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Value distribution of L-functions concerning shared values

and certain differential polynomials

By Fang L1U,” Xiao-Min L1*' and Hong-Xun Y1**)

(Communicated by Shigefumi MORI, M.J.A., April 12, 2017)

Abstract:

In this paper, we study a uniqueness question of meromorphic functions of

certain differential polynomials that share a nonzero finite value or have the same fixed points
with the same of L-functions. The results in this paper extend the corresponding results from
Steuding [12,p. 152], Li [7], Fang [1] and Yang-Hua [14].
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1. Introduction and main results. L-
functions, with the Riemann zeta function as a
prototype, are important objects in number theory,
and value distribution of L-functions has been
studied extensively, which can be found, for exam-
ple in Steuding [12]. Value distribution of L-
functions concerns distribution of zeros of L-func-
tions L and, more generally, the c-points of L, i.e.,
the roots of the equation L(s) = ¢, or the points in
the pre-image L™! = {s € C: L(s) = ¢}, where and
in what follows, s denotes a complex variable in the
complex plane C and c¢ denotes a value in the
extended complex plane C U {oo}. L-functions can
be analytically continued as meromorphic functions
in C. It is well-known that a nonconstant mero-
morphic function in C is completely determined by
five such pre-images (cf. [2,10,15,17]), which is a
famous theorem due to Nevanlinna and often
referred to as Nevanlinna’s uniqueness theorem.
Two meromorphic functions f and g in the complex
plane are said to share a value ¢ € CU {00} IM
(ignoring multiplicities) if f~(c) = g7*(c) as two
sets in C. Moreover, f and ¢ are said to share a
value ¢ CM (counting multiplicities) if they share
the value ¢ and if the roots of the equations f(s) = ¢
and g(s) = ¢ have the same multiplicities. Through-
out the paper, an L-function always means an L-
function L in the Selberg class,oowhich includes

the Riemann zeta function {(s) = > n~* and essen-
n=1
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tially those Dirichlet series where one might ex-
pect a Riemann hypothesis. Such an L-function is
o0
defined to be a Dirichlet series L(s) = > a(n)n™*
n=1
satisfying the following axioms (cf. [11,12]): (i)
Ramanujan hypothesis. a(n) < n® for every € > 0.
(ii) Analytic continuation. There is a nonnegative
integer k such that (s — 1)*L(s) is an entire function
of finite order. (iii) Functional equation. L satisfies
a functional equation of type Ar(s) = wAr(1 —3),

K
where Az(s) = L(s)Q° [] I'(\js +v;) with positive
=1

real numbers @, A\; and complex numbers v}, w with
Rev; > 0 and |w| = 1. (iv) Euler product hypothesis.

o0

L(s) =TI, exp<z ”;2?) with suitable coefficients

b(p*) satisfying b(p*) < p™ for some 6 < 1/2, where
the product is taken over all prime numbers p.

We first recall the following result due to
Steuding [12], which actually holds without the
Euler product hypothesis:

Theorem A ([12, p. 152]). If two L-func-
tions L1 and Ly with a(l) = 1 share a complex value
c# oo CM, then L; = Lo.

Later on, Li [7] proved the following result to
deal with a question posed by Chung-Chun Yang
(cf. [7]):

Theorem B ([7]). Leta andb be two distinct
finite values, and let f be a meromorphic function in
the complex plane such that f has finitely many poles
in the complex plane. If f and a monconstant L-
function L share a CM and b IM, then L = f.

In 1997, Lahiri [4] posed the following question:
What can be said about the relationship between
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two meromorphic functions f and g, when two
differential polynomials, generated by f and g
respectively, share some nonzero finite value? In
this direction, Fang [1] and Yang-Hua [14] respec-
tively proved the following results:

Theorem C ([1]). Let f and g be two non-
constant entire functions, and let n and k be two
positive integers such that n > 2k + 4. If (f"’)(k) and
(g™ share 1 CM, then either f(z) = cie®, g(z) =
—* where Cy, Cy and c are three constants
2k:1, or f=tg for a

(&)
satisfying (—1)"(cre)" (nc)
constant t such that t" = 1.

