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Limiting cases of Sobolev inequalities on stratified groups
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Abstract:

In this paper we present critical Gagliardo-Nirenberg, Trudinger-type and

Brezis-Gallouet-Wainger inequalities concerning the limiting cases of the embedding theorems
for Sobolev spaces on stratified groups. Moreover, using the critical Gagliardo-Nirenberg
inequality the existence of least energy solutions of the nonlinear Schrédinger type equations can
be obtained. We also express the best constant in the critical Gagliardo-Nirenberg inequality in
the variational form as well as in terms of the ground state solutions of the corresponding

nonlinear subelliptic equations.
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1. Introduction. The theory of Sobolev
spaces associated to the sub-Laplacians on the
stratified groups and their embedding theorems
go back to Folland [Fol75]. In this paper we discuss
critical case of such embedding theorems. In
particular, we present three cases of such critical
inequalities: Moser-Trudinger type inequality,
Gagliardo-Nirenberg inequality, and Brezis-
Gallouet-Wainger inequality. We are also interest-
ed in expressions for best constants in such inequal-
ities, their equivalence, and applications to the
solvability of nonlinear partial differential equa-
tions associated to the sub-Laplacian.

To start with, consider the following Moser-
Trudinger inequality
W) [ (explalf@)iT) - Dir <0, 1<p<oc,
for  fell (R")=(1—A)""L/(R")  with
Il <1 and for some positive constants C and
a, where Lf;/p(R”) is the Sobolev space of order n/p
over LP. This inequality has been generalised in

many directions. In bounded domains of R" with
p=mn>2, we can also refer to [Mos79], [Ada88],
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[CC86], [F1u92], [MP89], [Tru67] for finding the best
exponents in (1), and to [ASQ7] for the singular
version of this inequality. In unbounded domains,
we can refer to [Ada88], [AdaT75], [0091], [Oza95],
[Str72], [Oga90], [AT99], [0za97] for Sobolev spaces
of fractional order and of higher order. On the
Heisenberg group, we refer to [CLO1], [LLT12] for
an analogue of inequality (1) on domains of finite
measure, and to [LL12] and [LLT14] on the entire
Heisenberg group.

In this paper, we are interested in obtaining
this inequality on general stratified groups, or
rather its refinement, in the spirit of the Euclidean
estimate in [Oza95]. We are also interested in
critical Gagliardo-Nirenberg and Brezis-Gallouet-
Wainger inequalities. Consequently, we give appli-
cations of these inequalities to the nonlinear sub-
elliptic equations.

The paper is organised as follows: In Section 2
we briefly recall main concepts of stratified Lie
groups and fix the notation. The critical Gagliardo-
Nirenberg inequality and Trudinger-type inequality
(1) on stratified groups are presented in Section 3,
where the constant C'is also given more explicitly.
In Section 4, we present the Brezis-Gallouet-
Wainger inequalities on stratified groups. Finally,
applications are given to the nonlinear Schrodinger
type equations in Section 5, together with expres-
sions for a best constant.

2. Preliminaries. In this section let us very
briefly recall the necessary notation concerning the
setting of stratified groups.

We recall that G = (R", o) is a stratified group
(or a homogeneous Carnot group) if it satisfies
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the following conditions:

— For natural numbers Ny,..., N, with N = Ny,
the decomposition R"=RM x...x R™ is
valid, and for each positive A the dilation
6y : R" — R" given by

ox(x) = ox(a', 2P, ... M)
= (\7/, Nz )\Txm)
is an automorphism of the group G, where 2’ =
M e RY and 2™ e RM for k=2,..., 7.
— Let Xi,...,Xy be the left invariant vector

fields on G such that X;(0) = %b for k=
1,..., N, where N is as above. Then we have

rank(Lie{X1,..., Xn}) =n,

for each z € R", that is, the iterated commu-
tators of Xi,..., Xy span the Lie algebra of G.
The stratified groups have been thoroughly inves-
tigated by Folland [Fol75]. We also refer to [F'S82],
and to [FR16] for more detailed discussions from
the point of view of more general graded Lie groups.
We define the homogeneous dimension of G by

Q=> kN;, N =N.
k=1

We also recall that the standard Lebesgue measure
dxr on R" is the Haar measure for G (see, for
example [FR16, Proposition 1.6.6]). The (canoni-
cal) sub-Laplacian on the stratified group G is
defined by

N
(2) £=) X;.
k=1

3. Critical Gagliardo-Nirenberg and
Trudinger-type inequalities. In this section
we give the critical Gagliardo-Nirenberg and
Trudinger-type inequalities on stratified groups,
and then we note that these inequalities are actually
equivalent.

We refer to [Fol75, Section 4] for the definition
of the Sobolev spaces L?(G) on stratified groups for
a>0 and 1 < p < oo, which is equipped with the
norm

If ) T ||(—£)a/2f||m(c)~

Let us start with the critical version of the
Gagliardo-Nirenberg inequalities.

Theorem 3.1. Let G be a stratified group of
homogeneous dimension Q and let 1 < p < co. Then
we have

LX(G) — Il ]

[Vol. 95(A),

Q _
(3) fllzuc) < Cra"PII(=2)% FI £ )

for any q with p < g < oo and for any function f €
Lg/p(G), where the constant C; depends only on p
and Q.

We note that by [Fol75, Theorem 4.17], we
have the embedding L?(G)— LY(G) for 1/q=
1/p—a/Q and 0 < a< @Q/p with 1 <p < q< cc.
In the critical case o = @Q/p, the obtained inequality
(3) allows us to obtain the embedding Lg/p(G) —
LYG) for 1 < p < g < co. That is why we can call
this inequality the critical Gagliardo-Nirenberg
inequality.

