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Abstract: We construct explicit examples of genus two fibrations with no sections on

rational surfaces by the double covering method. For the proof of non-existence of sections, we

use the theory of the virtual Mordell-Weil groups.

Key words: Sections of fibrations; Mordell-Weil groups; rational surfaces.

1. Introduction. We shall work over the

complex number field C. Let S be a smooth

projective rational surface and ’ : S ! P1 a fibra-

tion whose general fibre F is a projective curve of

genus g � 1. We assume that ’ is relatively

minimal, i.e., there are no ð�1Þ-curves contained

in fibres. In the case where g ¼ 1, it is well-known

that the Picard number �ðSÞ equals ten. Further-

more, as a consequence of the canonical bundle

formula of Kodaira [10, Theorem 12], ’ admits a

section if and only if ’ does not have any multiple

fibres (e.g., [4, Proposition (1.1.)]). When g � 2, it

can be shown that 11 � �ðSÞ � 4gþ 6 by a similar

argument to [7, §2] (cf. [9], see also [14, Theorem

2.8] and [3]). Furthermore, if either �ðSÞ ¼ 4gþ 6

with g 6¼ 1 or �ðSÞ ¼ 13 with g ¼ 2 holds, then ’

always admits a section (cf. [8, Theorem 2.2] and

[6, Lemma 1.4], see also [14], [13] and [2, §10.5]).

We restrict ourselves to the case where g ¼ 2

and �ðSÞ ¼ 12. Suppose that ’ admits a section. We

can regard it as a horizontal curve D on S such that

D:F ¼ 1. Therefore the fibres of ’ contain at least

one irreducible component with multiplicity one (cf.

Remark 5). The purpose of the paper is to construct

examples for the converse:

Theorem 1. Let ðt; xÞ be local coordinates of

ðP1 n f1gÞ � ðP1 n f1gÞ and pr1 : P1 �P1 ! P1

the projection map onto the first factor. Put �0 ¼
pr�1

1 ð0Þ and �1 ¼ pr�1
1 ð1Þ. Let � and � be complex

numbers with � 6¼ 0; 1 and � 6¼ 0; 1=2; 2=3; 1. Let

Að�; �Þ denote the closure of the zero set of a

polynomial ��x3 � �tx2 � ð3� � 2Þtxþ ð2� � 1Þt2 in

t; x on P1 �P1 for � 2 C n f0g. Put B ¼ Að1; �Þ þ

Að�; �Þ þ �0 þ �1. Let � : X̂ ! P1 �P1 be the finite

double cover branched along B and � : ~X ! X̂ the

canonical resolution of singularities of X̂. Then a

general fibre of pr1 � � � � : ~X ! P1 is a smooth

curve of genus two. Let f : X ! P1 be the relatively

minimal model of pr1 � � � �.

Then X is a smooth rational surface with

�ðXÞ ¼ 12. Furthermore, f : X ! P1 has no sec-

tions, the fibres f�1ð0Þ and f�1ð1Þ are as in

[11, p. 172, 3{II�3{0], and the other fibres of f are

irreducible and reduced. In particular, the fibres of

f contain at least one irreducible component with

multiplicity one.

Let us explain the organization of the paper. At

first we construct a genus two fibration f : X ! P1

as in Theorem 1 from a P1-bundle �0 with a given

branch divisor by the double covering method.

In Proposition 3, we show the assertions as in

Theorem 1 except for non-existence of a section of

f. If f has a section, then f has at least two sections

since the branch divisor does not contain a section

of �0 (cf. Lemma 6).

Next we consider the ruling associated to

2KX þ F , where KX denotes the canonical divisor.

The degenerate fibres consist of the ð�2Þ-curves

contained in fibres of f and the ð�1Þ-bisections of

f. Here a ð�1Þ-bisection of f means a ð�1Þ-curve

meeting F at two points. In Proposition 7, through

a birational morphism from X to a relatively

minimal model of the ruling, we have an explicit

description of the Néron-Severi group NSðXÞ. Then

we see that there is a (non-effective) divisor D with

D:F ¼ 1. In fact, Corollary 8 gives us that D and

the irreducible components of the fibres of f

generate NSðXÞ.
In §3, we introduce the theory of the virtual
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Mordell-Weil groups. Further, Corollary 8 yields

that the virtual Mordell-Weil group of f is trivial.

