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Abstract: We correct and change Proposition 1 and the proof of Proposition 2 of the

previous paper [7].

Key words: Hilbert-Speiser number fields; real abelian fields.

We use the same notation as in the paper [7].

In particular, for a prime number p, a number field

F satisfies the Hilbert-Speiser condition ðHpÞ when

every tame cyclic extension K=F of degree p has

a normal integral basis. In [7], we claimed the

following two results.

Proposition 1. Let p � 7 be a prime number

with p � 3 mod 4. Let F be a number field unrami-

fied at p, and let N ¼ F ð ffiffiffiffiffiffiffi�pp Þ. If F satisfies the

Hilbert-Speiser condition ðHpÞ, then the exponent of

the class group ClN of N divides hðQð ffiffiffiffiffiffiffi�pp ÞÞ.
Proposition 2. Let p � 7 be a prime number

with hðQð ffiffiffiffiffiffiffi�pp ÞÞ ¼ 1. When p ¼ 7 (resp. 11), a real

abelian field F satisfies ðHpÞ if and only if F ¼
Qð

ffiffiffi
5
p
Þ or Qð

ffiffiffiffiffi
13
p
Þ (resp. F ¼ Qðcos 2�=7Þ). When

p ¼ 19, 43, 67 or 163, there is no real abelian field

satisfying ðHpÞ.
In Proposition 2, we are excluding the case F ¼

Q because the rationals Q satisfies ðHpÞ for all p.

In his email of 30th May 2018, Fabio Ferri

kindly informed us that the formula ½A� : S�� ¼ h�k
in [7, eq (2)] is incorrect and provided a counter-

example. As he pointed out, the mistake was

caused by our confusion of the ideal S� with the

Stickelberger ideal associated to Qð ffiffiffiffiffiffiffi�pp Þ by

Sinnott [12]. In [7], we proved Proposition 1 using

the incorrect formula, and proved Proposition 2

using Proposition 1. We could not confirm whether

or not the assertions of Proposition 1 and its

corollary ([7, Corollary]) are true. However, we

can save the situation by replacing Proposition 1

with the following weaker assertion on the minus

class group Cl�N of N ¼ F ð ffiffiffiffiffiffiffi�pp Þ. Here, Cl�N is

defined to be the kernel of the norm map

ClN ! ClF .

Proposition 3. Let p � 7 be a prime number

with p � 3 mod 4, and let F be a totally real number

field satisfying the Hilbert-Speiser condition ðHpÞ.
Then the exponent of the minus class group Cl�N of

the CM-field N ¼ F ð ffiffiffiffiffiffiffi�pp Þ divides hðQð ffiffiffiffiffiffiffi�pp ÞÞ, and

the exponent of ClF divides ðp� 1Þ=2.

Proposition 2 is correct. In the following, we

show Proposition 3, and change and correct the

proof of Proposition 2 in [7] using Proposition 3. In

the proof of Proposition 3, we partially repeat some

of the arguments in [7] for the convenience of the

reader.

Proof of Proposition 3. Let G ¼ ðZ=pZÞ� be

the multiplicative group, which we naturally iden-

tify with the Galois group GalðQð�pÞ=QÞ. We define

elements �G and �2 of Q½G� by

�G ¼
1

p

Xp�1

a¼1

a��1
a and �2 ¼ ð2� �2Þ�G

where �a ¼ a mod p is the automorphism of Qð�pÞ
sending �p to �ap . The Stickelberger ideal SG of the

group ring Z½G� is defined by

SG ¼ Z½G� \ �GZ½G�:

We have p�G 2 SG by the definition of SG, and �2 2
SG by [13, Lemma 6.9].

In this paragraph, let F denote an arbitrary

number field. Let � ¼ Z=pZ be the additive group.

Denote by ClðOF ½��Þ the locally free class group

associated to the group ring OF ½��, and by

Cl0ðOF ½��Þ the kernel of the map ClðOF ½��Þ ! ClF
induced by the augmentation OF ½�� ! OF .
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Through the natural action of G ¼ ðZ=pZÞ� on �,

the groups ClðOF ½��Þ and Cl0ðOF ½��Þ are regarded

as modules over the group ring Z½G�. By the main

theorem of McCulloh [9], F satisfies ðHpÞ if and only

if the condition

Cl0ðOF ½��ÞSG ¼ f0gð1Þ

is satisfied.

Now, let p and F be as in Proposition 3. Let

N ¼ F ð ffiffiffiffiffiffiffi�pp Þ and let K ¼ F ð�pÞ. Note that N is

contained in K since p � 3 mod 4. As F satisfies

ðHpÞ and p � 7, the extension F=Q is unramified at

p by Greither and Johnston [4, Theorem 1.1].