Theorem D ([14]). Let f and g be two
nonconstant meromorphic functions, and let n >
11 be a positive integer. If f*f and g"¢ share 1 CM,
then either f(z) = cie”, g(z) = coe™, where Cl, Cg
and ¢ are three constants satisfying (cic)™ ' =
—1, or f = tg for a constant t such that t"** = 1.

Regarding Theorems A-D, one may ask, what
can be said about the relationship between a
meromorphic function f and an L-function L, if
(f”)<k) and (L")(k) share 1 CM or that (f”)(k) and
(L”)(l~C> have the same fixed points, where n and k
are positive integers? In this direction, we will
prove the following two results respectively:

Theorem 1.1. Let f be a nonconstant mero-
morphic function, let L be an L-function, and let
n and k be two positive integers with n > 3k + 6. If
(f”)<k) and (L”)(k) share 1 CM, then f =1tL for a
constant t satisfying t" =

Theorem 1.2. Let f be a nonconstant mer-
omorphic function, let L be an L-function, and let n
and k be two positive integers with n > 3k+ 6. If
(/% (2) = 2 and (L")P(2) — 2 share 0 CM, then
f=tL for a constant t satisfying t" = 1.

To prove Theorems 1.1 and 1.2 in the present
paper, we will apply Nevanlinna theory, which can
be found in [2,6,15,17]. In addition, we will use the
lower order u(f) and the order p(f) of a meromor-
phic function f, which can be found, for example
in [2,6,17], are in turn defined as follows:

logT
u(f) = lim g 08T f)
r—00 logr
logT
o(f) = lim sup 2B L S)
F—00 logr

We also need the following two definitions:
Definition 1.1 ([5, Definition 1]). Let p be

a positive integer and a € C|J{oo}. Next we de-

note by N, (r, ﬁ) the counting function of those
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a-points of f (counted with proper multiplicities)
whose multiplicities are not greater than p, and
denote by N,(r, %a) the counting function of those
a-points of f (counted with proper multiplicities)
whose multiplicities are not less than p. We de-

note by N, (r T ) and N,(r, ﬁ) the reduced
forms of N, (r ’f and Nip(r, 7 ) respectively.
Here N)(,foc) (,l_oc), N(vfoo) and
ﬁ( (r ,f_loc) mean N, ( ), Np)(r,f) (p(r, f) and

N (r, f) respectively

Definition 1.2. Let a be an any value in the
extended complex plane and let k£ be an arbitrary
nonnegative integer. We define

O(a, f) =

1 — limsup

=00 T(T, f) ’

oi(a, f) =1 — limsup

T—00

where

1 — 1 — 1
Nk<r’fa) :N(T’fa> +N(2<T’fa>
— 1
'i"i‘N(k(?",ﬂ)

Remark 1.1. By Definition 1.2 we have
0 < &i(a, f) < bp-1(a, f) < bi(a, ) < O(a, f) < 1.

2. Preliminaries. In this section,
give the following lemmas that play an important
role in proving the main results in this paper:

Lemma 2.1 ([2, Theorem 3.2] and [17, Theo-
rem 4.3]). Let f be a nonconstant meromorphic
function, let k > 1 be a positive integer, and let c be a
nonzero finite complex number. Then

7(0,) < N )4 8 (1) + 8 (r )
_ N( e ) 50, f)

_ 1 — 1
< N(r, f) + Nkt (7‘,?> +N<T, G —c)

=0 ) + 569

where No(r ,f}H) is the counting function of those

we will

zeros of f**V in |2| <r which are not zeros of
FUf® —¢) in |2| < r.

Lemma 2.2 ([8, Lemma 2.5]). Let F and G
be two momconstant meromorphic functions such
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that F®) — P and G% — P share 0 CM, where k > 1
18 a positive integer, P Z 0 is a polynomial. If

(k+2)O(0c0, F') +20(00,G) + ©(0, F) + 6(0,G)
+ 0p1(0, F) + 641(0,G) > k+7
and

(k+2)O(00, G) +20(00, F) + ©(0,G) + ©(0, F)
+6641(0,G) + 8541 (0, F) > k47,

then either FMGW = P? or F = @G.