As a result, a section of f is unique if it exists. This

contradicts Lemma 6. Therefore f has no sections.

This completes the proof of Theorem 1.

2. Construction. In this section we shall

construct a smooth projective rational surface

together with a relatively minimal fibration of

genus two as in Theorem 1. Furthermore, we shall

describe singular fibres of the fibration and the

Néron-Severi group of the surface, which coincides

with the Picard group in our situation.

Put �0 ¼ P1 �P1. Denote by ðt; xÞ the inho-

mogeneous coordinates on �0. Let prn : �0 ! P1 be

the projection map onto the n-th factor. Put �q ¼
pr�1

1 ðqÞ and �q ¼ pr�1
2 ðqÞ for any point q 2 P1. Let

� and � be complex numbers with � 6¼ 0; 1 and

� 6¼ 0; 1=2; 1. Let Að�; �Þ denote the closure of the

zero set of a polynomial ��x3 � �tx2 � ð3� � 2Þtxþ
ð2� � 1Þt2 in t; x on P1 �P1 for � 2 C n f0g. Put

B ¼ Að1; �Þ þ Að�; �Þ þ �0 þ �1.

Let �1 : W1 ! �0 be the blow-up at two points

ð0; 0Þ and ð1;1Þ with the exceptional curves E0;1

and E1;1, i.e., �1ðE0;1Þ ¼ ð0; 0Þ and �1ðE1;1Þ ¼
ð1;1Þ. Let Pi;2 be the intersection point of Ei;1

and the strict transform to W1 of �i for i ¼ 0;1.

The strict transform A1ð�; �Þ to W1 of Að�; �Þ passes

through the two points P0;2 and P1;2. The local

intersection number at P0;2 of A1ð1; �Þ and A1ð�; �Þ
is two if and only if � ¼ 2=3. Next let �2 : W2 !W1

be the blow-up at two points P0;2 and P1;2 with

E0;2 ¼ ��1
2 ðP0;2Þ and E1;2 ¼ ��1

2 ðP1;2Þ. The strict

transform to W2 of �0 and that of �1 are

ð�1Þ-curves on W2. Let �02 : W2 !W 0
1 be the con-

traction of the two ð�1Þ-curves. The image by �02 of

the strict transform to W2 of �0 and that of �1 are

ð�1Þ-curves on W 0
1. By contracting them, we get

another P1 �P1 and denote it by �00. Then the

images of E0;2 and E1;2 by the other contraction

�0 : W2 ! �00 are two distinct fibres of the projec-

tion map pr02 : �00 ! P1 onto the second factor.

Similarly, the images by �0 of the strict transforms

of E0;1 and E1;1 are two distinct fibres of the

projection map pr01 : �00 ! P1 onto the first factor.

Therefore we may assume that the strict transform

to W2 of �i contracts by �0 to the point ði; iÞ for

i ¼ 0;1.

Lemma 2. Let �0 : W2 ! �00 be the above

contraction. Denote by ðv; zÞ the inhomogeneous

coordinates on �00. Let  : �0 --K �00 be the rational

map given by ðv; zÞ ¼ ðt=x2; t=xÞ. Then  is the

birational map satisfying �0 ¼  � �1 � �2. Further-

more, the closure of the zero set of a polynomial

�ð� � zÞ � ð3� � 2Þvþ ð2� � 1Þvz in v; z on �00 is

isomorphic to the strict transform A2ð�; �Þ to W2 of

Að�; �Þ for � 2 C n f0g. In particular, Að�; �Þ is

irreducible and tangent to �1=� at the point given by

ðt; xÞ ¼ ð1=�; 1=�Þ, and B is reduced.