Hence, the Galois group GalðK=F Þ naturally iden-

tifies with G ¼ GalðQð�pÞ=QÞ via restriction. Let

ClK;$p
be the ray class group of K defined modulo

the ideal $pOK with $p ¼ �p � 1. The class groups

ClK;$p
and ClK are regarded as modules over Z½G�

by the above identification. As F=Q is unramified

at p, it follows that Cl0ðOF ½��Þ ¼� ClK;$p
as

Z½G�-modules by Brinkhuis [1, Proposition 2.1].

Therefore, we see from (1) that the Stickelberger

ideal SG annihilates ClK;$p
and ClK . It follows that

SG annihilates ClN (resp. ClF ) since the norm map

from ClK to ClN (resp. ClF ) is surjective by

[13, Theorem 10.1].

We denote by � the quadratic character of

G ¼ ðZ=pZÞ�, and we extend it to a ring homo-

morphism Z½G� ! Z by linearlity. The restriction of

the automorphism �a 2 G to Qð ffiffiffiffiffiffiffi�pp Þ and N ¼
F ð ffiffiffiffiffiffiffi�pp Þ is the trivial map or the complex conjuga-

tion depending on whether �ðaÞ ¼ 1 or �1, respec-

tively. Accordingly, �a acts on the minus class

group Cl�N trivially or via ð�1Þ-multiplication.

This implies that � 2 Z½G� acts on Cl�N via

�ð�Þ-multiplication. Here recall the following class

number formula (see (6.2) of Fröhlich and Taylor

[6, Chapter VIII]):

hðQð ffiffiffiffiffiffiffi�pp ÞÞ ¼ � 1

p

Xp�1

a¼1

a�ðaÞ:ð2Þ

We already know that the elements �p�G and ��2

belong to SG and hence they annihilate Cl�N . By (2),

we observe that �ð�p�GÞ ¼ phðQð
ffiffiffiffiffiffiffi�pp ÞÞ and that

�ð��2Þ ¼ ð2� �ð2ÞÞ�ð��GÞ

equals hðQð ffiffiffiffiffiffiffi�pp ÞÞ or 3hðQð ffiffiffiffiffiffiffi�pp ÞÞ depending on

whether �ð2Þ ¼ 1 or �1, respectively. Now we see

that hðQð ffiffiffiffiffiffiffi�pp ÞÞ-multiplication annihilates Cl�N as

p � 7.

Let �0 be the trivial character of G ¼ ðZ=pZÞ�,

which extends to a ring homomorphism Z½G� ! Z

by linearlity. As �a 2 G acts on ClF trivially, the

element �2 2 SG acts on ClF via multiplication by

�0ð�2Þ ¼ ðp� 1Þ=2. We obtain the assertion for ClF
because SG annihilates ClF . �

Corrected proof of Proposition 2. Let p � 7 be

an odd prime number with hðQð ffiffiffiffiffiffiffi�pp ÞÞ ¼ 1. Let

F 6¼ Q be a real abelian field satisfying ðHpÞ, and let

d ¼ ½F : Q� and N ¼ F ð ffiffiffiffiffiffiffi�pp Þ. Then F=Q is unra-

mified at p by [4, Theorem 1.1], and h�N ¼ 1 by

Proposition 3. Imaginary abelian fields K with

h�K ¼ 1 are determined by Louboutin [8], Park and

Kwon [10,11] and Chang and Kwon [2,3]. In our

setting where K ¼ N ¼ F ð ffiffiffiffiffiffiffi�pp Þ, we have the

following three cases:

(I) d ¼ 3,

(II) d � 5 and N=Q is a cyclic extension,

(III) N=Q is non-cyclic.

The fields F and Qð ffiffiffiffiffiffiffi�pp Þ are linearly disjoint over

Q as F=Q is unramified at p. Therefore, d is odd for

case (II), and conversely, the case where d is even is

contained in (III). Case (I) is dealt with in [10], case

(II) in [2], and case (III) in [3].

First, let us deal with case (I) under the

notation in [10]. All imaginary sectic fields K with

relative class number 1 are listed in [10, Table 3].

The fields K are parametrized with the conductors

f of K, fþ of Kþ and m of the imaginary quadratic

subfield of K. In our case K ¼ N ¼ F ð ffiffiffiffiffiffiffi�pp Þ, we

have m ¼ p and p - fþ as F=Q is unramified at p.

From the table, we find that F=Q is unramified at

p and h�N ¼ 1 when and only when (i) p ¼ 7 and F is

the cyclic cubic field of conductor 9 or 13 or (ii)

p ¼ 11 and F is the cyclic cubic field of conductor 7.