Lemma 2.3 ([15, Theorem 1.24]). Suppose
that f is a monconstant meromorphic function in
the complex plane and k is a positive integer. Then

N(r7 %) < N(r, %) +EN(r, f)
+ O(log T'(r, f) + logr),

as r — 00, outside of a possible exceptional set of
finite linear measure.

Lemma 2.4 ([18, Lemma 6]). Let fi and f,
be two nonconstant meromorphic functions satisfy-
ing N(r, f;)+ N(r, fij) =S(r),(j =1,2). Then, ei-
ther No(r, 1; f1, fo) = S(r) or there exist two integers
p and q satisfying |p| + |q| > 0, such that fVfi =1,
where No(r,1; f1, fa) denotes the reduced counting
function of the common 1-points of fi and fy in |z] <
T, T(T) = T(Ta fl) + T(T7 f2) and S(T) = O(T(T))) as
r¢ E and r — oo. Here E C (0,+00) is a subset of
finite linear measure.

Lemma 2.5 ([3]). Let f be a transcendental
meromorphic function in C. Then, for each K > 1,
there exists a set M(K) C (0,400) of the lower
logarithmic density at most d(K)=1— (2ef71 —
1) >0, that is

1 dt
logdensM(K) = liminf / — < d(K),
r—oo logr Jar(ynpa t

such that, for every positive integer k,

Y
P T, )

¢ M(K)

< 3eK.

Lemma 2.6 ([16, proof of Lemma 1]). Let f
be a nonconstant meromorphic function, let k> 1
be a positive integer, and let ¢ Z 0,00 be a small

function of f, i.e., T(r,p) = S(r, f). Then

_ 1 1
T(r, f) SN(r,f)—l—N(r,}) —l—N(T,m)
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1
— N r, @ + S('f‘, f)
¢
3. Proof of Theorems 1.1 and 1.2.
Proof of Theorem 1.1. First of all, we denote
K
by d the degree of L. Then d=2> A; >0 (cf.
=1

[12,p. 113]), where K and JA; are regpectively the
positive integer and the positive real number in
the functional equation of the axiom (iii) of the
definition of L-functions. Therefore, by Steuding
[12,p. 150] we have

(3.1) T(r,L) = %rlogr—i—O(r).

Noting that an L-function at most has one pole z =
1 in the complex plane, we deduce by Lemmas 2.1
and Valiron-Mokhonko lemma (cf. [9]) that

T(r,L") =nT(r,L) + O(1)

_ 1 — 1
< n il -
< N(r, L") + Ngyq (r, L”) + N(r, (er)(’f) - 1)

1
- Ny (T, W) + O(log)

_ [ 1\ 1
< N(r,L) + (k+ I)N(T,Z) +N<T7(fn)T1>
+ O(logr)
< (k+1)T(r, L)+ T(r, (/")) + O(log ),
(32) (n—k—1)T(r,L) <T(r,(f*) + O(logr).

By (3.1) we see that L is a transcendental mer-
omorphic function. Combining this with (3.2),
Theorem 1.5 [15] and the assumption n > 3k + 6,
we deduce that (f")(k>, and so f is a transcendental
meromorphic function. Now we let

(3.3) A; = (k+2)0(c0, f") +20(c0, L") 4 O(0, f)
+O(0,L") + 611 (0, f*) + 611 (0, L")
and
(34) Ay = (k+2)O(c0, L") +20(c0, f)
+0(0,L") 4+ 6(0, f*) + 6k+1(0, L")
+ 6141(0, ).

