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Abstract: In 2010 Shan, Varagnolo and Vasserot introduced a family of graded algebras

in order to prove a conjecture of Kashiwara and Miemietz which stated that the finite-

dimensional representations of affine Hecke algebras of type D categorify a module over a certain

quantum group. We study these algebras, and in various cases, show how they relate to

Varagnolo-Vasserot algebras and to quiver Hecke algebras which in turn allows us to deduce

various homological properties.
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Introduction. Following a conjecture of

Enomoto and Kashiwara in [EK06] concerning

categories of modules over affine Hecke algebras of

type B, proved in general by Varagnolo and

Vasserot [VV11], Kashiwara and Miemietz conjec-

tured analogous results for type D affine Hecke

algebras, see [KM07]. They predicted that catego-

ries of modules over affine Hecke algebras of type D

categorify a highest weight module over a certain

quantum group. This conjecture was confirmed by

results of Shan, Varagnolo and Vasserot in

[SVV11], in which they introduce and use a family

of graded algebras, by showing that categories of

modules over these algebras are equivalent to

categories of modules over affine Hecke algebras of

type D. These algebras are similar to KLR algebras

and to VV algebras, the latter of which were studied

in [Wal]. This note is a study of these algebras,

which we call SVV algebras. We obtain a Morita

equivalence between SVV algebras and a direct

product of VV algebras. We use KLR algebras to

show that, in certain settings, SVV algebras are

graded affine quasi-hereditary and graded affine

cellular.

1. Preliminaries and notation. Through-

out this paper we will denote by k a field with

charðkÞ 6¼ 2 and by a grading we will always mean

a Z-grading. We write q to denote both a formal

variable and a degree shift functor which shifts the

degree by 1. So qM is a graded A-module with kth

graded component ðqMÞk ¼Mk�1, where M ¼L
n2Z Mn is a graded A-module.

The Weyl group of type D, WD
m has generators

s0; s1; . . . ; sm�1 which are subject to the relations

s2
i 8i, sisiþ1si ¼ siþ1sisiþ1 for 1 � i � m� 2, s0si ¼
sis0 8i 6¼ 2, sisj ¼ sjsi for ji� jj > 1 and 1 � i; j �
m� 1, s0s2s0 ¼ s2s0s2. Now let �0; �1; . . . ; �m�1 be

the generators of the type B Weyl group, WB
m. We

can consider WD
m a subgroup of WB

m via the injec-

tion WD
m ,!WB

m given by s0 7! �0�1�0, sk 7! �k for

1 � k � m� 1.

There are exactly two parabolic subgroups of

WD
m which are both isomorphic to the symmetric

group on m letters. We label these subgroups Sm

and Sm; they are the subgroups generated by

s1; s2; . . . ; sm�1 and s0; s2; . . . ; sm�1, respectively.

1.1. SVV algebras. In this section we recall

a family of graded algebras which were introduced

by Shan, Varagnolo and Vasserot [SVV11]. We will

call them SVV algebras.

We start by fixing an element p 2 k�. Consider

the action of Zo Z2 on k� given by ðn;�1Þ � � ¼
p2n��1. Fix a Zo Z2-orbit I�. So I ¼ I� ¼ fp2n��1 j
n 2 Zg is the Zo Z2-orbit of �. To I we associate a

quiver � ¼ �I . The vertices of � are the elements

i 2 I and we have arrows p2i �! i for every i 2 I.
We always assume that �1 =2 I and that p 6¼ �1. If

p =2 I� then we can write I� ¼ Iþ� t I�� , where I�� ¼
fp2n��1 j n 2 Zg. Similarly, when p 2 Ip and p is not

a root of unity then we can write Ip ¼ Iþp t I�p ,

where I�p ¼ fp�ð2nþ1Þ j n 2 Z�0g. Let �NI ¼ f� ¼P
i2I �ii j �i ¼ �i�1 ; � has finite support, �i 2 Z�0

8ig. Recall the height of � 2 �NI is denoted by j�j
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and is defined as j�j ¼
P

i2I �i. We also recall that

i 2 I has multiplicity one in � if �i ¼ 1.

Throughout this work we assume that if p 2 I
then p is not a root of unity, so that we always have

I� ¼ Iþ� t I�� .

