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Abstract: In this paper, we study a uniqueness question of meromorphic functions of

certain differential polynomials that share a nonzero finite value or have the same fixed points

with the same of L-functions. The results in this paper extend the corresponding results from

Steuding [12, p. 152], Li [7], Fang [1] and Yang-Hua [14].
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1. Introduction and main results. L-

functions, with the Riemann zeta function as a

prototype, are important objects in number theory,

and value distribution of L-functions has been

studied extensively, which can be found, for exam-

ple in Steuding [12]. Value distribution of L-

functions concerns distribution of zeros of L-func-

tions L and, more generally, the c-points of L, i.e.,

the roots of the equation LðsÞ ¼ c, or the points in

the pre-image L�1 ¼ fs 2 C : LðsÞ ¼ cg, where and

in what follows, s denotes a complex variable in the

complex plane C and c denotes a value in the

extended complex plane C [ f1g. L-functions can

be analytically continued as meromorphic functions

in C. It is well-known that a nonconstant mero-

morphic function in C is completely determined by

five such pre-images (cf. [2,10,15,17]), which is a

famous theorem due to Nevanlinna and often

referred to as Nevanlinna’s uniqueness theorem.

Two meromorphic functions f and g in the complex

plane are said to share a value c 2 C [ f1g IM

(ignoring multiplicities) if f�1ðcÞ ¼ g�1ðcÞ as two

sets in C. Moreover, f and g are said to share a

value c CM (counting multiplicities) if they share

the value c and if the roots of the equations fðsÞ ¼ c
and gðsÞ ¼ c have the same multiplicities. Through-

out the paper, an L-function always means an L-

function L in the Selberg class, which includes

the Riemann zeta function �ðsÞ ¼
P1
n¼1

n�s and essen-

tially those Dirichlet series where one might ex-

pect a Riemann hypothesis. Such an L-function is

defined to be a Dirichlet series LðsÞ ¼
P1
n¼1

aðnÞn�s

satisfying the following axioms (cf. [11,12]): (i)

Ramanujan hypothesis. aðnÞ � n" for every " > 0.

(ii) Analytic continuation. There is a nonnegative

integer k such that ðs� 1ÞkLðsÞ is an entire function

of finite order. (iii) Functional equation. L satisfies

a functional equation of type �LðsÞ ¼ !�Lð1� sÞ,

where �LðsÞ ¼ LðsÞQs
QK
j¼1

�ð�jsþ �jÞ with positive

real numbers Q, �j and complex numbers �j, ! with

Re�j � 0 and j!j ¼ 1. (iv) Euler product hypothesis.

LðsÞ ¼
Q

p exp
P1
k¼1

bðpkÞ
pks

� �
with suitable coefficients

bðpkÞ satisfying bðpkÞ � pk� for some � < 1=2, where

the product is taken over all prime numbers p.

We first recall the following result due to

Steuding [12], which actually holds without the

Euler product hypothesis:

Theorem A ([12, p. 152]). If two L-func-

tions L1 and L2 with að1Þ ¼ 1 share a complex value

c 6¼ 1 CM, then L1 ¼ L2.

Later on, Li [7] proved the following result to

deal with a question posed by Chung-Chun Yang

(cf. [7]):

Theorem B ([7]). Let a and b be two distinct

finite values, and let f be a meromorphic function in

the complex plane such that f has finitely many poles

in the complex plane. If f and a nonconstant L-

function L share a CM and b IM, then L ¼ f.

In 1997, Lahiri [4] posed the following question:

What can be said about the relationship between
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two meromorphic functions f and g, when two

differential polynomials, generated by f and g

respectively, share some nonzero finite value? In

this direction, Fang [1] and Yang-Hua [14] respec-

tively proved the following results:

Theorem C ([1]). Let f and g be two non-

constant entire functions, and let n and k be two

positive integers such that n > 2kþ 4. If ðfnÞðkÞ and

ðgnÞðkÞ share 1 CM, then either fðzÞ ¼ clecz, gðzÞ ¼
c2e
�cz, where C1, C2 and c are three constants

satisfying ð�1Þkðc1c2ÞnðncÞ2k ¼ 1, or f ¼ tg for a

constant t such that tn ¼ 1.

Theorem D ([14]). Let f and g be two

nonconstant meromorphic functions, and let n �
11 be a positive integer. If fnf 0 and gng0 share 1 CM,

then either fðzÞ ¼ clecz, gðzÞ ¼ c2e
�cz, where C1, C2

and c are three constants satisfying ðc1c2Þnþ1c2 ¼
�1, or f ¼ tg for a constant t such that tnþ1 ¼ 1.