In the Euclidean case G = (R",4) and £=A
being the Laplacian, the inequality (3) was obtained
in [0091] for p=2, in [KOS92] for p=mn, and
in [Oza95] for general p as in Theorem 3.1.

Now we state the Trudinger-type inequality
with the remainder estimate on stratified groups.

Theorem 3.2. Let G be a stratified group of
homogeneous dimension @ and let 1 < p < co. Then
there exist positive constants o and Cy such that the
inequality

@
v 1 /k
exp(alf(z)|”) — — (a|f(@)|")" | dx
/G< palfl) - 3 el >>

< CQ”JC”;ZZ'(G)

holds , for —any  function feLg/p(G)
|(=£)% fll i < L. where 1/p+1/p' = 1.

In the case G=(R",+) and £=2A, the
inequality (4) was obtained in [0za95]. In this
abelian case, we also refer to [0ga90] for p = 2,
[0091] for p =n =2, and to [AT99] for p =n > 2.

The following result shows that the presented
critical Gagliardo-Nirenberg and Trudinger-type
inequality are actually equivalent on general strati-
fied groups, the fact that is known in R", see
[0za97].

Theorem 3.3. The inequalities (3) and (4)
are equivalent. Furthermore, we have

1

) — = A =B,
ap'e

with

where

Q
with [|(=£)% fl| pyq) < 1}
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= inf{C; > 0;3r = r(Cy) with r > p: (3)
holds Vf € Lp (G),Vq with r < g < 0o},
11l o)
Q
L) f]
On stratified groups, we refer to [RY19] and
[RSY17] for the weighted versions of Trudinger-
Moser and Gagliardo-Nirenberg inequalities, and to
[RY17] and [RY18] for their hypoelliptic versions.
4. Brezis-Gallouet-Wainger inequalities.
In this section we present Brezis-Gallouet-Wainger
type inequalities, which concern the limiting case of
the Sobolev estimates from another point of view
(see [Bre82], [BG80] and [BWS80]).
Theorem 4.1. Let G be a stratified group of

homogeneous dimension @ and let a,p,q € R be
such that 1 < p,q < oo and m > Q/q. Then we have

(6) [/l (e < Cs(1 +log(1 + [|(—=£)"™" | e

for all  functions f € LQ/])(G) NLL(G)
||f||Lg/ <1, wherel/p+1/p =1.

In the case G=(R",+) and £=A, the
inequality (6) was obtained in [BW80] by using
the Fourier transform techniques, and in [Eng89]
for n/p,m € Z and in [Oza95] for general case
without using the Fourier transform.

We can also obtain the following estimate using
Theorem 3.1:

Theorem 4.2. Let G be a stratified group of
homogeneous dimension Q and let 1 < p < co. Then
we have

B = limsup

q—0o0

1 P/quHI?/fI

g 17II( (el

N

with

| @lds < Calfly, 19201 + 1og 217

for any function f € Lg/p(G) and for any Lebesque
measurable set Q with |Q)] < oo, where the constant
Cy depends only onp and Q, 1/p+1/p' =1, and |Q]
denotes the Lebesgue measure of €.

When G = (R",+) and £ = A, the inequality
(7) was obtained in [BWS80,Lemma 2] and in
[0za95, Theorem 3]. In [BW80], using this estimate
and Morrey’s technique the authors proved the
Brezis-Wainger inequality: for any function f €

L}, (R") and for each z,y € R", the following
inequality
F(z) - )| < )
o — 91+ 1ogl — )7,

1<p<oo,
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holds true, where the constant C5 depends only on n
and p.

5. Applications to nonlinear Schrédinger
type equations. In this section we discuss an
application of the critical case of the Gagliardo-
Nirenberg inequality (3) to the existence of least
energy solutions of nonlinear Schrédinger type
equations, and a sharp expression for the smallest
positive constant C in (3). For non-critical case on
nilpotent Lie groups, similar results were obtained
in [CR13] on Heisenberg group, and in [RTY17] on
general graded groups.

More precisely, the critical Gagliardo-
Nirenberg inequality (3) is related to the following
Schrodinger equation with the power nonlinearities:

Q Q L
(8) (=) (J(=£)7ul" (=) u) + |ul"*u = |u|" "y,
u€ Ly, (G).
this inequality is related to the

variational problem

(9) d= inf
neL’ (G)\{O}
3( )=0

Moreover,
£(u),

for functionals

(10) £(u)

/ -

2Pu VPdx + - /|u )Pdx
1
- / u(a)| da
q
G
and

(11) I(u) := /(l(—ﬂ)%U(x)l'”r u(@)]” = u(z)|")dz.
G
Let us denote p* = (5—? Then we have:

Theorem 5.1. Let G be a stratified group of
homogeneous dimension Q, let 1<p<@Q and
p < q < p*. Then the Schridinger type equation (8)
has a least energy solution ¢ € LQ/ (G). Further-
more, we have d = £(¢).

Now let us give a sharp expression for the
smallest positive constant Cj in (3).

Theorem 5.2. Let G be a stratified group of
homogeneous dimension Q. Let 1 < p < @ and p <
q < p*. Let ¢ be a least energy solution of (8) and let
Cen be the smallest positive constant Cy in (3).

Then we have

P—q
_ q(q—p\? —
(12 Cav =L (1) 7 ol
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—q P=q

—oN\T 2 -
= q*q+q/p 4 <u) ( p d) ,
p p q—p
where d is defined in (9).
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