For any � 2 �NI we have �i ¼ �i�1 for all i 2 I
which means that we can always write � ¼ �þ þ ��,

where �� ¼
P

i2I� �ii 2 NI. It now makes sense to

talk about the KLR algebras associated to �þ and to

��. Denote these algebras by R�þ and R�� , respec-

tively. Recall that the KLR algebras are a family of

graded algebras that have been introduced in

[KL09] and [Rou] in order to categorify quantum

groups.

For � 2 �NI with j�j ¼ 2m, define

�I� :¼ i ¼ ði1; . . . ; imÞ 2 Im
���� Xm
k¼1

ik þ
Xm
k¼1

i�1
k ¼ �

( )
:

For � 2 �NI with j�j ¼ 2m, m > 1, the SVV alge-

bra, denoted by �Rð�Þ�, is the graded k-algebra

generated by elements

feðiÞ j i 2 �I�g [ fx1; . . . ; xmg [ f�0; �1; . . . ; �m�1g

which are subject to the following relations.

(a) eðiÞeðjÞ ¼ �ijeðiÞ, �keðiÞ ¼ eðskiÞ�k, xleðiÞ ¼
eðiÞxl,

P
i2�I� eðiÞ ¼ 1.

(b) The xl’s commute.

(c) For 1 � k � m� 1,

�2
keðiÞ ¼

ðxkþ1 � xkÞeðiÞ ik  ikþ1

ðxk � xkþ1ÞeðiÞ ik ! ikþ1

�ðxkþ1 � xkÞ2eðiÞ ik $ ikþ1

eðiÞ ik = ikþ1

0 ik ¼ ikþ1;

8>>>>>><>>>>>>:

�2
0eðiÞ ¼

�ðx1 þ x2ÞeðiÞ i�1
1 ! i2

ðx1 þ x2ÞeðiÞ i�1
1  i2

�ðx1 þ x2Þ2eðiÞ i�1
1 $ i2

eðiÞ i�1
1 = i2

0 i�1
1 ¼ i2

8>>>>>><>>>>>>:
�k�l ¼ �l�k for 1 � k < l� 1 < m� 1 or 0 ¼
k < l 6¼ 2.

For 1 � k < m� 1;

ð�kþ1�k�kþ1 � �k�kþ1�kÞeðiÞ ¼
eðiÞ ik ¼ ikþ2 and ik ! ikþ1

�eðiÞ ik ¼ ikþ2 and ik  ikþ1

ð2xkþ1�xkþ2�xkÞeðiÞ ik ¼ ikþ2 and ik $ ikþ1

0 ik 6¼ ikþ2 or ik = ikþ1;

8>>><>>>:

ð�2�0�2 � �0�2�0ÞeðiÞ ¼
eðiÞ i�1

1 ¼ i3 and i�1
1 ! i2

�eðiÞ i�1
1 ¼ i3 and i�1

1  i2

ðx1 þ 2x2 � x3ÞeðiÞ i�1
1 ¼ i3 and i�1

1 $ i2

0 i�1
1 6¼ i3 or i�1

1 = i2:

8>>><>>>:
(d) For 1 � k < m, ð�kxl � xskðlÞ�kÞeðiÞ ¼

�eðiÞ if l ¼ k; ik ¼ ikþ1

eðiÞ if l ¼ kþ 1; ik ¼ ikþ1

0 else:

8<:
(e) For ‘ ¼ 1; 2, ð�0x‘ þ x3�‘�0ÞeðiÞ ¼

eðiÞ if i�1
1 ¼ i2

0 if i�1
1 6¼ i2:

�
The grading on �Rð�Þ� is given as follows:

degðeðiÞÞ ¼ 0; degðxleðiÞÞ ¼ 2;

degð�0eðiÞÞ ¼
ji�1

1 ! i2j þ ji�1
1  i2j if i�1

1 6¼ i2
�2 if i�1

1 ¼ i2;

(

degð�keðiÞÞ ¼
jik ! ikþ1j þ jik  ikþ1j if ik 6¼ ikþ1

�2 if ik ¼ ikþ1

�
where ji! jj denotes the number of arrows from i

to j in the quiver �.

If � ¼ 0 we set �Rð�Þ� ¼ k	 k and if � ¼
iþ i�1, for some i 2 I then,

�Rð�Þ� ¼ k½x
eðiÞ 	 k½x
eði�1Þ:

The action of WD
m on i ¼ ði1; . . . ; imÞ 2 �I� is given

via

s0 � ði1; i2; . . . ; imÞ ¼ ði�1
2 ; i�1

1 ; . . . ; imÞ
sk � ð. . . ; ik; ikþ1; . . .Þ ¼ ð. . . ; ikþ1; ik; . . .Þ

for 1 � k < m.

