
<ord(hoX) —ei(1).

We continue the proof of the converse, dividing
it into two cases. We first consider the case where
n > p. Then we have the following

D(fi,..., fp)
det (D(ZEZ'I,. .. ,IZZZ‘p) (/\(t))> ’)

,ip), and

Claim. ky > 1.
Proof. Since
dfj0>\ & 8fj d)\l i
t) = At 1<9<
=3 SO0 GO, 1 <<,
we have
dfio A
el Q)
(3.7) :
df, o\
dt ®)
Ofl df]
n o At) N or, A1)
1 n
=L ) : e () ) :
P P
D1 At)) or, (A®)

Here we remark that, by (3.4)

8 o 2N 0) = - a)
> ord(C) + ord(h o \) — e1(1),

(1<j<p),and
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i <n).

Ai(t)
(3.9) Ord()\’l(t)> >1 (2<

Assume, by contradiction, that k; =1 in (3.6). For
simplicity, set

6f1 afl afl
gr OO ZLO®) - S O0)
At) = : : :
8f,, ofy ofy
GO0 ZEOW) - G O0)

Then the determinant of the matrix A(t) is the
summation of determinants of the following ma-
trices:

0
U0 o) e B
(3.10) | vm : : : ;
L) ) 2 w)
OO 2-00) - 00)
(311) | -3@| : :
OO M) o 2

oxy,

fori e {2,...,n}.

y (3.8) the order of the determinant of the
matrix (3.10) is bigger than or equal to ord(C) +
ord(hoX) —e1(1), and by (3.5) the order of the
determinant of the matrix (3.11) is bigger than the
order of the determinant of the matrix (3.10).
Therefore we have

ord(|det A(t)]) > ord(C) 4+ ord(h o A) — e1(1)
> ord(ho ) —e1(1)
which contradicts (3.6). This completes the proof of
the claim. g
It follows from the Claim that there is a p-tuple
(ki,....ky) with 1<k <---<k,<n such that
condition (3.6) holds. Then

D(f17~-~7fp’p)
ord( det (D($1717k1, o) (A(t))) D

D(fla" ',fp)
<ord(\) + 0rd< det <M (A(t))) ‘)

<e(1)+ord(hoX) —e(1) =ord(ho ).
This contradicts (3.3),
Kn(f,) S Tn(f;)-

and it follows that
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We next consider the case where n = p. Using a
similar argument to the proof of the above Claim,
we get the same contradiction for

N N of

FEOM) SO e FEAW)
At) = : : :

Ofn Ofn Ofn

TR FEOW) e )
Therefore it follows that K, (f,.) 3 Tw(f,.), and
this completes the proof. O

Remark 3.2. The proof of Theorem 1.3 uses

essentially the curve selection lemma. Hence it is
not difficult to see that the results are valid if we
suppose only that f is an arc-analytic and differ-
entiable subanalytic map-germ; see [10], [5] and [3]
for the notions and properties of subanalytic and
arc-analytic functions.

4. Applications of our main result to the
relative case.

4.1. X¥-r-compatibility. We now introduce
some notion for a C"™-map germ f : (R",0) — (R?,0)
in order to extend to the relative case the previous
equivalence defined in the non-relative case.

Let ¥ be a germ at 0 € R" of closed set such
that 0€ ¥. Given a map g¢€&p(n,p) with
§79(S:0) = 7 f(5:0), let f; : (R",0) — (R?,0) de-
note the C" mapping defined by

file) = f(z) + t(g(x) — f(x)) for ¢ € [0,1].

Definition 4.1. A condition (%) on a C" map
f is called X-r-compatible in the direction g, if f;
satisfies condition (*) for any ¢ € [0,1]. If condition
() is ¥-r-compatible in any direction g € £49(n,p)
with j7¢g(3;0) = " f(%;0), we simply say condition
(x) is X-r-compatible.

Let f:(R",0) — (R?,0) be a C' map-germ,
> CR" be a germ of closed set such that 0 € &
and r € N. For m € N, we introduce the following
conditions:

I (m) : 3¢,6 > 0 such that T,,(f,z) > c(d(z,X))™

for ||z|| < 6,

IrK(m) : 30,5 > 0 such that K (f, ) ( ({E E))rm

for ||z|| < é.
Remark 4.2. If f is C¥,
Theorem 1.3, for any m € N,

I"(m) holds if and only if I¥(m) holds.

we have from
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Proposition 4.3. The conditions I' (m) and
IX(m) are r-compatible.

Proof. Let f; = f+th with h=g¢g— f. Then

1Bl = o(d(., 2)"), [lf:ll = IfIl = [|2]| and the expan-
sion of the determinants give

Tn(fi, ) = Tu(f, @) + o(d(z, )™
and

Km(ftax) = 'm(f, ) ( (l’ E))rm.