Next, let us deal with case (II) under the

notation in [2]. All imaginary cyclic fields K such

that ½K : Q� � 10, ½K : Q� is not a 2-power and h�K ¼
1 are listed in [2, Table I]. Among them we need

those ones with ½K : Q�=2 is odd, namely those ones

in the upper half of the table. This is because d is

odd for case (II). Such fields K are parametrized

with the conductors fK of K, fKþ of Kþ and f2 of

the imaginary quadratic subfield of K. In our case

K ¼ F ð ffiffiffiffiffiffiffi�pp Þ, we have f2 ¼ p and p - fKþ . In the

table, we find no such fields.

Finally, let us deal with case (III) under the

notation in [3]. All imaginary non-cyclic fields K

with relative class number 1 are listed in [3, Table I].

The table is arranged according to the type of the
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Galois group G ¼ GalðK=QÞ. Let us look at those

ones with type G ¼ ð2�; 2�Þ. These are imaginary

ð2; 2Þ-extensions of Q. They are parametrized with

the conductors f1 ¼ fk1
and f2 ¼ fk2

of the imagi-

nary quadratic subfields k1 and k2 of K. Then, in our

case K ¼ N ¼ F ð ffiffiffiffiffiffiffi�pp Þ, we have f1 ¼ p, pjf2 and p -

f2=p (swapping f1 and f2 if necessary). From the

table, we find F=Q is unramified at p and h�N ¼ 1
when and only when (iii) p ¼ 7 and F ¼ Qð

ffiffiffi
5
p
Þ,

Qð
ffiffiffiffiffi
13
p
Þ or Qð

ffiffiffiffiffi
61
p
Þ or (iv) p ¼ 11 and F ¼ Qð

ffiffiffi
2
p
Þ or

Qð
ffiffiffiffiffi
17
p
Þ. Next let us look at those K with G ¼

ð2�; 2�; 2�Þ. These are imaginary ð2; 2; 2Þ-extension.

They are parametrized by conductors of three

imaginary quadratic subfields similary to the case

G ¼ ð2�; 2�Þ. From the table, we find no desired pair

ðp; F Þ. Now let us look at those K with G 6¼ ð2�; 2�Þ,
ð2�; 2�; 2�Þ. These K are parametrized with a set of

generators of the group XK of the associated

Dirichlet characters. In our case K ¼ F ð ffiffiffiffiffiffiffi�pp Þ, XK

contains �
ðp�1Þ=2
p where �p is a Dirichlet character of

conductor p and order p� 1. For eachK in the table,

we checked that p is ramified in Kþ from the data

on XK . Therefore, we obtain no desired pair ðp; F Þ
from those K.

Therefore, we obtain 8 pairs ðp; F Þ such that

F=Q is unramified at p and h�N ¼ 1, namely those

listed in (i)–(iv) above. Fortunately, these 8 pairs

coincide with the pairs which we dealt with in [7].

We have already shown in [7] that ðHpÞ is satisfied

when p ¼ 7 (resp. 11) and F ¼ Qð
ffiffiffi
5
p
Þ or Qð

ffiffiffiffiffi
13
p
Þ

(resp. Qðcos 2�=7Þ), and that ðHpÞ is not satisfied

for the other 5 pairs. Thus the proof of Proposi-

tion 2 is corrected. �

Remark 1. Let p be as in Proposition 2, and

let F be a real abelian field satisfying ðHpÞ. Then,

Proposition 1 asserts hN ¼ 1, while Proposition 3

asserts that h�N ¼ 1. So what we have actually

determined in [7] using Proposition 1 is all real

abelian fields F 6¼ Q satisfying ðHpÞ and hN ¼ 1.

Remark 2. A correct proof of Proposition 2

is also given in F. Ferri and C. Greither [5, §6]. It

is slightly different from ours. The subject of [5] is

a ‘‘Cp-Leopoldt field’’, a number field satisfying a

condition somewhat weaker than ðHpÞ. They ob-

tained several conditions for a field F to be

Cp-Leopoldt using the main theorem of [9]. One of

them asserts that if hðQð ffiffiffiffiffiffiffi�pp ÞÞ ¼ 1, then a real

abelian field F unramified at p is Cp-Leopoldt only

when h�N ¼ 1 with N ¼ F ð ffiffiffiffiffiffiffi�pp Þ. Again, they show

that h�N ¼ 1 is a necessary condition for ðHpÞ to

hold. Using the above cited papers on relative class

numbers, they observed that there is no F 6¼ Q

unramified at p such that h�N ¼ 1 but hþN > 1. This

gives an alternative proof of Proposition 2 (see

Remark 1).
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