Take w 2WD
m and fix a reduced expression

w ¼ si1 � � � sik . We then set �weðiÞ ¼ �i1 � � ��ikeðiÞ
and, for the identity element 1 2WD

m , we have

�1eðiÞ ¼ eðiÞ. From the relations we can see that

�weðiÞ is dependent upon the choice of reduced

expression of w. Therefore whenever we write �weðiÞ
it should be understood that, although not always

specified, we are fixing a choice of reduced expres-

sion of w.

We can visualise the algebra �Rð�Þ� as a quiver

with the vertices given by the idempotents eðiÞ and

the arrows labelled by generators x1; . . . ; xm;
�0; . . . ; �m�1 and determined by the relationship

between idempotents. It is always the case that this

quiver has two connected components so that we

always have �Rð�Þ� ¼� e1
�Rð�Þ�e1 � e2

�Rð�Þ�e2,
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where e1; e2 are certain idempotents in �Rð�Þ�. In

addition, we will see in Lemma 2.4 that, as alge-

bras, these two components are isomorphic. There-

fore it suffices to study one of these components in

order to understand the algebra. For example, to

show that �Rð�Þ� is graded affine cellular and affine

quasi-hereditary it is enough to show that one of the

components, say e2
�Rð�Þ�e2, has these properties

(using Remark 1.4 and Proposition 1.6).

Given the data in the definition, together with

a fixed � 2 �NI, we have a VV algebra W�

(see [Wal] for the definition). In [SVV11], the

authors note that there is a canonical inclusion

of algebras �Rð�Þ� ,!W� given by eðiÞ; �k; xi 7!
eðiÞ; �k; xi for k ¼ 1; � � �m� 1; i ¼ 1; � � � ;m, �0 7!
��1� so that the SVV algebras are unital subalge-

bras of the VV algebras.

Lemma 1.1 (Basis theorem for SVV alge-

bras). Take � 2 �NI with j�j ¼ 2m. For each

element w 2WD
m fix a reduced expression. The set

of elements

f�wxn1

1 � � �xnmm eðiÞ j w 2WD
m; i 2 �I�; nk 2 Z�0 8kg

forms a k-basis for �Rð�Þ�.
Proof. The proof is similar to that of [KL09,

Theorem 2.5]. In particular we show this set is a

spanning set in exactly the same way as for KLR

algebras. For linear independence we use the

polynomial representation of �Rð�Þ� (see [SVV11])

and show that the elements in the set act by linearly

independent operators. �

Remark 1.2. Suppose we take � 2 �NI such

that suppð�þÞ consists of two connected compo-

nents. In other words, � ¼ �1 þ �2 where suppð�þ1 Þ
and suppð�þ2 Þ are both connected and there are no

arrows between any i 2 suppð�þ1 Þ and j 2 suppð�þ2 Þ.
It can be shown, using a similar proof as in [Wal,

Proposition 2.6], that there is a Morita equivalence
�Rð�Þ� � �Rð�Þ�1

� �Rð�Þ�2
. So we may assume

that � is chosen in such a way that suppð�þÞ is

connected.

1.2. Affine cellularity. We now recall the

definition of an affine cellular algebra [KX12]. Here

we use the basis definition which is analogous to the

way that Graham and Lehrer defined cellular

algebras in [GL96]. The definition we recall is taken

from [Cui], where it is shown to be equivalent

to the basis-free definition in [KX12]. Let k be a

noetherian domain and let A a unitary k-algebra.

By an affine algebra, we mean a commutative

k-algebra of the form B ¼ k½x1; . . . ; xt
=I, for some

ideal I and some positive integer t.

Definition 1.3. We say that ð�;M;B;C; Þ
is an affine cell datum for A, where ð�;�Þ is a finite

poset, Mð�Þ is a finite set for each � 2 �, B� is an

affine k-algebra with an anti-involution ��, C ¼
fC�

s;t j � 2 � and s; t 2Mð�Þg is a subset of A, and 
is a k-linear anti-involution on A, if the following

are satisfied.

