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Abstract: We consider the Cauchy problems of nonlinear partial differential equations of

the normal form in the class of analytic functions. We apply semi-discrete finite difference

approximation which discretizes the problems only with respect to the time variable, and we give

a proof for its convergence. The result implies that there are cases of convergence of finite

difference schemes applied to ill-posed Cauchy problems.
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1. Introduction. Let us consider finite dif-

ference approximation of the Cauchy problems of

nonlinear partial differential equations (PDE’s) of

the normal form, and we show here its convergence

independently of stability of the Cauchy problems.

We know, in the class of analytic functions, unique

existence of solutions to the Cauchy problems of

the normal form as the Kowalevskaya theorem [4]

or the Cauchy-Kowalevskaya theorem ([2], [8] etc.),

and our results correspond to a discretization of the

Kowalevskaya theorem.

Within the standard framework of the theory

of finite difference methods, convergence of finite

difference approximation of the Cauchy problems is

proved under assumption of their well-posedness.

For the linear Cauchy problems, P. D. Lax and

R. D. Richtmyer [5] show that stability and

convergence of finite difference approximation of

the well-posed Cauchy problems are equivalent to

each other, and we are afraid that independence

between the concepts of convergence and stability

may be sometimes misunderstood. We remark the

independence in the present paper and show

convergence of finite difference approximation in

the class of analytic functions.

We follow the approach of L. Nirenberg [6]

and T. Nishida [7] to the nonlinear Cauchy prob-

lems of the normal form. Whereas the classical

Kowalevskaya theorem requires analyticity of func-

tions with respect to all the variables that appear,

they radically weaken assumptions so that they

do not require analyticity with respect to t. Their

approach is to reduce the Cauchy problems of

PDE’s to that of abstract ordinary differential

equations on a scale of Banach spaces. In the

present work we discretize the reduced Cauchy

problem by forward difference approximation.

There is already a similar result for the linear cases

by Y. Iso [3], and we generalize it in the present

work.

In the final section we show some numerical

results for an ill-posed Cauchy problem. Without

stability of finite difference approximation, it is

difficult to observe convergence property on the

standard double precision arithmetic environments

of computers, but it is possible to do it on a

multiple-precision environment (e.g. exflib [1]).

2. Abstract Cauchy problems on Banach

scale. Following L. Nirenberg [6] and T. Nishida

[7], we introduce the Cauchy problems of abstract

ordinary differential equations on a scale of Banach

spaces. The abstract Cauchy problems contain

those for systems of nonlinear PDE’s of the normal

form (see [6]). Let B ¼ fB�g0<���0
be a scale of

Banach spaces: B is a family of Banach spaces B�

satisfying

B�0 � B� and kuk� � kuk�0ð1Þ
for 0 < � < �0 � �0 and u 2 B�0 ;

where k � k� is the norm on B�. Let B0 be a linear

space which contains all B� (0 < � � �0). Let F ðt; uÞ
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be a mapping from a subset of R� B0 to B0, and we

consider the Cauchy problem on B of the form

du=dt ¼ F ðt; uðtÞÞ; uðtÞjt¼0 ¼ 0:ð2Þ

Suppose the following conditions for some positive

numbers �, R, C, and K:

F is a continuous mapping ofð3Þ
ft 2 R; jtj < �g � fu 2 B�0 ; kuk�0 < Rg

to B� for 0 < � < �0 � �0;

F satisfiesð4Þ
kF ðt; uÞ � F ðt; vÞk� � Cku� vk�0=ð�0 � �Þ

for � < �0 � �0, jtj < �, kuk�0 < R, kvk�0 < R;

F satisfiesð5Þ
kF ðt; 0Þk� � K=ð�0 � �Þ

for 0 < � < �0, jtj < �, kuk�0
< R:

The following theorem, called the Nirenberg-

Nishida theorem, holds under the assumptions

above, and it contains the Kowalevskaya theorem.

Theorem 2.1 ([7]). Suppose (1) and (3)–(5).

Then there exists a positive number a < �=�0 such

that there exists a unique function uðtÞ which solves

the Cauchy problem (2) in the sense that

for every � < �0, the function uðtÞ is C1

with values in B� on the interval jtj <
að�0 � �Þ and satisfies kuðtÞk� < R and (2).

