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Abstract: It is known that the multiple sine function for a ‘‘rational’’ period satisfies an

algebraic differential equation. However, for a non-‘‘rational’’ period, the differential algebraicity

of the multiple sine function is obscure. In this paper, we prove that, if there exists a non-real

element in the set f!j=!ij1 � i < j � rg, the multiple sine function Sinrðx; ð!1; � � � ; !rÞÞ does not

satisfy any algebraic differential equation.
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Let !1; � � � ; !r 2 C all lie on the same side of

some straight line through the origin. We put

! :¼ ð!1; � � � ; !rÞ. We define the multiple Hurwitz

zeta, gamma and sine functions by

�rðs; x;!Þ ¼
X1

n1;...;n2¼0

ðxþ n1!1 þ � � � þ nr!rÞ�s;

�rðx;!Þ ¼ exp
@

@s
�rðs; x;!Þ

���
s¼0

� �
;

Sinrðx;!Þ ¼ �rðx;!Þ�1�rð!1 þ � � � þ !r � x;!Þð�1Þr :

The multiple gamma and sine functions were

introduced by Barnes [2–4] and Kurokawa [9],

respectively. When r ¼ 1, the function Sin1 is the

usual sine function:

Sin1ðx; !Þ ¼ 2 sin
�x

!

� �
:

It is known that the multiple sine function has

interesting applications: the Kronecker limit for-

mula for real quadratic fields ([13]), expressions of

special values of the Riemann zeta and Dirichlet L-

functions ([9]), the calculation of the gamma factors

of Selberg zeta functions ([9]), expression of solu-

tions to the quantum Knizhnik-Zamolodchikov

equation ([7]) and so on. Concerning basic proper-

ties of the multiple sine functions, we refer to [9].

The multiple sine function has similar proper-

ties to the usual sine function. Kurokawa and

Wakayama [11] showed that, when the period ! is

‘‘rational’’, that is, there exists a positive number c

satisfying ! 2 c �Qr, Sinrðx;!Þ satisfies the alge-

braic differential equation

F ðx; y; y0; � � � ; yðnÞÞ ¼ 0

ðn 2 Z�0; F ðx; Y0; Y1; � � � ; YnÞ 2 CðxÞ½Y0; Y1; � � � ; Yn�Þ:
In particular, when ! ¼ ð1; � � � ; 1Þ, y ¼ Sinrðx;!Þ
satisfies the algebraic differential equation

y00 þ ð�QrðxÞ�1 � 1Þðy0Þ2y�1

�Q0rðxÞQrðxÞ�1y0 þ �QrðxÞy ¼ 0

with QrðxÞ ¼ ð�1Þr�1� x�1
r�1

� �
. (See [10, Theorem

2.2(d)].) However, for a general period !, the

differential algebraicity of the multiple sine func-

tion is still obscure.

On the other hand, in [8], we showed that the

double cotangent function Cot2ðx; ð1; �ÞÞ (the loga-

rithmic derivative of the double sine function)

degenerates to the digamma function (the loga-

rithmic derivative of the gamma function) as �

tends to infinity. This proposition enables us to

regard the double cotangent function as a general-

ization of the digamma function. Thus it is natural

to ask whether properties of the digamma and

gamma functions can be extended to the double

cotangent and sine functions.

One of the important properties of the gamma

function is its hypertranscendence: It does not

satisfy any algebraic differential equation. This

theorem was proved by Hölder [6].

The purpose of this paper is, by generalizing

this Hölder’s proof, to show the hypertranscendence

of the multiple sine function for a ‘‘complex’’ period:

Theorem 0.1. Let r � 2. If there exists a

non-real element in the set f!j=!ij1 � i < j � rg,
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then the r-ple sine function Sinrðx;!Þ is hyper-

transcendental.

When all elements in the set f!i=!jj1 � i < j �
rg are positive real number and at least one element

is irrational, it remains unclear whether or not the

r-ple sine function Sinrðx;!Þ is hypertranscenden-

tal. It may be possible that a totally different

method from ours (for example, the Galois corre-

spondence in differential Galois theory) provides a

solution to this problem.

1. Hypertranscendence of a solution of a

certain difference equation. In this section, by

generalizing the argument of Hölder [6], we estab-

lish the following general result, which will be used

in the proof of Theorem 0.1.