(a) For each � 2 �, let bA� be the right B�-span of

fC�
s;tgs;t2Mð�Þ. Then fC�

s;tgs;t2Mð�Þ is a B�-basis

of the right B�-module bA�, and A ¼
L

�2�
bA�

as k-modules.

(b) For each � 2 �, let bA>� ¼
P

	>�
bA	. For � 2 �,

s 2Mð�Þ and a 2 A, b 2 B�, there exist coef-

ficients rsvðaÞ 2 B� such that for all t 2Mð�Þ,

a � ðC�
s;t � bÞ �

X
v2Mð�Þ

C�
v;t � rsvðaÞb ðmodð bA>�ÞÞ;

and the coefficients rsvðaÞ 2 B� are independent

of t.

(c) For all � 2 �, s; t 2Mð�Þ, and for any b 2 B�,

ðC�
s;t � bÞ

 ¼ C�
t;s � ��ðbÞ.

The algebra A is said to be affine cellular if such an

affine cell datum exists.

Remark 1.4. Let A1 and A2 be affine cellu-

lar algebras with affine cell data ð�1;M1; B1; C1; 1Þ
and ð�2;M2; B2; C2; 2Þ, respectively. Then A3 :¼
A1 � A2 has an affine cell datum ð�3;M3; B3; C3; 3Þ
where �3 ¼ �1 [ �2 with partial ordering given as

follows: � � 	 if and only � and 	 both lie in �i, for

i 2 f1; 2g, and moreover � � 	 in �i. We also have,

for any � 2 �3,

M3ð�Þ ¼
M1ð�Þ if � 2 �1

M2ð�Þ if � 2 �2;

�
B3ð�Þ ¼

B1ð�Þ if � 2 �1

B2ð�Þ if � 2 �2;

�
with the obvious anti-involutions. Furthermore,

C3 ¼ C1 [ C2 and 3 is the anti-involution on A3

defined by, 3ða1; a2Þ ¼ ð1ða1Þ; 2ða2ÞÞ. One can

quickly check that this really does define an affine

cell datum for A3 so that A3 ¼ A1 � A2 is affine

cellular.

Since �Rð�Þ� ¼� e1
�Rð�Þ�e1 � e2

�Rð�Þ�e2, in

order to show that �Rð�Þ� is affine cellular it

suffices to show that each component is affine

cellular.

1.3. Affine quasi-heredity. We also recall

the notions of affine quasi-heredity, for left Noe-
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therian Laurentian algebras, and affine highest

weight categories, introduced by Kleshchev

[Kle15] as a graded analogue of the theory of Cline,

Parshall and Scott. KLR algebras of finite Lie type

are graded affine quasi-hereditary, as are certain

classes of VV algebras. Let B be the class of all

positively graded polynomial algebras. Recall from

[Kle15] that a two-sided ideal J � A is an affine

heredity ideal if; (SI1): HomAðJ;A=JÞ ¼ 0, (SI2):

as a left module J ¼� mðqÞP ð�Þ for some graded

multiplicity mðqÞ 2 Z½q; q�1
 and some � 2 � such

that B� :¼ EndAðP ð�ÞÞop 2 B, and (PSI): as a right

B�-module P ð�Þ is free finite rank.

By Lemma 6.5 in [Kle15], if J is an ideal in A

which is projective as a left A-module, then (SI1) is

equivalent J being an idempotent ideal, i.e. J ¼
AeA, for an idempotent e 2 A.

Definition 1.5. An algebra A is affine quasi-

hereditary if there exists a finite chain of ideals

ð0Þ ¼ J0 ( J1 ( � � � ( Jn ¼ A

with Jiþ1=Ji an affine heredity ideal in A=Ji, for all

0 � i < n. Such a chain of ideals is called an affine

heredity chain.

Proposition 1.6. If A, B are affine quasi-

hereditary algebras then the direct product A� B is

an affine quasi-hereditary algebra.

Proof. Suppose A and B have affine heredity

chains

ð0Þ � A1 � � � � � An ¼ A
ð0Þ � B1 � � � � � Bm ¼ B

respectively. Then one shows that

ð0Þ � A1 � ð0Þ � A1 �B1 � A1 �B2 � � � �
� � � � A1 � B � A2 �B � � � � � A� B

is an affine heredity chain for A� B. �

2. Results. We remind the reader that if p 2
I then we assume that p is not a root of unity.

Lemma 2.1. For � 2 �NI let e ¼
P

i2I�þ eðiÞ.
Then e�Rð�Þ�e ¼� R�þ , i.e. every SVV algebra has a

distinguished idempotent subalgebra isomorphic to a

KLR algebra.