Regarding Theorems A–D, one may ask, what

can be said about the relationship between a

meromorphic function f and an L-function L, if

ðfnÞðkÞ and ðLnÞðkÞ share 1 CM or that ðfnÞðkÞ and

ðLnÞðkÞ have the same fixed points, where n and k

are positive integers? In this direction, we will

prove the following two results respectively:

Theorem 1.1. Let f be a nonconstant mero-

morphic function, let L be an L-function, and let

n and k be two positive integers with n > 3kþ 6. If

ðfnÞðkÞ and ðLnÞðkÞ share 1 CM, then f ¼ tL for a

constant t satisfying tn ¼ 1.

Theorem 1.2. Let f be a nonconstant mer-

omorphic function, let L be an L-function, and let n

and k be two positive integers with n > 3kþ 6. If

ðfnÞðkÞðzÞ � z and ðLnÞðkÞðzÞ � z share 0 CM, then

f ¼ tL for a constant t satisfying tn ¼ 1.

To prove Theorems 1.1 and 1.2 in the present

paper, we will apply Nevanlinna theory, which can

be found in [2,6,15,17]. In addition, we will use the

lower order �ðfÞ and the order �ðfÞ of a meromor-

phic function f , which can be found, for example

in [2,6,17], are in turn defined as follows:

�ðfÞ ¼ lim inf
r!1

logT ðr; fÞ
log r

;

�ðfÞ ¼ lim sup
r!1

logT ðr; fÞ
log r

:

We also need the following two definitions:

Definition 1.1 ([5, Definition 1]). Let p be

a positive integer and a 2 C
S
f1g. Next we de-

note by NpÞðr; 1
f�aÞ the counting function of those

a-points of f (counted with proper multiplicities)

whose multiplicities are not greater than p, and

denote by Nðpðr; 1
f�aÞ the counting function of those

a-points of f (counted with proper multiplicities)

whose multiplicities are not less than p: We de-

note by NpÞðr; 1
f�aÞ and N ðpðr; 1

f�aÞ the reduced

forms of NpÞðr; 1
f�aÞ and Nðpðr; 1

f�aÞ respectively.

Here NpÞðr; 1
f�1Þ, NpÞðr; 1

f�1Þ, Nðpðr; 1
f�1Þ and

Nðpðr; 1
f�1Þ mean NpÞðr; fÞ, NpÞðr; fÞ, Nðpðr; fÞ and

Nðpðr; fÞ respectively.

Definition 1.2. Let a be an any value in the

extended complex plane and let k be an arbitrary

nonnegative integer. We define

�ða; fÞ ¼ 1� lim sup
r!1

N r; 1
f�a

� �
T ðr; fÞ ;

�kða; fÞ ¼ 1� lim sup
r!1

Nk r; 1
f�a

� �
T ðr; fÞ ;

where

Nk r;
1

f � a

� �
¼ N r;

1

f � a

� �
þN ð2 r;

1

f � a

� �

þ � � � þNðk r;
1

f � a

� �
:

Remark 1.1. By Definition 1.2 we have

0 � �kða; fÞ � �k�1ða; fÞ � �1ða; fÞ � �ða; fÞ � 1:

2. Preliminaries. In this section, we will

give the following lemmas that play an important

role in proving the main results in this paper:

Lemma 2.1 ([2, Theorem 3.2] and [17, Theo-

rem 4.3]). Let f be a nonconstant meromorphic

function, let k � 1 be a positive integer, and let c be a

nonzero finite complex number. Then

T ðr; fÞ � Nðr; fÞ þN r;
1

f

� �
þN r;

1

f ðkÞ � c

� �

�N r;
1

f ðkþ1Þ

� �
þ Sðr; fÞ

� Nðr; fÞ þNkþ1 r;
1

f

� �
þN r;

1

f ðkÞ � c

� �

�N0 r;
1

f ðkþ1Þ

� �
þ Sðr; fÞ;

where N0ðr; 1
fðkþ1Þ Þ is the counting function of those

zeros of f ðkþ1Þ in jzj < r which are not zeros of

fðf ðkÞ � cÞ in jzj < r.