Remark 2.2. The choice of the value a

given in [7] implies kuðtÞk� � R=2 for 0 < � < �0 �
jtj=a, and we use this choice in Theorem 3.1.

In the present research, we apply finite differ-

ence method to approximate the solution to the

Cauchy problem (2) whose unique existence is

established by Theorem 2.1. We approximate d=dt

by forward difference but we do not approximate

the operator F , and therefore we call our scheme a

semi-discrete finite difference scheme.

3. Main result. For a number T > 0 and an

integer N � 1, we set �t :¼ T=N and tk :¼ k�t, and

consider the following finite difference scheme:

ðukþ1 � ukÞ=�t ¼ F ðtk; ukÞ; 0 � k � N � 1;

u0 ¼ 0:

This is equivalent to

uk ¼ �t
Xk�1

j¼0

F ðtj; ujÞ; 0 � k � N;ð6Þ

where the summation for k ¼ 0 equals zero. Our aim

is to show that, for suitable T and large N , (6)

determines u0; . . . ; uN 2 B0 such that ðtk; ukÞ be-

longs to the domain of F , and uk approximates

uðtkÞ. We suppose additional hypotheses as follows:

F is a C1 mapping ofð7Þ
ft 2 R; jtj < �g � fu 2 B�0 ; kuk�0 < Rg

to B� for 0 < � < �0 � �0;

The partial derivative of F with respect to uð8Þ
is a bounded operator from B�0 to B�, and the

operator norm satisfies

kFuðt; uÞk � C=ð�0 � �Þ
for 0 < � < �0 � �0, jtj < �, kuk�0 < R;

There is a number L > 0 such that the partialð9Þ
derivative of F with respect to t satisfies

kFtðt; uÞk� � L=ð�0 � �Þ
2

for 0 < � < �0 � �0, jtj < �, kuk�0 < R:

Note that conditions (1), (5), (7), (8) assumed

in Theorem 3.1 imply unique existence of the

solution to (2) because (7) implies (3), (8) implies

(4), and Theorem 2.1 can be applied.
Theorem 3.1. Suppose (1), (5), and (7)–(9).

Let uðtÞ be the unique solution to (2) as asserted in

Theorem 3.1, and suppose that uðtÞ satisfies

kuðtÞk� � R=2; 0 < � < �0 � jtj=a:ð10Þ

Let c, �1, and T be positive numbers satisfying

c < minfa; 1=4Cg; �1 < �0; T < c�1:ð11Þ

Then there exists a positive number S such that, if

S�t < R=2, equation (6) determines uk 2 B�1�tk=c
for 0 � k � N, and

sup
0�k�N ; tk�cð�1��Þ

kuk � uðtkÞk� � S�tð12Þ

for every positive � < �1.

4. Proof of Theorem 3.1. First we esti-

mate the second derivative of uðtÞ.
Proposition 4.1. Suppose (1), (5), and (7)–

(10). Then the solution uðtÞ to the Cauchy problem

(2) is a C2 function from ft 2 R; jtj < að�0 � �Þg to

B�. Moreover, there is a number V2 > 0 such that

ku00ðtÞk� � V2=ð�0 � �� jtj=aÞ2

for � and t satisfying 0 < � < �0 � jtj=a.

Proof. For � and t with 0 < � < �0 � jtj=a, let

�ðtÞ :¼ ð�þ �0 � jtj=aÞ=2. Then
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0 < � < �ðtÞ < �0 � jtj=a

holds and kuðtÞk�ðtÞ � R=2 follows from (10). Using

(4) with �0 ¼ �ðtÞ and (5), we have

ku0ðtÞk� � kF ðt; uðtÞÞ � F ðt; 0Þk� þ kF ðt; 0Þk�
� CkuðtÞk�ðtÞ=½�ðtÞ � �	 þK=ð�0 � �Þ:

Thus we obtain, with V1 ¼ CRþK,

ku0ðtÞk� � V1=ð�0 � �� jtj=aÞð13Þ

for 0 < � < �0 � jtj=a. We apply (13) with � ¼ �ðtÞ
to get

ku0ðtÞk�ðtÞ � V1=ð�0 � �ðtÞ � jtj=aÞ:

Since F is C1 by (7) and uðtÞ is a C1 function

satisfying u0 ¼ F ðt; uÞ, u is C2 and

u00ðtÞ ¼ Fuðt; uðtÞÞu0ðtÞ þ Ftðt; uðtÞÞ:

Using (8) and (9) with �0 ¼ �ðtÞ, we obtain

ku00ðtÞk� � kFuðt; uðtÞÞkku0ðtÞk�ðtÞ þ kFtðt; uðtÞÞk�
� V2=ð�0 � �� jtj=aÞ2

for 0 < � < �0 � jtj=a, with V2 ¼ 4ðCV1 þ LÞ. �

To reduce our proof to Claim 4.2 below, we

define truncation errors wk (0 � k � N � 1) by

½uðtkþ1Þ � uðtkÞ	=�t ¼ F ðtk; uðtkÞÞ þ wk:ð14Þ

Taylor’s theorem and Proposition 4.1 show that

there are v0; . . . ; vN�1 2 B0 such that

uðtkþ1Þ � uðtkÞ ¼ F ðtk; uðtkÞÞ�tþ vk�t2;ð15Þ
kvkk� � V2=ð�0 � �� tkþ1=aÞ2ð16Þ
for 0 < � < �0 � tkþ1=a;

for 0 � k � N � 1. From (14) and (15), we get

wk ¼ vk�t:ð17Þ

Claim 4.2. Under the hypotheses of Theo-

rem 3.1, there exists a positive number S such that,

if S�t < R=2, elements e0; . . . ; eN 2 B0 are defined

by

ek ¼ �t
Xk�1

j¼0

½F ðtj; uðtjÞ þ ejÞ � F ðtj; uðtjÞÞ � wj	ð18Þ

for 0 � k � N , and they satisfy

kekk� � S�t; 0 < � � �1 � tk=cð19Þ

for 0 � k � N .

We assume Claim 4.2 for the moment. Suppose

S�t < R=2. For 0 � k � N and 0 < � � �1 � tk=c,
(18) determines ek, and kekk� < R=2 by (19). Since

0 < � < �0 � tk=a, we get kuðtkÞk� � R=2 from (10)

hence kuðtkÞ þ ekk� < R.

Put uk :¼ uðtkÞ þ ek. Then we have kukk� < R

for 0 � k � N and 0 < � � �1 � tk=c. Formula (14)

yields

uðtkÞ ¼ �t
Xk�1

j¼0

½F ðtj; uðtjÞÞ þ wj	; 0 � k � N:

Adding this to (18) shows that u0; . . . ; uN satisfy

(6), and (19) yields (12). The proof is therefore

completed if we prove Claim 4.2.

5. Proof of Claim 4.2. Let c, �1, and T be

as in (11). We regard (18) as a fixed-point equation

for ðe0; . . . ; eNÞ in ðB0ÞNþ1 and find a solution by

successive approximation. We introduce a family of

linear subspaces fY�g��c of ðB0ÞNþ1 as follows:

Y� :¼ ff ¼ ðf0; . . . ; fNÞ 2 ðB0ÞNþ1; ½f 	0� < þ1g;

where

½f 	0� :¼ inffM � 0; kfkk� �Mtk=ð�1 � �� tk=�Þ
for 0 � k � N , 0 < � < �1 � tk=�g:

We remark that (a) f0 ¼ 0 for f 2 Y�; (b) ½ � 	0� is a

norm on Y� which makes Y� a Banach space; (c) if

f 2 Y�, we have

½f	0� � ½f 	
0
� for c � � < �ð20Þ

and therefore Y� � Y� � Yc; and (d) if f 2 Y�, we

have

kfkk� � ½f	
0
�=ð1=� � 1=�Þð21Þ

for c � � < �, 0 � k � N, 0 < � � �1 � tk=�.

We hope to define a sequence feðmÞgm�0 of

elements eðmÞ ¼ ð0; e1
ðmÞ; . . . ; eN

ðmÞÞ in ðB0ÞNþ1 by

the following rule: let eð0Þ ¼ ð0; 0; . . . ; 0Þ; if eðmÞ is

defined for some integer m � 0, define the next term

eðmþ1Þ ¼ ð0; e1
ðmþ1Þ; . . . ; eN

ðmþ1ÞÞ by

ek
ðmþ1Þ :¼ �t

Xk�1

j¼0

½F ðtj; uðtjÞ þ ejðmÞÞð22Þ

� F ðtj; uðtjÞÞ � wj	
for 1 � k � N . The goal is to show that the above

rule defines a sequence convergent in Yc and the

limit, say e ¼ ðe0; . . . ; eNÞ, satisfies (18).