Proof. The proof is similar to [Wal, Proposi-

tion 1.17]. �

Remark 2.2. More generally, we can always

express any � 2 �NI in the form � ¼ ~� þ ~��1, for

some ~� ¼
P

i2I ~�ii 2 NI, where ~��1 ¼
P

i2I ~�ii
�1 2

NI. Let e ¼
P

i2I ~� eðiÞ. Provided iþ i�1 is not a

summand of ~�, for any i 2 I, one can use the same

argument in Lemma 2.1 show that e�Rð�Þ�e ¼� R~�,

the KLR algebra associated to ~�.

Let Sm :¼ hs0; s2; s3; � � � ; sm�1i be the parabolic

subgroup of WD
m generated by si, i 6¼ 1. We have

already noted that Sm is isomorphic to the sym-

metric group Sm.

Take � 2 �NI, j�j ¼ 2m, and let imin be the

summand p2k� of �þ such that k is minimal. Let

	 ¼ �þ � imin þ i�1
min and let j 2 I	 ¼ fðj1; . . . ; jmÞ 2

Im j
Pm

k¼1 jk ¼ 	g be such that j1 ¼ i�1
min and

j2; . . . ; jm are ordered by power of p. For example,

when � ¼ m�þm��1 for some m > 1 and some

� 2 I, we have imin ¼ � and j ¼ ð��1; �; �; � � � ; �Þ.
Let J be the following subset of �I�.

J :¼ fw � j j w 2 Sm � WD
mg

where the action of elements w 2 Sm, considered

elements of WD
m , should be the obvious one.

Example 2.3. Take � ¼ �þ p2�þ p4�þ
��1 þ p�2��1 þ p�4��1. Then imin ¼ �, j ¼
ð��1; p2�; p4�Þ and

J ¼
ð��1; p2�; p4�Þ; ðp�2��1; �; p4�Þ;
ðp�2��1; p4�; �Þ; ðp�4��1; p2�; �Þ;
ðp�4��1; �; p2�Þ; ð��1; p4�; p2�Þ

8><>:
9>=>;:

Let D ¼ DðWD
m=SmÞ and D0 ¼ DðWD

m=SmÞ denote

the minimal length left coset representatives of Sm

and Sm in WD
m , respectively. Note that D0 consists of

elements w0 which are obtained from w 2 D by

replacing every occurrence of s0 and every occur-

rence of s1 in a reduced expression of w with s1 and

with s0, respectively. Then put e1 :¼
P

i2J
w02D0

eðw0 � iÞ

and e2 :¼
P

i2I�þ
w2D

eðw � iÞ. By considering the way in

which the elements w 2 D, w0 2 D0 act on these

tuples i we see that we have e1 þ e2 ¼ 1 in �Rð�Þ�
and therefore a decomposition �Rð�Þ� ¼
e1
�Rð�Þ�e1 � e2

�Rð�Þ�e2.

Lemma 2.4. There is a k-algebra isomor-

phism e2
�Rð�Þ�e2 ¼� e1

�Rð�Þ�e1.

Proof. Define the map

’ : e2
�Rð�Þ�e2 �! e1

�Rð�Þ�e1;

eði1; i2; � � � ; imÞ 7! eði�1
1 ; i2; � � � ; imÞ;

�‘ 7!
�1�‘ if ‘ ¼ 0; 1

�‘ if ‘ 6¼ 0; 1;

�
xk 7!

�x1 if k ¼ 1

xk if k 6¼ 1

�
and extend k-linearly and multiplicatively. Exam-

ining the defining relations of �Rð�Þ� we see that

10 R. D. WALKER [Vol. 94(A),



this is well-defined and is therefore an algebra

homomorphism. In fact, it is an isomorphism of

k-vector spaces and hence an isomorphism of

algebras as there is an obvious inverse map. �

As previously mentioned, the quiver which

represents the algebra �Rð�Þ� has two connected

components. Lemma 2.4 tells us that the algebras

which are associated to these connected compo-

nents are isomorphic.

Corollary 2.5. There is an algebra isomor-

phism e�
�Rð�Þ�e� ¼� R�þ , where e� :¼

P
i2J eðiÞ.