Proof. We obtain  �1 by setting ðt; xÞ ¼
ðz2=v; z=vÞ. The indeterminacy of  �1 consists of

ð0; 0Þ; ð1;1Þ and their infinitely near points. Let

A0ð�; �Þ denote the closure of the zero set of a

polynomial �ð� � zÞ � ð3� � 2Þvþ ð2� � 1Þvz in v; z

on �00. From � 6¼ 1, we show that A0ð�; �Þ is

irreducible. In fact, A0ð�; �Þ is tangent to the closure

of the zero set of a polynomial v� �z2 in v; z on �00
at ð�; 1Þ. Therefore Að�; �Þ is tangent to �1=� at

ð1=�; 1=�Þ. It follows from � 6¼ 0; 1=2 that A0ð�; �Þ
does not pass through ð0; 0Þ; ð1;1Þ. Thus A0ð�; �Þ
is isomorphic to A2ð�; �Þ through �0. In particular,

Að�; �Þ is also irreducible and B is reduced. �

Notice that B is divisible by two in the Picard

group Picð�0Þ of �0. Since Picð�0Þ is torsion free,

there is a unique element 	 2 Picð�0Þ with B � 2	,

where the symbol � means the linear equivalence of

divisors. Thus a finite double cover of �0 branched

along B is uniquely constructed from B up to

isomorphism. We denote it by � : X̂ ! �0. Let us

resolve singularities of X̂ according to Horikawa [5].

In fact, �0 and �1 are singular fibres of type (V) as

in [5, p. 84, Definition] for all �; � with � 6¼ 0; 1 and

� 6¼ 0; 1=2; 1. Furthermore, W2 coincides with W[ as

in [5, p. 85, Lemma 7]. In our situation singularities

of the induced branch divisor B[ are two simple

triple points, which correspond to the point

ð1; ð3� � 2Þ=ð2� � 1ÞÞ and the point ð0; �Þ on �00
through �0 as in Lemma 2. On W2, in the corre-

sponding points, A2ð1; �Þ and A2ð�; �Þ meet trans-

versally. One of the two points, which is denoted by

P0;3, is on the strict transform of E0;1. We denote by

P1;3 the other one, which is on the strict transform

of E1;1. Denote by �3 : W3 !W2 the blow-up at the

two points P0;3 and P1;3 with E0;3 ¼ ��1
3 ðP0;3Þ and

E1;3 ¼ ��1
3 ðP1;3Þ. Let A3ð�; �Þ denote the strict

transform to W3 of Að�; �Þ. Remark that A3ð1; �Þ
and A3ð�; �Þ are disjoint from each other.

Let Pi;4 denote the intersection point of Ei;3 and

A3ð1; �Þ and let Pi;5 be that of Ei;3 and A3ð�; �Þ for

i ¼ 0;1. Denote by Pi;6 the intersection point of

Ei;3 and the strict transform to W3 of Ei;1. Let �6 :
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~W !W3 be the blow-up at the six points Pi;j with

i ¼ 0;1 and j ¼ 4; 5; 6. Set Ei;j ¼ ��1
6 ðPi;jÞ. For i ¼

0;1 and k ¼ 1; 2; 3, we denote by Êi;k the strict

transform to ~W of Ei;k. In the same way, �̂i and �̂i
denote respectively that of �i and �i. Let A6ð�; �Þ
be the strict transform to ~W of Að�; �Þ. For

simplicity, we denote the pull-back to ~W of them

by the same symbols. Thus we have A6ð1; �Þ þ
E0;4 þ E1;4 � A6ð�; �Þ þ E0;5 þ E1;5 � 3�0 þ 2�0 �
2E0;1 � E0;2 � E0;3 � 2E1;1 � E1;2 � E1;3.

Now, we set

~B ¼ A6ð1; �Þ þ A6ð�; �Þ þ �̂0 þ �̂1

þ Ê0;1 þ Ê0;3 þ Ê1;1 þ Ê1;3:
Since ~B is smooth and divisible by two in Picð ~W Þ,
we obtain a smooth projective surface ~X by the

finite double cover $ : ~X ! ~W branched along ~B.