(Step 1) By putting m ¼ 0 in (22), compo-

nents of eð1Þ are given by

ek
ð1Þ ¼ ��t

Xk�1

j¼0

wj; 0 � k � N:ð23Þ

We show ½eð1Þ	0a � V�t with V ¼ V2=ð�0 � �1Þ.
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For 1 � k � N and 0 < � < �1 � tk=a, we have

kekð1Þk� � �t
Xk�1

j¼0

kvjk��t

by (17). For 0 � j � k� 1, it follows from (16) that

kvjk� � V2=ð�0 � �� tjþ1=aÞ2

� V2=ð�0 � �1Þð�1 � �� tk=aÞ:
Thus we obtain, with V ¼ V2=ð�0 � �1Þ,

kekð1Þk� � ðV�tÞtk=ð�1 � �� tk=aÞ

for 1 � k � N , 0 < � < �1 � tk=a. Since e0
ð1Þ ¼ 0,

½eð1Þ	0a � V�t follows.

(Step 2) Take b0 and c0 with

c < c0 < b0 < minfa; 1=4Cg;

and put � :¼ 1� c0=b0. Then b0 ¼ c0=ð1� �Þ and

0 < � < 1. Take � with 0 < � < 1 and 4Cb0 < �2, and

put bm :¼ c0=ð1� ��mÞ for all integers m � 0. It will

be needed later that

1=bmþ1 � 1=bm ¼ �mð1� �Þðb0 � c0Þ=b0c0:

We have c < c0 < � � � < b2 < b1 < b0 < a, hence

½ � 	0c � ½ � 	
0
c0
� � � � � ½ � 	0b2

� ½ � 	0b1
� ½ � 	0b0

� ½ � 	0a;
Ya � Yb0

� Yb1
� Yb2

� � � � � Yc0
� Yc;

by (20). Therefore

eð1Þ 2 Yb0
; ½eð1Þ	0b0

� V�t;ð24Þ

in view of Step 1. By (21), we also have

ek
ð1Þ 2 B�;ð25Þ

kekð1Þk� � ½eð1Þ	
0
b0
=ð1=b1 � 1=b0Þð26Þ

� b0c0V�t=ðb0 � c0Þð1� �Þ;
for 0 � k � N and 0 < � � �1 � tk=b1.

(Step 3) We take a positive number S as

S ¼ b0c0V =ðb0 � c0Þð1� �Þ2;

and suppose that S�t < R=2. Then the following

assertions hold for all integers m � 0:

ð1Þm eð0Þ; . . . ; eðmþ1Þ are defined by (22) and belong

to Ybm ;

ð2Þm ½eðmþ1Þ � eðmÞ	0bm � �
2mV�t;

ð3Þm kekðmþ1Þk� � ð1� �mþ1ÞS�t

for 0 � k � N , 0 < � � �1 � tk=bmþ1.

We prove them by induction on m. The assertions

ð1Þ0, ð2Þ0, ð3Þ0 follow from (24) and (26). Next

suppose ð1Þm, ð2Þm, ð3Þm for some integer m � 0.

The inductive step consists of paragraphs (A)–(C).

(A) Here we write �k :¼ �1 � tk=bmþ1. For each

k, 1 � k � N , we show that the formula

ek
ðmþ2Þ :¼ �t

Xk�1

j¼0

½F ðtj; uðtjÞ þ ejðmþ1ÞÞ

� F ðtj; uðtjÞÞ � wj	
defines an element of B�k .

Since �k � �1 � tk=b1, (23) and (25) show that

��t
Xk�1

j¼0

wj 2 B�k :

For 0 � j � k� 1, it follows from ð3Þm that

kejðmþ1Þk�j < R=2. Since �j < �0 � tj=a by �1 < �0

and bmþ1 < a, we have kuðtjÞk�j � R=2 from (10)

and hence kuðtkÞ þ ekðmþ1Þk�j < R. Since �k < �j for

0 � j � k� 1, we have

F ðtj; uðtjÞ þ ejðmþ1ÞÞ 2 B�k; F ðtj; uðtjÞÞ 2 B�k

from (8). Thus ek
ðmþ2Þ belongs to B�k .