Lemma 2.2 ([8, Lemma 2.5]). Let F and G

be two nonconstant meromorphic functions such
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that F ðkÞ � P and GðkÞ � P share 0 CM, where k � 1

is a positive integer, P 6� 0 is a polynomial. If

ðkþ 2Þ�ð1; F Þ þ 2�ð1; GÞ þ�ð0; F Þ þ�ð0; GÞ
þ �kþ1ð0; F Þ þ �kþ1ð0; GÞ > kþ 7

and

ðkþ 2Þ�ð1; GÞ þ 2�ð1; F Þ þ�ð0; GÞ þ�ð0; F Þ
þ �kþ1ð0; GÞ þ �kþ1ð0; F Þ > kþ 7;

then either F ðkÞGðkÞ ¼ P 2 or F ¼ G.

Lemma 2.3 ([15, Theorem 1.24]). Suppose

that f is a nonconstant meromorphic function in

the complex plane and k is a positive integer. Then

N r;
1

f ðkÞ

� �
� N r;

1

f

� �
þ kNðr; fÞ

þOðlogT ðr; fÞ þ log rÞ;
as r!1; outside of a possible exceptional set of

finite linear measure.

Lemma 2.4 ([18, Lemma 6]). Let f1 and f2

be two nonconstant meromorphic functions satisfy-

ing Nðr; fjÞ þNðr; 1
fj
Þ ¼ SðrÞ; ðj ¼ 1; 2Þ. Then, ei-

ther N0ðr; 1; f1; f2Þ ¼ SðrÞ or there exist two integers

p and q satisfying jpj þ jqj > 0, such that fp1f
q
2 ¼ 1;

where N0ðr; 1; f1; f2Þ denotes the reduced counting

function of the common 1-points of f1 and f2 in jzj <
r; T ðrÞ ¼ T ðr; f1Þ þ T ðr; f2Þ and SðrÞ ¼ oðT ðrÞÞ, as

r =2 E and r!1. Here E 	 ð0;þ1Þ is a subset of

finite linear measure.

Lemma 2.5 ([3]). Let f be a transcendental

meromorphic function in C. Then, for each K > 1,

there exists a set MðKÞ 	 ð0;þ1Þ of the lower

logarithmic density at most dðKÞ ¼ 1� ð2eK�1 �
1Þ�1 > 0, that is

log densMðKÞ ¼ lim inf
r!1

1

log r

Z
MðKÞ\½1;r


dt

t
� dðKÞ;

such that, for every positive integer k,

lim sup

r=2MðKÞ
r!1

T ðr; fÞ
T ðr; fðkÞÞ � 3eK:

Lemma 2.6 ([16, proof of Lemma 1]). Let f

be a nonconstant meromorphic function, let k � 1

be a positive integer, and let ’ 6� 0;1 be a small

function of f, i.e., T ðr; ’Þ ¼ Sðr; fÞ. Then

T ðr; fÞ � Nðr; fÞ þN r;
1

f

� �
þN r;

1

f ðkÞ � ’

� �

�N r;
1

fðkÞ

’

� �0
0
B@

1
CAþ Sðr; fÞ:

3. Proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. First of all, we denote

by d the degree of L. Then d ¼ 2
PK
j¼1

�j > 0 (cf.

[12, p. 113]), where K and �j are respectively the

positive integer and the positive real number in

the functional equation of the axiom (iii) of the

definition of L-functions. Therefore, by Steuding

[12, p. 150] we have

T ðr; LÞ ¼ d

	
r log rþOðrÞ:ð3:1Þ

Noting that an L-function at most has one pole z ¼
1 in the complex plane, we deduce by Lemmas 2.1

and Valiron-Mokhonko lemma (cf. [9]) that

T ðr; LnÞ ¼ nT ðr; LÞ þOð1Þ

� Nðr; LnÞ þNkþ1 r;
1

Ln

� �
þN r;

1

ðLnÞðkÞ � 1

 !

�N0 r;
1

ðLnÞðkþ1Þ

 !
þOðlog rÞ

� Nðr; LÞ þ ðkþ 1ÞN r;
1

L

� �
þN r;

1

ðfnÞðkÞ � 1

 !