Put ~� ¼ �1 � �2 � �3 � �6. Then there exists the

birational morphism � : ~X ! X̂ with � � � ¼
~� �$. We call ~X the canonical resolution of

singularities of X̂. For simplicity, we put ~� ¼ � � �
and ~f ¼ pr1 � ~�.

Let us consider ~f : ~X ! P1. We set qð�; �Þ ¼
�ð3� � 2Þ3=ð2�� � �Þ for two complex numbers �

and � with � 6¼ 0 and � 6¼ 0; 1=2; 1. If � 6¼ 2=3, then

�qð�;�Þ is tangent to Að�; �Þ. We know from Lemma 2

that �1=� does so. By restricting pr1 � ~� : ~W ! P1

to A6ð1; �Þ and to A6ð�; �Þ, we see that �q meets B

transversely at six points for any q 2 P1 n f0;1; 1;
1=�; qð1; �Þ; qð�; �Þg from the Riemann-Hurwitz for-

mula. Therefore a general fibre of ~f : ~X ! P1 is a

smooth projective curve of genus two. Furthermore,

we remark that qð1; �Þ � 1 ¼ ð3� � 1Þ3ð� � 1Þ=ð2� �
1Þ and �1 meets Að�; 1=3Þ transversely at three

points. Exactly at two points �1 meets B trans-

versely if and only if � and � satisfy qð�; �Þ ¼ 1.

When qð1; �Þ 6¼ 1 and qð�; �Þ 6¼ 1, at four points �1

meets B transversely. Thus �1 meets B transversely

at least at two points. In this way, we can check

that �1=�, �qð1;�Þ and �qð�;�Þ also do so. Hence the

reducible fibres of ~f are ~f�1ð0Þ and ~f�1ð1Þ only.

Let ei denote the ð�1Þ-curve on ~X with 2ei ¼
$��̂i for i ¼ 0;1. Although ei meets $�Êi;2 at one

point, ei is disjoint from the other components of
~f�1ðiÞ. Additionally, $�Êi;2 is not a ð�2Þ-curve.

Thus, after the contraction 
 : ~X ! X of e0 and e1,

we obtain the relatively minimal model f : X ! P1

of ~f : ~X ! P1.

Proposition 3. For two complex numbers �

and � with � 6¼ 0; 1 and � 6¼ 0; 1=2; 1, the fibration

f : X ! P1 obtained as above is a relatively minimal

fibration of genus two. The fibre f�1ð1Þ is as in

[11, p. 172, 3{II�3{0]. If � 6¼ 2=3, then f�1ð0Þ is also

as in [11, p. 172, 3{II�3{0]. However, f�1ð0Þ is as in

[11, p. 155, 1{IV] if � ¼ 2=3. The other fibres of f

are irreducible and reduced. Furthermore, X is a

smooth rational surface with �ðXÞ ¼ 12.

Proof. Consider A1ð1; �Þ þ A1ð�; �Þ þ E0;1 þ
E1;1 on W1. For i ¼ 0;1, the strict transform to

W1 of �i is a ð�1Þ-curve. The contraction of the

two ð�1Þ-curves translates singularities of the

branch divisor into those as in [11, p. 155, 1–IV]

and [11, p. 172, 3–II�3{0]. Thus, it is enough to prove

that ~X is a rational surface with �ð ~XÞ ¼ 14.

Consider the projection map pr01 : �00 ! P1

onto the first factor. Let �01 be the pull-back to ~W

of the fibre given by v ¼ 1 on �00. We remark that

$��01 is nef. Let us compute $��01:K ~X. Lemma 2

yields $��01 � $�ð2�0 þ �0 � E0;1 � E0;2 � E1;1 �
E1;2Þ. We know

~B � 6�0 þ 6�0 � 4ðE0;1 þ E0;2 þ E1;1 þ E1;2Þ

� 2
X6

j¼3

ðE0;j þ E1;jÞ:

Hence K ~X � $�ðK ~W þ ~B=2Þ � $�ð�0 þ �0 � E0;1 �
E0;2 � E1;1 � E1;2Þ. For all positive integers n, we

conclude that the n-th plurigenus of ~X is zero from

$��01:nK ~X ¼ �2n < 0. The finite double cover $

also gives us �ð ~XÞ ¼ 2�ð ~W Þ þ ~B:K ~W=4þ ~B2=8 ¼ 1

(e.g., [1, p. 237]), where �ð ~XÞ and �ð ~W Þ respectively

denote the Euler characteristic of ~X and ~W . This

implies that the irregularity of ~X is zero. Therefore
~X is a rational surface by Castelnuovo’s rationality

criterion. Thus b1ð ~XÞ ¼ b3ð ~XÞ ¼ 0 and b2ð ~XÞ ¼
�ð ~XÞ, where bnð ~XÞ denotes the n-th Betti number

of ~X. This and Noether’s formula provide �ð ~XÞ ¼
10�K2

~X
. So �ð ~XÞ ¼ 14 follows. �

Corollary 4. Keep the notation and assump-

tions as above. For i ¼ 0;1 and j ¼ 1; 3, let �i;j

denote the ð�2Þ-curve with 2
��i;j ¼ $�Êi;j. Let �i;j

be the ð�2Þ-curve which is identified with $�Ei;j

through 
 for i ¼ 0;1 and j ¼ 4; 5; 6. Put �i;2 ¼

ð$�Êi;2Þ for i ¼ 0;1. Then �0;2 is a ð�3Þ-curve

with �0;2:�0;3 ¼ 1 if � ¼ 2=3 and an elliptic curve

with �0;2:�0;1 ¼ ��2
0;2 ¼ 1 otherwise. �1;2 is an

elliptic curve with �1;2:�1;1 ¼ ��2
1;2 ¼ 1 for every

� . For i ¼ 0;1, �i;4:�i;3 ¼ �i;5:�i;3 ¼ �i;3:�i;6 ¼
�i;6:�i;1 ¼ 1. For the other pairs of irreducible

components of the fibres, two components are
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disjoint from each other. In particular, the dual

graph of the configuration of �i;4;�i;5;�i;3;�i;6 and

�i;1 has the Dynkin diagram of type D5. Further-

more, the irreducible decompositions of the two

reducible fibres of f are as follows: f�1ð0Þ ¼ 2�0;2 þ
6�0;3 þ 3�0;4 þ 3�0;5 þ 4�0;6 þ 2�0;1 if � ¼ 2=3 and

f�1ð0Þ ¼ �0;4 þ �0;5 þ 2�0;3 þ 2�0;6 þ 2�0;1 þ 2�0;2

otherwise. f�1ð1Þ ¼ �1;4 þ�1;5 þ 2�1;3 þ
2�1;6 þ 2�1;1 þ 2�1;2 for every � .

Remark 5. Let f : X ! P1 be a fibration

with � ¼ 2=3 as in Proposition 3. Then a non-

existence result for sections can be derived from an

easy calculation as follows: Suppose that f admits a

section. We can regard it as a horizontal curve D0

on X such that D0:f
�1ðqÞ ¼ 1 for all q 2 P1.

However, D0:f
�1ð0Þ � 2 since multiplicities of the

irreducible components of f�1ð0Þ are at least two.

We obtain a contradiction.

In order to prove that f has no sections for

every � , we need the following

Lemma 6. Let f : X ! P1 be a fibration as

in Proposition 3. If there exists a section of f, then f

has at least two sections.

Proof. Suppose that there exists a section of f ,

which can be regarded as a horizontal curve D1 on

X. Let ~D1 be the strict transform by 
 of D1. Then

the image C by ~� of ~D1 is a section of pr1 : �0 ! P1.

Here we recall the irreducible decomposition of B.