By Valiron-Mokhonko lemma we have
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. rf")
(3.5) O(co, f") =1-—limsup ———
) r—00 T(T, f”)
N 1
= l—limsupi >1—-—,

P T, ) + 01

Nk‘+1 (T, %)

3

(3.6) 6k+1(0, f*) =1 —limsup

r—oo T(r, f1)
. (k+D)N(r,4) a1
NPT o T T
and
1 1
(37) 6(07.][%)21__’ ®(O7Ln)21__a
n n
k+1
§pe1(0, L") > 1 — ErL
n

Noting that an L-function at most has one pole z =
1 in the complex plane, we have by (3.1) that

(3.8) O(o0, L") =1
By (3.3), (3.5)—(3.8) we have

3k+6 2%k + 6
(3.9) Ay >k+8— . Ay > k48— .
n n

By (3.9) and the assumption n > 3k +6 we have
Ay >k+7 and Ay > k+ 7. This together with
(3.3), (3.4) and Lemma 2.2 gives (/)" (@L")® =1
or f* = L". We consider the following two cases:

Case 1. Suppose that (f”)(k)(L”)(k) = 1. First
of all, we prove that 0 is a Picard exceptional
value of f and L. Indeed, suppose that z; € C is a
zero of f with multiplicity m. Then, by the
assumption (") (L")* =1 we can find that zy =
1 is a pole of L with multiplicity, say p, such that
mn—k=np+k, and so (m—p)n=2k and so
we have n < 2k, which contradicts the assumption
n > 3k + 6. Similarly, we can prove that 0 is a
Picard exceptional value of L. On the other hand,
by (3.1), Valiron-Mokhonko lemma, the assump-
tion (fM)*(@LM* =1, a result from Whittaker
[13,p. 82] and the definition of the order of a
meromorphic function we have

p(f) = p(f") = p((fH™) = p((L™)™M)
=p(L") =p(L) =1.

Noting that L has at most one pole z=1 in the
complex plane, we have by (3.10), Lemma 2.3 and
(fPLm® =1 that

(3.10)
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(3.11) (n+KN(r ) < N<r, (L—1)®> < N(T, Li)

+kN(r, L") + O(logr) = O(log ).
Therefore,

(3.12) N(r,f)+ N(r,L) < O(logr).
Now we set

(fn)(k) (fn)(k) _ 1
(313) fl - (Ln,)(k') ’ f2 - (Ln,)(@ -1 ’

By (3.13) and the assumption that f and L are
transcendental meromorphic functions, we have
f1 Z0 and f5 # 0. Suppose that one of f; and fs is
a nonzero constant. Then, by (3.13) we see that
(f%™ and (L")* share co CM. Combining this
with (%) (L")* = 1 we deduce that oo is a Picard
exceptional value of f and L. Next we suppose that
f1 and fo are nonconstant meromorphic functions.

We set

B1)  R=(MY, =@,
Then, by (3.13) and (3.14) we have

_ hl = f2) 1 f
(3.15) F = S G

By (3.15) we can find that there exists a subset I C
(0,+00) with infinite linear measure such that
S(r) =o(T(r)) and

(3.16)  T(r, k1) <2(T(r, fr) +T(r, fo)) + S(r)
< 8T(r, F1) + S(r)
(3.17)  T(r,G1) <2(T(r, fr) + T(r, f2)) + S(r)

< 8T(r,Gh) + S(r),

as rel and r— oo, where T(r)=T(r f1)+
T(r, f2). Without loss of generality, we suppose
that (3.16) holds. Then we have S(r) = S(r, Fy), as
r€ I and r — oco. By (f")(k)(L”)<k) =1 we see that
(fM* and (L")™ share 1 and —1 CM. Noting that 0
is a Picard exceptional value of f and L, we deduce
by (3.10) and Lemma 2.3 that

(3.18) N(r, (fn1)<k)> < EkN(r, f) + O(log ).