(B) Let eðmþ2Þ :¼ ð0; e1
ðmþ2Þ; . . . ; eN

ðmþ2ÞÞ. To

prove ð1Þmþ1, it suffices to show that

eðmþ2Þ � eðmþ1Þ 2 Ybmþ1

since we already have eð0Þ; . . . ; eðmþ1Þ 2 Ybmþ1
in view

of ð1Þm and Ybm � Ybmþ1
. For 1 � k � N and 0 < � <

�1 � tk=bmþ1, put

�0j :¼ ð�þ �1 � tj=bmþ1Þ=2

for 0 � j � k� 1. Note that � < �0j < �1 � tj=bmþ1.

Using (8) with �0 ¼ �0j, we compute

kekðmþ2Þ � ekðmþ1Þk�

� �t
Xk�1

j¼0

kF ðtj; uðtjÞ þ ejðmþ1ÞÞ

� F ðtj; uðtjÞ þ ejðmÞÞk�

� �t
Xk�1

j¼0

C

�0j � �
kejðmþ1Þ � ejðmÞk�0j ;

and using eðmþ1Þ � eðmÞ 2 Ybmþ1
and ½ � 	0bmþ1

� ½ � 	0bm ,

� �t
Xk�1

j¼0

C

�0j � �
½eðmþ1Þ � eðmÞ	0bmþ1

tj

�1 � �0j � tj=bmþ1

¼ �t
Xk�1

j¼0

C ½eðmþ1Þ � eðmÞ	0bmþ1
tj

ð�1 � �� tj=bmþ1Þ2=4

� 4Ctk½eðmþ1Þ � eðmÞ	0bm
Xk�1

j¼0

�t

ð�1 � �� tj=bmþ1Þ2

�
4Cbmþ1½eðmþ1Þ � eðmÞ	0bmtk

�1 � �� tk=bmþ1
;
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where the last inequality is obtained by using

Xk�1

j¼0

�t

ðA� tjÞ2
�
Xk�1

j¼0

tjþ1 � tj
ðA� tjÞðA� tjþ1Þ

¼
tk

AðA� tkÞ

and tk < bmþ1ð�1 � �Þ. Since 4Cbmþ1 < �2, we get

kekðmþ2Þ � ekðmþ1Þk� �
�2½eðmþ1Þ � eðmÞ	0bmtk
�1 � �� tk=bmþ1

for 1 � k � N and 0 < � < �1 � tk=bmþ1. This in-

equality holds also for k ¼ 0 and thus

eðmþ2Þ � eðmþ1Þ 2 Ybmþ1
;

½eðmþ2Þ � eðmþ1Þ	0bmþ1
� �2½eðmþ1Þ � eðmÞ	0bm :

The former proves ð1Þmþ1 as remarked above.

Combining the latter with ð2Þm proves ð2Þmþ1.

(C) For 0 � k � N and 0 < � � �1 � tk=bmþ2,

it follows from (21) and ð2Þmþ1 that

kekðmþ2Þ � ekðmþ1Þk�
� ½eðmþ2Þ � eðmþ1Þ	0bmþ1

=ð1=bmþ2 � 1=bmþ1Þ
� �mþ1ð1� �ÞS�t:

Adding this with ð3Þm proves ð3Þmþ1. Thus we finish

the inductive step, and the assertions ð1Þm, ð2Þm,

ð3Þm hold for all integers m � 0.

(Step 4) Formulas ð2Þm of Step 3 imply that

(22) defines a Cauchy sequence feðmÞgm�0 in the

Banach space Yc0
. Let e ¼ ðe0; . . . ; eNÞ denote the

limit: ½eðmÞ � e	0c0
! 0 as m!1. The definition of

½ � 	0c0
shows that

kekðmÞ � ekk� ! 0 as m!1ð27Þ

for 0 � k � N and � with 0 < � < �1 � tk=c0. For

such k and �, formulas ð3Þm hold for all m, and by

letting m!1 we obtain

kekk� � S�t:

Thus (19) follows since c < c0.

