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Abstract:

The paper concerns the weighted Bergman spaces of the complex unit ball with

exponential weights. We characterize the space with respect to Lipschitz type conditions using

norm equivalence lemma.
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1. Introduction. Let B, be the open unit
ball in the n-dimensional complex space C" and dV'
be the normalized Lebesgue volume measure on B,,.
Let H(B,) be the set of holomorphic functions on
B,. For o € Rand 3 > 0, the weight function w, s is
given by

w(2) = wa(2) = (1 - lz)“exp<1 :ﬂ|z|>

for z € B,,. The volume measure with the weight
Wa,3 is denoted by

dVa_ﬂ (Z) = waﬁ(z)dV(z) .

Let 0 <p<oco. The function space A7 ;(B,):=
H(B,) N L*(B,,dV,s) is the space of holomorphic
functions whose LP-norm with the measure dV g is
bounded, namely,

T { / |f(2)pdVa,g(z)r < oo

We present characterizations of the space A” ,(B,,)

by means of Lipschitz type conditions; 7‘
Main Theorem. Let0<p<oo, a € R and

B> 0. Suppose f is holomorphic in B, then the

following statements are equivalent:

(a) VS Aiﬁg<Bn)§

(b) There exists a continuous function g belonging
to L?(B,,,dV, 3) such that

(2) = f(w)| < dy(z,0)(9(2) + g(w));

(¢c) There exists a continuous function g belonging
to LP?(By,, dVaqap,8) such that
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1f(2) = f(w)] < [z = wl(g(2) + g(w)).
Here, dy denotes the distance induced by the metric

P(2) Y dzy @ dag:
b ()]

oz w) = “%f/o P60)

where h(z) = (1 — |2|)* and ~ : [0,1] — B, is a para-
metrization of a piecewise C' curve with v(0) = z
and (1) = w.

Let D be the open unit disk in the complex
plane C. For the standard (weighted) Bergman
spaces (in both case of D and B,), Wulan and
Zhu [8] have characterized the spaces with Lipschitz
type conditions. For the exponentially weighted
Bergman spaces, we [4] have shown similar charac-
terizations in D. In this paper, we extend the result
to B,,.

The weighted Bergman spaces with exponen-
tial type weights have been studied in many papers
(111, 121, [6], [7]). The weight w3 is an example of
exponential type weight, precisely, wqg(z) = e ¢

where ¢(z) = alog (l%lz‘) + %M In addition, the

function (r) = (1 —r)* comes from the distortion
function which is originally defined by
1 1
Y(r) = —/ w(z)dx
w(r) Jr
due to Siskakis in [7].
Let f be a holomorphic function. The radial

derivative R f denotes

flz+1t2) - f(2)
mis e S\

‘ 8Zj t—0 t
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where ¢ is real parameter. The (complex) gradient
of fat zis

Vi = (5 O gt ()

).
021 "0z,

Theorem 2.2 in [3] gives that for an holomorphic
function f,

f € AZ,B(BR) it (1 - |Z|)2Rf € Lp(Bﬂmd‘/;lﬂ)'

It has been proved in the case of p = 2 in original,
but the result can be extended to the case of
0 < p < oo. In addition, we show that f € A (B,)
is equivalent to the assertion )

(1 - |Z|)2|Vf| € Lp(BnadVa,ﬂ);

see Lemma 2.5. It makes the proof of the main
theorem accessible.

Throughout this paper, C' will be a symbol of
a positive constant. The value of the constant can
be changed often. The expression A < B indicates
A <CB, and A < B means that A < Band B < A.

2. Preliminaries. Let 1(z) = (1 —|z|)*. For
z € B, and r > 0, we put

By(z,r) :={C € By, : dy(z,¢) <r}.
We also define another ball denoted by
E.(2) := {g €B,: LC'? < r}.
(1= J4))

Lemma 2.1. Let r >0 be a small number,
then there exists a positive constant C (it depends on
r) such that

1—
ZlSC’
= [w]

cl<

—_

for all z and w with w € E,(z).

There is a relation between two types of balls
following Proposition 5 in [5];

Lemma 2.2. Forasmallr > 0, there are two
positive numbers Ry and Ry such that

Epg, (2) € By(z,r) C Eg,(2)

for z € B,.