In particular, B does not contain C as an irreducible

component. Hence we obtain another section ~D2

of ~f as the other component ð~��C � ~D1Þ from the

irreducible decomposition of ~��C. So we have

another section of f as the image by 
 of ~D2. �

To describe irreducible components of fibres of

f : X ! P1 in NSðXÞ, through a birational mor-

phism X ! P2, we interpret f : X ! P1 as a pencil

generated by plane curves of degree seven which

have one triple point and ten double points at

eleven base points.

Proposition 7. Let f : X ! P1 be a fibra-

tion as in Proposition 3, F a general fibre of f and

�i;j the irreducible components of the reducible

fibres as in Corollary 4. Then there exists a bira-

tional morphism � : X ! P2 such that the pull-back

to X of a line ‘ on P2 and that of ð�1Þ-curves

eh; h ¼ 1; 2; . . . ; 11 contracted by � satisfy the

following

ðaÞ F ¼ 7‘� 3e1 � 2
P11

h¼2 eh, �0;4 ¼ ‘� e1 �
e8 � e10, �1;4 ¼ ‘� e1 � e9 � e11,

�0;1¼ e4 � e2; �1;1¼ e5 � e3;

�0;6¼ e6 � e4; �1;6¼ e7 � e5;

�0;3¼ e8 � e6; �1;3¼ e9 � e7;

�0;5¼ e10 � e8; �1;5¼ e11 � e9

and �1;2 ¼ �KX þ e3 for every � .

ðbÞ �0;2 ¼ 2‘ � e3 � e5 � e7 � e8 � e9 � e10 � e11

if � ¼ 2=3 and �0;2 ¼ �KX þ e2 otherwise.

Proof. Let e1 denote the ð�1Þ-curve with

2
�e1 ¼ $�A6ð1; �Þ. Since �1:A6ð1; �Þ ¼ 3 on ~W , we

have F:e1 ¼ 3. The images by 
 of $��̂0 and $��̂1
are two disjoint ð�1Þ-curves on X, which meet F at

two points. Put e2 ¼ 
ð$��̂0Þ and e3 ¼ 
ð$��̂1Þ.
We also remark that e2:e1 ¼ e3:e1 ¼ 0, since

�̂0:A6ð1; �Þ ¼ �̂1:A6ð1; �Þ ¼ 0.

We know $��01:K ~X ¼ �2 in the proof of

Proposition 3. By the adjunction formula we verify

that pr01 : �00 ! P1 induces a ruling ~
 : ~X ! P1

through  � ~� : ~X ! �00. The degenerate fibres of ~


are ~
�1ð0Þ and ~
�1ð1Þ only, since the fibres of pr01
except for pr0�1

1 ð0Þ and pr0�1
1 ð1Þ do not pass through

the intersection points of A0ð1; �Þ and A0ð�; �Þ.
Recall the definition of  in Lemma 2. Then ~
�1ðiÞ
contains ei for each i ¼ 0;1 as an irreducible

component. Hence there is a unique ruling 
 : X !
P1 such that ~
 ¼ 
 � 
. Furthermore, 
�1ð1Þ con-

sists of �0;j; j ¼ 1; 3; 4; 5; 6 and e2 whose configura-

tion is as in [8, Figure 2]. In a similar configuration

as above, 
�1ð0Þ consists of �1; j; j ¼ 1; 3; 4; 5; 6

and e3.

Notice that e1:�0;4 ¼ e1:�1;4 ¼ 1 and the other

components are disjoint from e1. Let �1 : X ! �1 be

the birational morphism contracting e2; e3 and eight

ð�2Þ-curves �i;1;�i;6;�i;3;�i;5 with i ¼ 0;1, which

are the strict transforms of eight ð�1Þ-curves. Here

�1 is a relatively minimal model of 
 : X ! P1. We

remark that the image of e1 is the minimal section of

�1. Let �0 : �1 ! P2 be the contraction and put

� ¼ �0 � �1.