Proposition 1.1. If a function fðxÞ satisfies

the difference equation

fðxþ �Þ ¼ fðxÞð2 sinð�xÞÞ�1ð1:1Þ

for a non-real constant � , then fðxÞ is hypertran-

scendental over Cðx; e�ixÞ; that is, y ¼ fðxÞ does not

satisfy any algebraic differential equation over

Cðx; e�ixÞ, which is given by

F ðx; y; y0; � � � ; yðnÞÞ ¼ 0;ð1:2Þ
n 2 Z�0;

F ðx; Y0; Y1; � � � ; YnÞ 2 Cðx; e�ixÞ½Y0; Y1; � � � ; Yn�:
To prove Proposition 1.1, we use the hyper-

transcendence criteria, established in the differ-

ential Galois theory. We will briefly recall this

criteria and then, with the aid of it, prove

Proposition 1.1. (For details on the hypertran-

scendence criteria, we refer to [5] and the references

therein.)

To describe the criteria, we introduce some

definitions. A ð�; �Þ-ring ðR; �; �Þ is a ring R

endowed with a ring automorphism � and a

derivation � : R! R (this means that � is an

additive map satisfying Leibniz rule �ðabÞ ¼ �ðaÞbþ
a�ðbÞ for all a; b 2 R) such that � commutes with �.

If R is a field, then ðR; �; �Þ is called a ð�; �Þ-field.

Given a ð�; �Þ-ring ðR; �; �Þ, a ðe�; e�Þ-ring

ð eR; e�; e�Þ is a ð�; �Þ-algebras if eR is a ring extension

of R, e�jR ¼ � and e�jR ¼ �; in this case, we will often

denote e� by � and e� by �.

Let K be a ð�; �Þ-field K. A �-polynomial in the

differential indeterminate y is a polynomial in the

indeterminates f�jy j j 2 Z�0g with coefficients in

K. Let R be a K-ð�; �Þ-algebras and a 2 R. If there

exists a nonzero �-polynomial P ðyÞ in the differ-

ential indeterminate y such that P ðaÞ ¼ 0, then we

say that a is hyperalgebraic over K.

The hypertranscendency criteria is as follows:

Proposition 1.2 ([5], Proposition 2.6). Let

K be a ð�; �Þ-field with k :¼ ff 2 K j �ðfÞ ¼ fg
algebraically closed and let a 2 K�. Let R be a

K-ð�; �Þ-algebra and let v 2 R n f0g. Assume that v

is invertible in R. If �ðvÞ ¼ av and if v is hyper-

algebraic over K, then there exists a nonzero linear

homogeneous �-polynomial LðyÞ and an element f 2
K such that

L
�ðaÞ
a

� �
¼ �ðfÞ � f:

The converse is also true if R� ¼ k.

Remark 1.3. When

K ¼ CðxÞ; �ðfðxÞÞ ¼ fðxþ 1Þ; � ¼
d

dx
;

R ¼ Cðx;�ðxÞ;�ð1ÞðxÞ;�ð2ÞðxÞ; � � �Þ;

the former part of Proposition 1.2 was proved by

Hölder [6].

We will prove Proposition 1.1. Suppose that

y ¼ fðxÞ satisfies the algebraic differential equation

(1.2). Then, by applying Proposition 1.1 with

K ¼ Cðx; e�ixÞ; �ðfðxÞÞ ¼ fðxþ �Þ; � ¼
d

dx
;

R ¼ Cðx; e�ix; f; f ð1Þ; � � �Þ; v ¼ fðxÞ;

we find that there exist an integer n � 0, Aj 2 C not

all zeros and R 2 Cðx; e�ixÞ such thatXn
j¼0

Aj

dj

dxj
cotð�xÞ ¼ Rðxþ �Þ � RðxÞ:ð1:3Þ

Since x ¼ 0 is a pole of the left hand side of (1.3), at

least one of Rðxþ �Þ or RðxÞ also must have a pole

at x ¼ 0.