Moreover, dy(z,w) =< % when two points z
and w are close sufficiently.

Note that Lemma 2.1 gives that

1—17 =<1—|w)

when dy(z,w) < r with aid of Lemma 2.2. It also
gives that
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Lemma 2.3. For € R and a small r >0
there exists a positive constant C' such that

071 - exp(— l,ﬂm) <C

= —ﬂ =
()

for all z and w with dy(z,w) < 7.
Proof. Suppose dy(z,w) < r, then there is a
positive number 7’ satisfying

vol(By(z,7)) < r*(1 —

pmul
(1 =121 = |w])
by Lemma 2.1 and Lemma 2.2. We have
(21) (1= fwl) - (1= |2])]
< lz—w] <r'(1 = J2)(1 = Jw)).

Dividing both sides of (2.1) by (1 —|z|)(1 — |w|)
yields that

1 1
L=z 1wl

which implies the result. (I
Sub-mean-value inequalities using By(z,r) are
given;
Lemma 2.4. Let0<p<ooand f € HB,).
Then for a small r > 0, there are constants C; > 0
and Cy > 0 such that

P 1 p
@ < O / L orave)
and
()P 5(w)
<o / FOPwas(QdV Q).
2 (1 — |Jw)™ JBywr) ”

Especially, if u € By(z,r), then there is positive
number C3 > 0 such that

(2:2) [f(w)I" < Cs [F(QI"dV(C).

.
r20(1 — |2))*" JBy(a2n)
Note that the right hand side of the inequality (2.2) is
independent of u.

Proof. The proof is similar to Lemma 2.4
in [4]. The difference is the exponent of the volume
of the ball. O

Lemma 2.5. Let 0<p<oo, a€R and
8> 0. Suppose f is holomorphic in B, then the
following statements are equivalent:
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(a) fe Ay g(Bn);
(b) (11— |Z|) IVf] € LP(By, dVas);
(¢) (1= [2))*Rf € L(B,, dVi,p).
Proof. (a) = (b). Let r > 0 be a small number,
we choose a number 7 which satisfies 0 < v/ < r. By
Cauchy’s estimates for By(z,1'),

of |
6—%(2)

1
< ———su PolC =2 =7 (1—|2])%).
SA PUAOP ¢ =2l =" (1 = [2)}

The subharmonic inequality (2.2) yields

of 1
—_— _— w)|PdV (u).
@) < TR /  rave)

0z;
For each j=1,...,n, the right hand side of the
inequality (2.3) is independent of j. It gives

P 1 P
VIS [ wrave)

An upper bound of ||(1— \z|)2|Vf|||§3 is obtained
from the inequality (2.4);

/B VAP — [2)Pwns(2)dV(2)

(2.3)

(2.4)

1 P
< /B o /B P aVeas()av ).

Let x(., denote the characteristic function of the
set By(z,r). One can see that for any points z, u €
B, X(:r)(4) = X(ur)(2). Then we have

25 [ V(1= s V()
< / (1-
Lo ,

= w)|? — |z 047471617—
_ /B 15 /BM,,,,T)“ e Y (v )

< / @ (L ul)o~ e / )
<1712,

by Fubini’s theorem, Lemma 2.1 and Lemma 2.3.
Hence f belongs to A 4(B,) implies that (1—
)29 7] belongs to L¥(By., dVi).

(b) = (c). It is well-known fact that

RI(2)] < =V < V)

which gives the result.
(a) & (c). It is due to Cho and Park [3]. O

~|apiner / F@)P X (W) AV (w)dV (2)

)T £ () [P () (2) AV ()Y (2)

[Vol. 95(A),

3. Lipschitz Characterizations.

Theorem 3.1. Let 0<p<oo, a€R and
8> 0. Suppose f is holomorphic in B, then the
following statements are equivalent:

(a) f € Ap5(B);

(b) There emsts a continuous function g belonging
to LP ( ’md‘/;y.ﬁ) such that

(2) = f(w)| < dy(zw)(9(2) + g(w))-

Proof. (b) = (a). Let f be a holomorphic
function. Suppose that |f(2) = f(w)] <
dy(z,w)(g(z) + g(w)) for some positive function
g € LP(B,,dV,s). For any z€ B, let w=z+tz
where t is a scalar. It gives

_|f(z+1t2) —
Rf)] = lim

|21/ (2) = f(w)]
|2 = wl

< 1im 2 0y 4 g

w—z |z — w|
< 2g(z) 2
(1 —z])
with aid of Lemma 2.2. We have
IRF(2)I(1 - |2])* < 29(2)

which implies

[

< lim
w

/ RFI (L — |2) P 5(2)AV(2) < +o0.