From the configuration of e2; e3 and eight

ð�2Þ-curves �i;1;�i;6;�i;3;�i;5 with i ¼ 0;1, we

can denote the pull-backs to X of the eight

ð�1Þ-curves by eh; h ¼ 4; 5; . . . ; 11 so that e4 ¼
�0;1 þ e2; e5 ¼ �1;1 þ e3; e6 ¼ �0;6 þ e4; e7 ¼ �1;6 þ
e5; e8 ¼ �0;3 þ e6; e9 ¼ �1;3 þ e7; e10 ¼ �0;5 þ e8 and

e11 ¼ �1;5 þ e9. We recall that the images by �1 of

�0;4 and �1;4 are fibres of �1. It follows from the

configurations of 
�1ð0Þ and 
�1ð1Þ that �0;4 ¼
‘� e1 � e8 � e10 and �1;4 ¼ ‘� e1 � e9 � e11, where

‘ denotes the pull-back to X of a line on P2.

96 S. KITAGAWA [Vol. 93(A),



Next we recall that $��̂0 ¼ 
�e2 � e1 and

K ~X � $�ðK ~W þ ~B=2Þ � $��̂0 � $�E0;2 þ $��̂1.

Hence we have $�E0;2 � �K ~X þ 
�e2 þ e1 �

�ð�KX þ e2Þ � e0. Therefore we get �0;2 ¼ �KX þ
e2 from Ê0;2 ¼ E0;2 when � 6¼ 2=3. In the same way,

we see �1;2 ¼ �KX þ e3 for every � . Furthermore,

we show F � f�1ð1Þ ¼ 2�1;2 þ 2�1;1 þ 2�1;6 þ
2�1;3 þ�1;4 þ�1;5 � 7‘� 3e1 � 2

P11
h¼2 eh.

To complete the proof, it is enough to describe

�0;2 by the Z-linear combinations of ‘ and eh’s when

� ¼ 2=3. The description follows immediately from

the others as in the condition (a) and the irreducible

decomposition of f�1ð0Þ as in Corollary 4. �

Corollary 8. Put D ¼ e1 � e11. Then

NSðXÞ ’ ZD	
M6

j¼1

Z�0;j 	
M4

j¼1

Z�1;j 	 Z�1;6:

Proof. It is well-known that NSðXÞ ’
Z‘	

L11
h¼1 Zeh. Thus we only have to represent ‘

and eh’s as Z-linear combinations of D and �i;j’s

from Proposition 7. Suppose � 6¼ 2=3. Then D and

the irreducible components of the reducible fibres

except for �1;5 generate ‘ and e1 as follows:

‘ ¼ 7Dþ 16�0;1 þ 13�0;2 þ 22�0;3 þ 14�0;4

þ 11�0;5 þ 19�0;6 � 13�1;1 � 16�1;2

� 7�1;3 � 4�1;4 � 10�1;6;

e1 ¼ 3Dþ 6�0;1 þ 5�0;2 þ 8�0;3 þ 5�0;4 þ 4�0;5

þ 7�0;6 � 5�1;1 � 6�1;2 � 3�1;3 � 2�1;4

� 4�1;6:

Furthermore, Proposition 7 immediately yields

that

e11 ¼ e1 �D; e9 ¼ ‘� e1 � e11 ��1;4;

e7 ¼ e9 ��1;3; e5 ¼ e7 ��1;6; e3 ¼ e5 ��1;1;

e2 ¼ e3 þ�0;2 ��1;2; e4 ¼ e2 þ�0;1;

e6 ¼ e4 þ�0;6; e8 ¼ e6 þ�0;3; e10 ¼ e8 þ�0;5:

Hence, we see that eh, h ¼ 2; 3; . . . ; 11 can be the

Z-linear combinations inductively.

In the case of � ¼ 2=3, we only have to replace

$�E0;2 ¼ �0;2, which holds if � 6¼ 2=3, with

$�E0;2 ¼ �0;2 þ 2�0;3 þ�0;4 þ�0;5 þ�0;6. There-

fore D, �0;1;�0;2; . . . ;�0;6, �1;1;�1;2;�1;3;�1;4
and �1;6 form Z-basis of NSðXÞ for every � . �

3. Virtual Mordell-Weil groups. We

shall introduce the theory of the virtual Mordell-

Weil groups, which is used to complete the proof of

Theorem 1. Let S be a smooth projective rational

surface and ’ : S ! P1 a relatively minimal fibra-

tion whose general fibre F is a projective curve of

genus g � 2. We denote by nq the number of

irreducible components of ’�1ðqÞ for any q 2 P1.