Proof. Under the isomorphism in Lemma 2.4

e ¼
P

i2I�þ eðiÞ is mapped to e� ¼
P

i2J eðiÞ. It

follows that e�Rð�Þ�e is isomorphic to

e�
�Rð�Þ�e�. Now we use Lemma 2.1. �

Fix any element q 2 k� in such a way that

q =2 I. We can then define a VV algebra W� for any

given � 2 �NI, see [Wal] for details.

Theorem 2.6. There is a Morita equivalence
�Rð�Þ� �W� �W�. In particular, this demon-

strates that any irreducible type D module arises

from an irreducible type B module.

Proof. Using Lemma 2.4, it suffices to show

there is a Morita equivalence e2
�Rð�Þ�e2 �W�.

Recall that we set e2 :¼
P

i2I�þ
w2D

eðw � iÞ 2 �Rð�Þ�.

We can also consider e2 an element of W�. Proving

that e2W�e2 ¼� e2
�Rð�Þ�e2 as k-algebras together

with the fact that e2 is full in W� implies that

W�e2 is a progenerator in W�-Mod such that

EndW�
ðW�e2Þ ¼� e2

�Rð�Þ�e2. Then, by standard

Morita theory, Morita equivalence between

e2
�Rð�Þ�e2 and W� follows. �

Remark 2.7. In order to define VV algebras

one must fix p; q 2 k�. We remark here that when

q 2 I we do not have Morita equivalence between

VV algebras and SVV algebras.

2.1. Setting: p =2 I. For the following two

corollaries we will assume p =2 I.
Corollary 2.8. Suppose p =2 I. For � 2 �NI,

there is a Morita equivalence �Rð�Þ� � R�þ �R�þ .

In particular, this demonstrates that any irreducible

type D module arises from an irreducible type A

module when p =2 I.

Proof. Fix an element q 2 k� in such a way

that q =2 I. Then we have, by Theorem 2.10 in [Wal],

Morita equivalence W� � R�þ . Now use Theorem

2.6. �

Corollary 2.9. When p =2 I, with the addi-

tional constraint of p not a root of unity, the

algebras �Rð�Þ� are affine quasi-hereditary and

affine cellular.

Proof. We first note that affine quasi-heredity

is a Morita invariant between unital algebras. Then

by Proposition 1.6 and Corollary 2.8 it suffices to

show that the algebras R�þ are affine quasi-heredi-

tary. This is true when p is not a root of unity

(see [Kle15, Section 10.1] and results throughout

[BKM14]). This proves affine quasi-heredity. It was

shown in [KLM13] that KLR algebras of type A1
are affine cellular. This, together with Remark 1.4,

shows that the algebras R�þ �R�þ are affine

cellular in this case. The proof is completed by

applying Lemma 3.4 in [Yan14]. �

2.2. Setting: p 2 I. Now suppose p 2 I and

assume p is not a root of unity. Then we can write

Ip ¼ Iþp t I�p , where I�p ¼ fp�ð2nþ1Þ j n 2 Z�0g and

�I is of the form

� � � �! p3 �! p

#
� � �  � p�3  � p�1:

Remark 2.10. If we take � 2 �NI such that

the number of summands of � equal to p is less than

2 (i.e. �p < 2), then all the results of Subsection 2.1

apply to �Rð�Þ�. Namely, we are again reduced to

type A via the Morita equivalence �Rð�Þ� � R�þ �
R�þ . Therefore, if p 2 I we may assume that p has

multiplicity at least two in �, i.e. �p � 2.

Let A be the path algebra A ¼ kða1 � a2Þ
where the arrow from a1 to a2 is labelled u1 and

the arrow from a2 to a1 is labelled u2. We consider A

a left k½z
-module with the action defined by; z �
a1 ¼ u2u1a1 and z � a2 ¼ u1u2a2. Suppose p 2 I, p is

not a root of unity and we take � 2 �NI. Recall that

in [Wal, Section 2.6] we define the structure of a

right k½z
-module on R�þ .

Corollary 2.11. When p is not a root of

unity and �p ¼ 2 there is a Morita equivalence
�Rð�Þ� � ðR�þ �k½z
 AÞ � ðR�þ �k½z
 AÞ.

Proof. Use Theorem 2.6 and [Wal, Theorem

2.46]. �
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