þOðlog rÞ

� ðkþ 1ÞT ðr; LÞ þ T ðr; ðfnÞðkÞÞ þOðlog rÞ;

i.e.,

ðn� k� 1ÞT ðr; LÞ � T ðr; ðfnÞðkÞÞ þOðlog rÞ:ð3:2Þ

By (3.1) we see that L is a transcendental mer-

omorphic function. Combining this with (3.2),

Theorem 1.5 [15] and the assumption n > 3kþ 6,

we deduce that ðfnÞðkÞ, and so f is a transcendental

meromorphic function. Now we let

�1 ¼ ðkþ 2Þ�ð1; fnÞ þ 2�ð1; LnÞ þ�ð0; fnÞð3:3Þ
þ�ð0; LnÞ þ �kþ1ð0; fnÞ þ �kþ1ð0; LnÞ

and

�2 ¼ ðkþ 2Þ�ð1; LnÞ þ 2�ð1; fnÞð3:4Þ
þ�ð0; LnÞ þ�ð0; fnÞ þ �kþ1ð0; LnÞ
þ �kþ1ð0; fnÞ:

By Valiron-Mokhonko lemma we have
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�ð1; fnÞ ¼ 1� lim sup
r!1

Nðr; fnÞ
T ðr; fnÞ

ð3:5Þ

¼ 1� lim sup
r!1

Nðr; fÞ
nT ðr; fÞ þOð1Þ � 1�

1

n
;

�kþ1ð0; fnÞ ¼ 1� lim sup
r!1

Nkþ1 r; 1
fn

� �
T ðr; fnÞ

ð3:6Þ

¼ 1� lim sup
r!1

ðkþ 1ÞN r; 1
f

� �
nT ðr; fÞ þOð1Þ � 1�

kþ 1

n

and

�ð0; fnÞ � 1�
1

n
; �ð0; LnÞ � 1�

1

n
;ð3:7Þ

�kþ1ð0; LnÞ � 1�
kþ 1

n
:

Noting that an L-function at most has one pole z ¼
1 in the complex plane, we have by (3.1) that

�ð1; LnÞ ¼ 1:ð3:8Þ

By (3.3), (3.5)–(3.8) we have

�1 � kþ 8�
3kþ 6

n
; �2 � kþ 8�

2kþ 6

n
:ð3:9Þ

By (3.9) and the assumption n > 3kþ 6 we have

�1 > kþ 7 and �2 > kþ 7: This together with

(3.3), (3.4) and Lemma 2.2 gives ðfnÞðkÞðLnÞðkÞ ¼ 1
or fn ¼ Ln: We consider the following two cases:

Case 1. Suppose that ðfnÞðkÞðLnÞðkÞ ¼ 1. First

of all, we prove that 0 is a Picard exceptional

value of f and L. Indeed, suppose that z0 2 C is a

zero of f with multiplicity m. Then, by the

assumption ðfnÞðkÞðLnÞðkÞ ¼ 1 we can find that z0 ¼
1 is a pole of L with multiplicity, say p, such that

mn� k ¼ npþ k, and so ðm� pÞn ¼ 2k, and so

we have n � 2k, which contradicts the assumption

n > 3kþ 6. Similarly, we can prove that 0 is a

Picard exceptional value of L. On the other hand,

by (3.1), Valiron-Mokhonko lemma, the assump-

tion ðfnÞðkÞðLnÞðkÞ ¼ 1, a result from Whittaker

[13, p. 82] and the definition of the order of a

meromorphic function we have

�ðfÞ ¼ �ðfnÞ ¼ �ððfnÞðkÞÞ ¼ �ððLnÞðkÞÞð3:10Þ

¼ �ðLnÞ ¼ �ðLÞ ¼ 1:

Noting that L has at most one pole z ¼ 1 in the

complex plane, we have by (3.10), Lemma 2.3 and

ðfnÞðkÞðLnÞðkÞ ¼ 1 that

ðnþ kÞNðr; fÞ � N r;
1

ðLnÞðkÞ

 !
� N r;

1

Ln

� �
ð3:11Þ

þ kNðr; LnÞ þOðlog rÞ ¼ Oðlog rÞ:
Therefore,

Nðr; fÞ þNðr; LÞ � Oðlog rÞ:ð3:12Þ

Now we set

f1 ¼
ðfnÞðkÞ

ðLnÞðkÞ
; f2 ¼

ðfnÞðkÞ � 1

ðLnÞðkÞ � 1
:ð3:13Þ

By (3.13) and the assumption that f and L are

transcendental meromorphic functions, we have

f1 6� 0 and f2 6� 0. Suppose that one of f1 and f2 is

a nonzero constant. Then, by (3.13) we see that

ðfnÞðkÞ and ðLnÞðkÞ share 1 CM. Combining this

with ðfnÞðkÞðLnÞðkÞ ¼ 1 we deduce that1 is a Picard

exceptional value of f and L. Next we suppose that

f1 and f2 are nonconstant meromorphic functions.