By (3.11), (3.12) and (3.18) we have

(3.19) N T‘,L +N r,; < O(logr).
(fn)(lf) (L'n,)(k)
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Noting that (f”)(k) and (L")" are transcendental
meromorphic functions such that ( f”)<k> and (L”)(l€>
share 1 CM, we deduce by (3.12), (3.13) and (3.19)
that

— 1 —

3200 N(r )+ N ) =olT(). (1=1.2),
J

as r € I and r — oo. Noting that (f*)* and (L)

share —1 CM, we deduce by (3.12), (3.14), (3.16),

(3.18) and the second fundamental theorem that

(3.21) T(r, F}) < N(r, F1) + N(n Fil)

(7“, 7 1+ 1) + o(T(r, F1))

< J_V(r, ﬁ) + O(logr) + o(T(r, F))

< NO(T, 1; f17 f2) + O(T(Tv Fl))a
as r € I and r — oo. By (3.16) and (3.21) we have
(3.22) T(r, f1) + T(r, f2) < No(r,1; f1, fo) + o(T(r)).

By (3.13), (3.14), (3.20), (3.22) and Lemma 2.4 we
find that there exist two relatively prime integers s
and ¢ satisfying |s| 4 |¢| > 0, such that f;fi =1.
Combining this with (3.13) and (3.14), we have

A\ (R -1\ _
Gi) \Gi-1)

By (3.23) we consider the following two subcases:

Subcase 1.1. Suppose that st < 0, say s > 0
and t < 0, say t = —t;, where t; is some positive
integer. Then, (3.23) can be rewritten as

(8)- (5=
G) \G -1)°

Let z; € C be a pole of F; of multiplicity p; > 1.
Then, by F1G; = 1 we can see that z; is a zero of Gy
of multiplicity p;. Therefore, by (3.24) we deduce
that 2s = t; = —t. Combining this with the assump-
tion that s and ¢ are two relatively prime integers,
we have s =1 and ¢t = —t; = —2. Therefore, (3.24)
can be rewritten as Fi (G — 1)* = G(Fy — 1)?, this
is equivalent to the obtained result F1G; = 1. Next
we can deduce a contradiction by using the other
method. Indeed, by (3.19) and the fact that L, and
so L™ have at most one pole z = 1 in the complex
plane, we have

=

_|_

(3.23)

(3.24)

Value distribution of L-functions 45

Pi(z) A2+ By
(z=1)" ’
where P is a nonzero polynomial, po >0 is an
integer, A; # 0 and B; are constants. By (3.25),
Lemma 2.5 and Hayman [2,p. 7] we deduce that
there exists a subset I C (0, +00) with logarithmic
measure logmeas [ = I% = oo such that for some
given sufficiently large positive number K > 1, we
have

(3.26)

(325)  (LM"(2) =

T(r,L) < 3eKT(r, (L")®)
_ 38K|A1 |7“
o s

as r € I and r — oo. By (3.1) and (3.26) we have a
contradiction.

Subcase 1.2. Suppose that st =0 or st > 0.
Then, by (3.23) we can see that F} and G share co
CM. This together with (3.14) and the assumption
(f”)(k)(L”)<k) = 1 implies that oo is a Picard excep-
tional value of f and L. Combining this with the
obtained result that 0 is a Picard exceptional value
of f and L, we have

(3.27) L(z) = e B2,

(1+0(1)) + O(logr),

where Ay # 0 and B, are constants. By (3.27) and
Hayman [2,p. 7] we have

Aol
=G o),

™

(3.28) T(r,L) = T(r,et* B
which contradicts (3.1).

Case 2. Suppose that f"=L". Then, we
have f =tL, where t is a constant satisfying t" =
1. This completes the proof of Theorem 1.1. (I

Proof of Theorem 1.2. First of all, in the same
manner as in the beginning of the proof of Theo-
rem 1.1 we have (3.1). Now we let 25 € C be a zero

of L with multiplicity ps. Then z, is a zero of L"
(Lu)(k)

/
with multiplicity nps, and so z» is a zero of (T)

with multiplicity nps — k — 2 at least. Again let z3

NG
be a zero of % — 1 with multiplicity ps. Then, z3

(k)
is a zero of (%) with multiplicity ps — 1. Then,

by (3.1), Lemma 2.6 and the value sharing assump-
tion we have

329) T(r,L")<N ! N|r,———
(' ) (7’, )_ Tvﬁ + T, (Ln)<k)_1
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