Thus the r-compatibilities of I'(m) and IX(m)
follow. O

As a corollary of Theorem 1.3, we have the
following result.

Corollary 4.4. LetX be a germ at0 € R" of
closed set such that 0 € . Let r € N, and let f €
Ep(n,p), n>p. Suppose that j'f(X,0) has a C¥
realisation. Then for any m € N,

IT(m) holds if and only if I*(m) holds.

Proof. Let g: (R",0) — (R”,0) be a C* real-
isation of j"f(3,0). From Theorem 1.3, conditions
I'(m) and IX(m) are equivalent for g. Now, by
Proposition 4.3, the result follows. ([l

Remark 4.5. As pointed out in [2], any
r-jet, r € N, has a unique polynomial realisation
of degree not exceeding r in the non-relative case,
but some 7-jets do not have even a C* realisation in
the general relative case. Therefore, in the above
theorem, the assumption that j"f(X,0) has a C¥
realisation makes sense.

Lemma 4.6. For Xq,...,
tive integer m € N, we have

(Xi4+...+X)" =X +... + X

X; >0 and a posi-

Therefore we see that K1 = Ty if and only if for any
meN, K,, = T,,.

As a corollary of Lemma 4.6 and Corollary 4.4,
we have the following result.

Corollary 4.7. Let ¥ be a germ at 0 of
closed set. Let v € N, and let f € &Ey(n,p), n>p.
Suppose that j"f(%5,0) has a C¥ realisation. Then
the following conditions are equivalent:

(1) There exists m € N such that I' (m) holds,
(2) For allm € N, IT(m) holds,
(3) There exists m € N such that I (m) holds,
(4) For allm € N, IX(m) holds.

Remark 4.8. It follows from the proof of
Theorem 1.3 that the equivalence between condi-
tions 7T, and K,, holds for any C' map f in a
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category where the analytic curve selection lemma
is valid.

4.2. Characterisations of finite X-SV-
determinacy. Let &(n)”, n > p, be the set of C*®
map-germs: R" — R? at 0 € R", and let ¥ be a
germ of closed subset of R" such that 0 € . We say
that f,g € £(n,p) are £-SV-equivalent if there is a
local homeomorphism ¢ : (R",0) — (R",0) fixing ¥
such that o(f7'(0)) =g¢7'(0), and f,g € Ey(n,p)
are X-V-equivalent if f~1(0) is homeomorphic to
g 1(0) as germs at 0 € R" by a homeomorphism
which fixes f1(0)NX. Then fe€ &(n)’ is called
finitely 3-SV-determined (resp. finitely %-V-
determined) if there is a positive integer k such
that for any g € £(n)? with j%g(X;0) = j*£(%;0), g is
Y-SV-equivalent (resp. X-V-equivalent) to f.

Let ¢ = (¢1,...,9p) : R" = R, n > p, be a C*®
map-germ at 0 € R". We denote by Ik (p) the ideal
of £(n) generated by ¢i1,..., ¢, and the Jacobian

determinants
D((plw'wwp)
—_— (), (1§i1<...<ir §n)
D(I‘i“...,xip)( ) P

We define also the ideal of £(n), denoted by Ir(y),
generated by ¢1,...,¢, and the Jacobian determi-

nants
D(Qolv"'vsopvp) . .
- , (1L <. < <
D(xh, ceey xip+1) (x) ( =" Zerl o n)
where p(z) = ||z||.

Let m$¥ be the ideal of £(n) consisting of germs
f such that j° f(z) = 0 for all x € ¥, namely m¥ =
{fe&n): j=f(%;0) =0}

Definition 4.9. Let I be an ideal of &(n).
We say that I is X-elliptic if there is f € I such that
|f(x)| > Cd(x, )" in a neighbourhood of 0, where C
and « are positive constants.

A germ of closed subset ¥ of R" is called
coherent if my is a finitely generated ideal of £(n).
Then we have the following characterisations of
finite X-SV-determinacy.

Theorem 4.10. ([2], Theorem 5.7). Let X be
a coherent germ of closed subset of R" such that
0 € X. Then the following conditions are equivalent
for o € E(n)! where n > p:
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(1) @ is finitely X-SV-determined.
(2) ¢ is finitely 3-V-determined.
(3) Ik(p) is L-elliptic.
(4) mg C Ix(e).
If moreover ¢ is analytic,
equivalent to:

(5) m C Ir(p).

Theorem 1.3 takes an important role in the
proof of the above theorem. For the detailed
proof and more characterisations of finite %-SV-
determinacy, see §5 in [2].
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