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Taylor series for the reciprocal gamma function and multiple zeta values
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Abstract:

We give a purely algebraic proof of a formula for Taylor coefficients of the

reciprocal gamma function. The formula expresses each coefficient in terms of multiple zeta
values. Our proof uses Hoffman’s harmonic algebra of multiple zeta values.
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index set k= (ki1,...,k;) of positive
integers k;, with the last entry k, > 1 for conver-
gence. We note that the function on the left-hand
side of (1) is equal to e /I'(1 4+ x), where v is
Euler’s constant and I'(x) is the gamma function.
In [3] and [4], this function plays an important
role in the theory of regularization of MZVs. The
formula (1) also gives an explicit formula for the
Taylor series for the reciprocal gamma function:
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Arakawa and Kaneko proved (1) by using the
Weierstrass infinite product of the gamma function.
The aim of this paper is to give an alternative,
purely algebraic proof of the formula in the setting
of abstract algebra of MZVs.

We recall the algebraic setup of MZVs that was
introduced by Hoffman [2]. We work with indices
directly, rather than with non-commutative poly-
nomials as in [2]. Let Z be the Q-vector space

%= QN
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spanned by a finite Q-linear combination of symbols
k] = [k1,..., k] with k = (ky,..., k) € N" for some
r. We understand Q[N'] = Q[¢] for r = 0. Further
let 2° denote the subspace of # spanned by the
admissible symbols, i.e., by [¢] and the symbols
[k1,..., k] with k. >2. On %, we consider the
Q-bilinear harmonic (stuffle) product * which is
defined inductively as:
(a) for any index k, [¢] * [k]
(b) for any indices
(ly,...,1s) with r; s Z 1,

K] 1] = [[k- ]+ [I], k] + [[K] = [1], 1]
+ (ke 1], K+ L),

where k_ = (]fl, ey krfl), - = (117 N ,15,1).

Hoffman proved that %, := (Z%,*) is a com-
mutative and associative Q-algebra and that %"
is a subalgebra of Z. [2]. Moreover, he proved
that the evaluation map ¢: %" 3 [k,..., k] +—
C(k1,..., k) € R, being extended Q-linearly, is an
algebra homomorphism from %" to R.

Our result is the following

Theorem 1. Let Z.[[z]] be the ring of formal
power series over %,. The equality

(k] * [0] = [K];
(]4}1,.. ,k‘T) and 1=
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holds in Z.[[x]]. Where exp, is the exponential
exp,(f) = Z:,C:O% with f* being the power in the
ring %.[[x]].
Applying the evaluation map ( coefficient-wise
to both sides of (2), we obtain (1).
2. Proof. Set
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S(k) = K]

for k> 2, and put S(0) = 1, S(1) = 0. By taking the
log, of both sides of the equation (2) and then
taking = - 0/0x, we see that (since both sides are 1
for z = 0) equation (2) is equivalent to
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which in turn is equivalent to
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Z[m] * S(n —m) =—nS(n)
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for n>2. We compute [m]*[ky,...,k] in [m]x*

S(n —m) by the harmonic product:
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On the other hand,
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Therefore, the proof is completed if we show that
the terms of length r on both sides coincide for each
r, i.e.,
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Let us compute the first sum on the left-hand side of
the last equation (3) by putting k; + m = h. Then,
we have

n—2r T

S oY %

N

m=2 ki+--+k,=n—m j=1 kJ'
Yk >2

r

X E [/{1,...,
=1

r n—2rn—2r+2

=22 2

=1 m=2 h=m+2

k1+m,...,kr]

r—1
(kj—1) (h—m—1)
X
k4 +§,:1 n— hjl_Il h_m)'
Vi >2
X[k‘l,...,]/},...,k,-_l]
I-th
S5 SN S|
= h=4 Fki+-+k._1=n—h j=1
Yki>2
h—2
(h—=m—1)
— k1, by ke
X (z; (h—m)' [ 1, ) /\a ) 1]
m= I-th

. h=2 (h—m-1) _ h—2 1 _ 1 _
Since Zm:? “(h=m)l Zm:2 ( (h—m—1)! (}L*’UL)[) -

— ﬁ + 1, the first sum of (3) is equal to
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Because the terms of h = 2,3 in (4) cancel out the
terms of h = 2,3 in (5) respectively, we include the
terms of h = 2,3 in the sums. Replacing h in the
first sum by k;, we have
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This gives equation (3) and hence completes the
proof. ([
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