We cosider the case where Rðxþ �Þ has a pole

at x ¼ 0. Then RðxÞ has a pole at x ¼ � . Since x ¼ �
is not a pole of the left hand side of (1.3), Rðxþ �Þ
must have a pole at x ¼ � . Thus the function RðxÞ
have a pole at x ¼ 2� . By repeating this process, it

follows that the set of poles of RðxÞ contains

f�; 2�; 3�; � � �g. This contradicts the fact that imag-

inary parts of zeros and poles of an arbitrary

elements of Cðx; e2�ixÞ are bounded.

Similarly, when the function RðxÞ has a pole

at x ¼ 0, we find that the set of poles of RðxÞ
contains f0;��;�2�;�3�; � � �g, which also leads to a

contradiction. Therefore we obtain the proposition.
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2. Proof of Theorem 0.1. In this section,

by applying Proposition 1.1, we prove Theo-

rem 0.1. As a byproduct of Proposition 1.1, we also

show that Appell’s O-functions, introduced by

Appell [1], is hypertranscendental.

We will use the following result, which is due to

Ostrowski [12]:

Proposition 2.1 (Ostrowski [12]).

Let MerDA be the set of the meromorphic

functions over C which satisfy algebraic differential

equations. Then we have the following;

a) The set MerDA is a field.

b) For elements f; g 2 MerDA, the composition

f � g belongs to MerDA.

We also recall the quasiperiodicity of the

multiple sine function:

Proposition 2.2 ([9], Theorem 2.1 (a)).

The multiple sine function satisfies the differ-

ence equation

Sinrðxþ !i;!Þ ¼ Sinrðx;!ÞSinr�1ðx;!ðiÞÞ�1;

where we put !ðiÞ ¼ ð!1; � � � ; !i�1; !iþ1; � � � ; !rÞ and

Sin0ðx; �Þ ¼ �1.

Proof of Theorem 0.1. We prove the theorem

by induction on r. By Proposition 2.2 and Propo-

sition 1.1, the theorem is obviously true for r ¼ 2.

Suppose that the theorem is true for r and that

Sinrþ1ðx; ð!1; � � � ; !rþ1ÞÞ satisfies an algebraic differ-

ential equation. For simplicity, we put ! :¼
ð!1; � � � ; !rþ1Þ. By the condition of the theorem,

without loss of generality, we can assume that

!2=!1 is a non-real complex number. Proposi-

tion 2.2 gives

Sinrþ1ðxþ !rþ1;!Þ
¼ Sinrþ1ðx;!ÞSinrðx;!ðrþ 1ÞÞ�1;

which means that, by applying Proposition 2.1,

Sinrðx; ð!1; � � � ; !rÞÞ also satisfies an algebraic differ-

ential equation. This contradicts the induction

hypothesis. Thus we obtain the theorem. �

Proposition 1.1 is also applicable to the proof

of the hypertranscendence for Appell’s O-function

(also called q-Pochhammer symbol or q-shifted

factorial). Appell’s O-functions are defined as

follows; Let r � 1 and let ! ¼ ð!1; � � � ; !rÞ be a

r-tuple consisting of complex numbers with positive

imaginary part. We put

qi ¼ e2�i!i ði ¼ 1; � � � ; rÞ

and define the functions Orðx;!Þ by

Orðx;!Þ :¼
Y1

m1;���;mr¼0

ð1� e2�ixqm1

1 � � � qmr
r Þ

ðr ¼ 1; 2; � � �Þ:

Theorem 2.3. The function Orðx;!Þ is hy-

pertranscendental.

Proof. We put

fðxÞ ¼ O1ðx; !1Þ exp
�i

2

x2

!1
� 1þ

1

!1

� �
x

� �� �
:

Then it is easy to see that fðxÞ satisfies the

difference equation (1.1). Thus, by Proposition 2.1,

the theorem is true for r ¼ 1.

The remaining part of the proof is similar to

that of Theorem 0.1, by observing that Appell’s

O-functions satisfy the following difference equa-

tions:

Orþ1ðxþ !i; ð!1; � � � ; !rþ1ÞÞ

¼ Orþ1ðx; ð!1; � � � ; !rþ1ÞÞ
Orðx; ð!1; � � � ; !i�1; !iþ1; � � � ; !rþ1ÞÞ

ði ¼ 1; � � � ; rþ 1Þ:
�
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