In [12, Definition 0.2], the virtual Mordell-Weil rank

r of ’, which does not necessarily admit a section, is

defined as r ¼ �ðSÞ � 2�
P

q2P1ðnq � 1Þ. For exam-

ple, when ’ : S ! P1 is a fibration as in Proposi-

tion 3, we know that �ðSÞ ¼ 12 and n0 ¼ n1 ¼ 6
with nq ¼ 1 for all q 2 P1 n f0;1g, which lead to

r ¼ 0.

Let V be the subgroup of NSðSÞ generated by

the irreducible components of the fibres of ’. The

primitive closure V̂ is defined as V̂ ¼ V 
Q \
NSðSÞ. Let us observe that V̂ =V can be regarded

as the virtual Mordell-Weil group of ’ with r ¼ 0.

Assume that there exists on S a divisor D with

D:F ¼ 1. When ’ admits a section, we can regard

it as the above D. Set TD ¼ ZD	 V � NSðSÞ. The

primitive closure T̂D is defined as T̂D ¼ TD 
Q \
NSðSÞ. Then, for all D with D:F ¼ 1, the quotient

groups of T̂D by TD are isomorphic to each other and

to V̂ =V as follows:

Lemma 9. The natural projection TD ! V

induces an isomorphism T̂D=TD ’ V̂ =V naturally.

Proof. Let �q;j be an irreducible component

of a reducible fibre ’�1ðqÞ for j ¼ 1; 2; . . . ; nq. Take

any E 2 T̂D. We have E ¼ �Dþ
P
�q;j�q;j for some

�; �q;j 2 Q by definition. In fact, � ¼ E:F must be

an integer. In particular,
P
�q;j�q;j ¼ E � �D 2

NSðSÞ. Therefore,
P
�q;j�q;j 2 V̂ . In this way, while

D:F ¼ 1, the natural projection T̂D ! V̂ of the

primitive closures is well-defined. Consider the

composition T̂D ! V̂ ! V̂ =V , which is a surjective

homomorphism of groups. Its kernel is equal to TD.

So T̂D=TD ’ V̂ =V follows. �

Via ’, we can regard S as a smooth projective

curve of genus g defined over the rational function

field K ¼ CðP1Þ. We assume that it has a K-ration-

al point O. Let J ’=K be the Jacobian variety of the

generic fibre F=K of ’. The Mordell-Weil group of

’ is the group of K-rational points J ’ðKÞ. It is a

finitely generated abelian group. The rank of the

group is equal to r. There is a natural one-to-one

correspondence between the set of K-rational

points F ðKÞ and the set of sections of ’. For

P 2 F ðKÞ, we denote by ðP Þ the section corre-

sponding to P which is regarded as a horizontal

curve on S. In particular, ðOÞ corresponding to the

origin O of J ’ðKÞ is called the zero section. In

[15, Theorem 3], we have the natural isomorphism
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of groups J ’ðKÞ ’ NSðSÞ=TðOÞ. By definition, the

torsion part J ’ðKÞtor is isomorphic to T̂ðOÞ=TðOÞ.
From Lemma 9, we conclude J ’ðKÞtor ’ V̂ =V .

Let f : X ! P1 be a fibration as in Proposi-

tion 3. We recall r ¼ 0. Furthermore, if f admits a

section, then we see that the Mordell-Weil group of

f is trivial from Corollary 8 and Lemma 9. Hence,

we have the following

Lemma 10. Let f : X ! P1 be a fibration as

in Proposition 3. Suppose that f admits a section.

Then it is the unique section of f.

Proof of Theorem 1. Let f : X ! P1 be a

fibration as in Proposition 3. We only have to show

that f has no sections. The assertion follows from

Lemmas 6 and 10. �
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