For 0 � k � N fixed, we put � :¼ �1 � tk=c and

�0 :¼ �1 � tk=c0. For 0 � j � k� 1, we have �0 <
�1 � tj=c0 and therefore kejðmÞ � ejk�0 ! 0 as m!
1 by (27). Since � < �0, it follows from (8) that for

0 � j � k� 1,

kF ðtj; uðtjÞ þ ejðmÞÞ � F ðtj; uðtjÞ þ ejÞk� ! 0

as m!1:
Taking the limit of (22) shows that e satisfies (18) in

B�. Thus we finish the proof of Claim 4.2. �

6. Numerical experiment. We illustrate

our main result by the Cauchy problem for a

system of quasi-linear PDE’s of the normal form for

u ¼ uðt; xÞ and v ¼ vðt; xÞ:
ut ¼ ðu� vÞux þ ðu2 þ 1Þvxð28Þ

þ 1þ ðtuþ 1Þðxu� vÞ;
vt ¼ �ðv2 þ 1Þux � ðu� vÞvx þ 1þ xð1� u2Þ;ð29Þ

ujt¼0 ¼ 0; vjt¼0 ¼ 0:ð30Þ

The Cauchy problem (28)–(30) has a unique

solution

u ¼ t; v ¼ tð1þ xÞ:ð31Þ

The system of PDE’s (28)–(29) has a characteristic

polynomial

	 � ðu� vÞ
 �ðu2 þ 1Þ

ðv2 þ 1Þ
 	 þ ðu� vÞ


�����

����� ¼ 	
2 þ ðuvþ 1Þ2
:

Thus in the region x > �1� 1=t2 the system is

elliptic along the solution (31) since uv > �1, and

the problem (28)–(30) is ill-posed in Hadamard’s

sense.

Theorem 3.1 discusses discretization only in t,

but we discretize the system (28)–(29) also in x for

numerical computation. For positive numbers �t

and �x, we replace u, ut, ux by

ukðxÞ;
ukþ1ðxÞ � ukðxÞ

�t
;

ukðxþ�xÞ � ukðxÞ
�x

;

where ukðxÞ is a function of x that is expected to be

an approximation to uðtk; xÞ. We replace vt, vx, v

in a similar way. Let us consider (28)–(30) in the

complex domain, and let B� be the Banach space of

holomorphic functions in fx 2 C; jxj < �g with sup-

norm. Then Theorem 3.1 implies that if we were

able to compute exact solutions to a scheme that

discretizes only in t but not in x, they would

converge to the exact solution to the Cauchy

problem (28)–(30) with the maximum error of order

Oð�tÞ as �t! 0.

Figures 1 and 2 are profiles of the numerical

solution vkðxÞ with �t ¼ �x ¼ 0:01 over the region

0 � t � 0:5, 0 � x � 10. Figure 1 is obtained by the

standard double precision arithmetic, and the oscil-

lation results from instability of the scheme and

effect of the growth of rounding errors. Figure 2 is

obtained by 200 decimal digits arithmetic on exflib

[1], and we see that the use of multiple precision

arithmetic prevents the growth of rounding errors.
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Figure 3 is the plot of the maximum errors

sup
0�tk�0:2; 0�x�10

jukðxÞ � uðtk; xÞj;

sup
0�tk�0:2; 0�x�10

jvkðxÞ � vðtk; xÞj;

versus h ¼ �t ¼ �x. Both axes are in logarithmic

scale and the numerical solutions are computed

with 5000 decimal digits precision. The dashed line

and the dotted one indicate the rate of convergence

of order Oð�tÞ, and the numerical results are in

good agreement with Theorem 3.1 for sufficiently

small �t.

The numerical experiment given above sug-

gests that the order of magnitude of the errors

coming from �x does not exceed that coming from

�t as long as �x ¼ �t. We consider that the

experiment visualizes Theorem 3.1 and suggests a

convergence result for fully discretized schemes

under suitable restriction on the ratio �x=�t.
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Fig. 1. Numerical solution vkðxÞ with �t ¼ �x ¼ 0:01 obtained

by the standard double precision arithmetic.
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Fig. 2. Numerical solution vkðxÞ with �t ¼ �x ¼ 0:01 obtained

by 200 decimal digits precision arithmetic.
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Fig. 3. The maximum error between the exact solution and

the numerical solution over 0 < t < 0:2, 0 < x < 10, plotted

versus h ¼ �t ¼ �x and computed with 5000 decimal digits

precision.
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