Thus we can get f € A} ;(B,) by Lemma 2.5.

(a) = (b). Suppose that f belongs to A? ,(B,).
Let z,w € B,. For a fixed radius r > 0, we first
assume dy(z, w) < r. It is given that

1£(2) = F(w)] < |7 — v / IV F(t2 + (1 — £yt

by the fundamental theorem of calculus. Since the
line segment belongs to By(z,7), we have

1£) = f(w)] < |2 wlsup{IV ()] : u € By(e)}.
Lemma 2.1 yields

15) = f(w)

< ('Z : |; Csup{(1 - [V 1(w)] : u € By(z1)}.

By Lemma 2.2, it can be obtained that
1£(2) = f(w)] < dy (2, w)h(z)
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where

h(z) = Csup{(1 = [u)*|V f(u)| : u € By(z7)}.

We next assume dy(z, w) > r. The assumption
implies that

dy(z,w)
r

1f(z) = f(w)] < (IF G+ 1 (w)])

with aid of triangle inequality. It is obvious that the
function ‘f Al is in LP(B,,, dVa ).

We have the function g(z) = h(z) JrLf)‘ as a
desired function provided that h € L?(B,,,dV, ). It
is shown as follows. Since |V f|” is subharmonic, for
u € By(z,),

1
ViuwpP < ——— \Y PAv
VI S G /M)| FOPaV ()

P
by the inequality (2.2).
IV F@)P (L~ fu])®
< Loz / IV AOPaV(Q)
o By(z2r)

by Lemma 2.1. This means that

31 |hE)I s (1= ZI)Z”_4”’/JB( 2)IVJ“(C)I”dV(C)-

It is given that

Integrating both sides of (3.1) yields
1Bl 5

_ a+2p—4n % »
5/}3"(1 |2]) e /B‘/(Z‘m IV£(QO[PAV (Q)dV (2).

The same way as (2.5), using the characteristic
function and Fubini’s theorem, gives that

1A,
-8
< P _ a+2p—4n 7777
< /B IVFHQPQ - ) e /B ey WA
< (1= DAV AL,

Lemma 2.5 shows that the norm is dominated by

[ £II%, 5- Tt completes the proof. O
Theorem 3.2. Let 0 <p<oo, a€R and

B > 0. Suppose f is holomorphic in B,, then the

following statements are equivalent:

(a) f€ A ,(B,);

(b) There exists a continuous function g belonging
to LP?(By,, dVi49p.8) such that

1/ (2) = f(w)] < [z = wl(g(2) + g(w)).
Proof. (b) = (a). Let f be a holomorphic
function.  Suppose  that |f(2) — f(w)| < |z —
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w|(g(z) + g(w)) for some positive function g€
LP(By,dVaiops). For any z€ B, let w=z+tz
where t is a scalar, then we have

|Rf(2)| < lim 211 (2) = f(w)]

< 2¢(2).
woz |z — w|

It implies (1 — |z|)27?,f € AZ,S(BH
f € A 4(By) by Lemma 2.5.

(a) = (b). We consider any two points z, w in
the unit ball. For a fixed radius r > 0, we first
assume that z € E,(w) or w € E,(z). By Lemma 2.2,
there is 7' > 0 such that dy(z, w) < r’. We have

|f(2) = f(w)] < |2 = w|Csup{|V f(u)| : u € By(z,1")}
and the function
h(z) = Csup{|Vf(u)| : u € By(z,7)}

is in LP(B,,,dVy42, ) following the proof of Theo-
rem 3.1.
Next we assume that z ¢ E,.(w) and w ¢ E,.(2),

then we have
PN f(w)
7) - f(w)] < |<T(1_|Z|)2 r(1_|w|>2>

with triangle inequality. The function g(z) = h(z) +

(‘lf \)I‘)Z is a desired function in L?(B,,, dVi19,5). O
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