We set

F1 ¼ ðfnÞðkÞ; G1 ¼ ðLnÞðkÞ:ð3:14Þ

Then, by (3.13) and (3.14) we have

F1 ¼
f1ð1� f2Þ
f1 � f2

; G1 ¼
1� f2

f1 � f2
:ð3:15Þ

By (3.15) we can find that there exists a subset I 	
ð0;þ1Þ with infinite linear measure such that

SðrÞ ¼ oðT ðrÞÞ and

T ðr; F1Þ � 2ðT ðr; f1Þ þ T ðr; f2ÞÞ þ SðrÞð3:16Þ
� 8T ðr; F1Þ þ SðrÞ

or

T ðr;G1Þ � 2ðT ðr; f1Þ þ T ðr; f2ÞÞ þ SðrÞð3:17Þ
� 8T ðr;G1Þ þ SðrÞ;

as r 2 I and r!1, where T ðrÞ ¼ T ðr; f1Þ þ
T ðr; f2Þ. Without loss of generality, we suppose

that (3.16) holds. Then we have SðrÞ ¼ Sðr; F1Þ, as

r 2 I and r!1. By ðfnÞðkÞðLnÞðkÞ ¼ 1 we see that

ðfnÞðkÞ and ðLnÞðkÞ share 1 and �1 CM. Noting that 0

is a Picard exceptional value of f and L, we deduce

by (3.10) and Lemma 2.3 that

N r;
1

ðfnÞðkÞ

 !
� kNðr; fÞ þOðlog rÞ:ð3:18Þ

By (3.11), (3.12) and (3.18) we have

N r;
1

ðfnÞðkÞ

 !
þN r;

1

ðLnÞðkÞ

 !
� Oðlog rÞ:ð3:19Þ
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Noting that ðfnÞðkÞ and ðLnÞðkÞ are transcendental

meromorphic functions such that ðfnÞðkÞ and ðLnÞðkÞ
share 1 CM, we deduce by (3.12), (3.13) and (3.19)

that

N r;
1

fj

� �
þN r; fj

� �
¼ oðT ðrÞÞ; ðj ¼ 1; 2Þ;ð3:20Þ

as r 2 I and r!1. Noting that ðfnÞðkÞ and ðLnÞðkÞ
share �1 CM, we deduce by (3.12), (3.14), (3.16),

(3.18) and the second fundamental theorem that

T ðr; F1Þ � Nðr; F1Þ þN r;
1

F1

� �
ð3:21Þ

þN r;
1

F1 þ 1

� �
þ oðT ðr; F1ÞÞ

� N r;
1

F1 þ 1

� �
þOðlog rÞ þ oðT ðr; F1ÞÞ

� N0ðr; 1; f1; f2Þ þ oðT ðr; F1ÞÞ;

as r 2 I and r!1. By (3.16) and (3.21) we have

T ðr; f1Þ þ T ðr; f2Þ � N0ðr; 1; f1; f2Þ þ oðT ðrÞÞ:ð3:22Þ

By (3.13), (3.14), (3.20), (3.22) and Lemma 2.4 we

find that there exist two relatively prime integers s

and t satisfying jsj þ jtj > 0, such that fs1f
t
2 ¼ 1.

Combining this with (3.13) and (3.14), we have

F1

G1

� �s F1 � 1

G1 � 1

� �t
¼ 1:ð3:23Þ

By (3.23) we consider the following two subcases:

Subcase 1.1. Suppose that st < 0, say s > 0
and t < 0, say t ¼ �t1, where t1 is some positive

integer. Then, (3.23) can be rewritten as

F1

G1

� �s
¼

F1 � 1

G1 � 1

� �t1
:ð3:24Þ

Let z1 2 C be a pole of F1 of multiplicity p1 � 1.

Then, by F1G1 ¼ 1 we can see that z1 is a zero of G1

of multiplicity p1. Therefore, by (3.24) we deduce

that 2s ¼ t1 ¼ �t. Combining this with the assump-

tion that s and t are two relatively prime integers,

we have s ¼ 1 and t ¼ �t1 ¼ �2. Therefore, (3.24)

can be rewritten as F1ðG1 � 1Þ2 ¼ G1ðF1 � 1Þ2, this

is equivalent to the obtained result F1G1 ¼ 1. Next

we can deduce a contradiction by using the other

method. Indeed, by (3.19) and the fact that L, and

so LðkÞ have at most one pole z ¼ 1 in the complex

plane, we have

ðLnÞðkÞðzÞ ¼
P1ðzÞ
ðz� 1Þp2

eA1zþB1 ;ð3:25Þ

where P1 is a nonzero polynomial, p2 � 0 is an

integer, A1 6¼ 0 and B1 are constants. By (3.25),

Lemma 2.5 and Hayman [2, p. 7] we deduce that

there exists a subset I 	 ð0;þ1Þ with logarithmic

measure logmeas I ¼
R

I
dt
t ¼ 1 such that for some

given sufficiently large positive number K > 1, we

have

T ðr; LÞ � 3eKT ðr; ðLnÞðkÞÞð3:26Þ

¼ 3eKjA1jr
	

1þ oð1Þð Þ þOðlog rÞ;

as r 2 I and r!1. By (3.1) and (3.26) we have a

contradiction.

Subcase 1.2. Suppose that st ¼ 0 or st > 0.

Then, by (3.23) we can see that F1 and G1 share 1
CM. This together with (3.14) and the assumption

ðfnÞðkÞðLnÞðkÞ ¼ 1 implies that 1 is a Picard excep-

tional value of f and L: Combining this with the

obtained result that 0 is a Picard exceptional value

of f and L; we have

LðzÞ ¼ eA2zþB2 ;ð3:27Þ

where A2 6¼ 0 and B2 are constants. By (3.27) and

Hayman [2, p. 7] we have

T ðr; LÞ ¼ T ðr; eA2zþB2Þ ¼
jA2jr
	
ð1þ oð1ÞÞ;ð3:28Þ

which contradicts (3.1).

Case 2. Suppose that fn ¼ Ln. Then, we

have f ¼ tL, where t is a constant satisfying tn ¼
1. This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. First of all, in the same

manner as in the beginning of the proof of Theo-

rem 1.1 we have (3.1). Now we let z2 2 C be a zero

of L with multiplicity p2. Then z2 is a zero of Ln

with multiplicity np2, and so z2 is a zero of ðLnÞðkÞ
z

� �0
with multiplicity np2 � k� 2 at least. Again let z3

be a zero of ðL
nÞðkÞ
z � 1 with multiplicity p3. Then, z3

is a zero of ðLnÞðkÞ
z

� �0
with multiplicity p3 � 1. Then,

by (3.1), Lemma 2.6 and the value sharing assump-

tion we have

T ðr; LnÞ � N r;
1

Ln

� �
þN r;

1

ðLnÞðkÞ
z
� 1

0
@

1
Að3:29Þ

No. 5] Value distribution of L-functions 45



�N r;
1

ðLnÞðkÞ
z

� �0
0
B@

1
CAþOðlog rÞ

� ðkþ 2ÞN r;
1

L

� �
þN r;

1

ðLnÞðkÞ
z
� 1

0
@

1
A

�N0 r;
1

ðLnÞðkÞ
z

� �0
0
B@

1
CAþOðlog rÞ

� ðkþ 2ÞT ðr; LÞ þN r;
1

ðfnÞðkÞ
z
� 1

0
@

1
A

þOðlog rÞ

� ðkþ 2ÞT ðr; LÞ þ T ðr; ðfnÞðkÞÞ þOðlog rÞ;

where N0 r; 1
ðLnÞðkÞ

z

� �0
 !

is the counting function of

those zeros of ðLnÞðkÞ
z

� �0
in jzj < r that are not zeros of

ðLnÞðkÞ
z in jzj < r. By Valiron-Mokhonko lemma we

have T ðr; LnÞ ¼ nT ðr; LÞ þOð1Þ. This together with

(3.29) gives

ðn� k� 2ÞT ðr; LÞ � T ðr; ðfnÞðkÞÞ þOðlog rÞ:ð3:30Þ

By (3.30) and the assumption n > 3kþ 6, we

deduce that ðfnÞðkÞ, and so f is a transcendental

meromorphic function. Next in the same manner as

in the proof of Theorem 1.1 we have ðfnÞðkÞðLnÞðkÞ ¼
z2 or fn ¼ Ln by Lemma 2.2. We consider the

following two cases:

Case 1. Suppose that ðfnÞðkÞðLnÞðkÞ ¼ z2.

Then, F2G2 ¼ 1, where

F2 ¼
ðfnÞðkÞ

z
; G2 ¼

ðgnÞðkÞ

z
:ð3:31Þ

Next, in the same manner as in Case 1 of the proof

of Theorem 1.1 we can get a contradiction.

Case 2. Suppose that fn ¼ Ln. Then we get

the conclusion of Theorem 1.2. This completes the

proof of Theorem 1.2. �
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