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Abstract: In 1906, Maillet proved that given a non-constant rational function f, with

rational coefficients, if � is a Liouville number, then so is fð�Þ. Motivated by this fact, in 1984,

Mahler raised the question about the existence of transcendental entire functions with this

property. In this work, we define an uncountable subset of Liouville numbers for which there

exists a transcendental entire function taking this set into the set of the Liouville numbers.
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1. Introduction. A real number � is called a

Liouville number, if there exist infinitely many

rational numbers ðpn=qnÞn�1, with qn � 1 and such

that

0 < � � pn
qn

����
���� < 1

qnn
:

It is well-known that the set of the Liouville

numbers L is a G�-dense set and therefore an

uncountable set.

In his pioneering book, Maillet [5, Chapitre III]

discusses some arithmetic properties of Liouville

numbers. One of them is that, given a non-constant

rational function f , with rational coefficients, if � is

a Liouville number, then so is fð�Þ. Motivated by

this fact, in 1984, as the first problem in his paper

Some suggestions for further research, Mahler [4]

raised the following question (this question also

appeared in other texts, for example in the

Bugeaud’s book [3, p. 215] and in Waldschmidt’s

paper [10, p. 281]).

Mahler’s question. Are there transcendental

entire functions fðzÞ such that if � is any Liouville

number, then so is fð�Þ?
He also said that: ‘‘The difficulty of this

problem lies of course in the fact that the set of

all Liouville numbers is non-enumerable’’. Alniaçik

[1] and Bernik and Dombrovski�� [2] obtained some

results related to this question. Also, recently, some

authors (see [6–8]) constructed classes of Liouville

numbers which are mapped into Liouville numbers

by transcendental entire functions.

We remark about the existence of more specific

classes of Liouville numbers in the literature, for

example, the strong and semi-strong Liouville

numbers (see, for instance, [9]). Here, we shall

define an uncountable subclass of the strong

Liouville numbers which we named as ultra-strong

Liouville numbers: a real number � is called an

ultra-strong Liouville number, if the sequence

ðpn=qnÞn of the convergents of its continued fraction

satisfies

0 < � �
pn

qn

����
���� < 1

qnn
; for all n � 1:

We denote this set by L. Define a sequence A ¼
ðanÞn by a1 ¼ a2 ¼ a3 ¼ 1 and aj 2 fvj�1; vj�1 þ 1g,
for j � 4, where vj�1 :¼ ð

Qj�1
k¼1ðak þ 1ÞÞj�3. Then the

number �A :¼ ½0; a1; a2; a3; a4; . . . � is an ultra-strong

Liouville number. In fact, if ½0; a1; . . . ; an� ¼ pn=qn,

then, by construction, anþ1 � ð
Qn

k¼1ðak þ 1ÞÞn�2 >

qn�2
n (here, we used the well-known inequality

ða1 þ 1Þ � � � ðan þ 1Þ > qn). Thus

0 < �A �
pn

qn

����
���� < 1

anþ1q2
n

<
1

qnn

as desired. The set L is uncountable because there

exists a binary tree of possibilities for �A, since we

have two possibilities for ak in each step (k � 4).

We remark that the set L is different from all

previously constructed sets in [6–8] since all those

sets are G�-dense while L does not have this

property (in fact, it was proved in [9] that the
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sum of two strong Liouville numbers is a Liouville

number). Moreover, L is not a subset of those sets.

In fact, roughly speaking, the sets constructed

in [6,7] are Liouville numbers satisfying, in partic-

ular, that j� � pn=qnj < 1=ee
eqn

, for an infinite se-

quence of rational numbers ðpn=qnÞn�1. Thus, we

contruct � recursively with the property that anþ1 ¼
qn�2
n (note that the construction of qn only depends

on aj, for 0 � j � n). In this case, clearly � 2 L,

but if 1=ee
eqn

> j� � pn=qnj > 1=ð2anþ1q
2
nÞ ¼ 1=ð2qnnÞ

(by reordering indexes if necessary), then we arrive

at an absurdity as 2qnn > ee
eqn

, for all sufficiently

large n.

In this paper, we prove the following result:

Theorem 1.1. Let ðsnÞn�1 be a sequence of

positive integers satisfying that, for any given k � 1,

the quotient sn=s
k
n�1 tends to infinity as n!1. Let

F : C! C be a function defined by

F ðzÞ ¼
X
k�1

�k

10k!
zk;

where �k ¼ 1 if k ¼ sj and �k ¼ 0 otherwise. Then

F is a transcendental entire function such that

F ðLÞ � L. In particular, there exist uncountable

many transcendental entire functions taking the set

of the ultra-strong Liouville numbers into the set of

Liouville numbers.

Let us describe in a few words the main ideas

for proving Theorem 1.1. First, our desired function

has the form F ðzÞ ¼
P

n�1 z
tn=10tn!, where ðtnÞn is

an integer sequence with a very fast growth. We

then approximate F ð�Þ, where � is an ultra-strong

Liouville number, by a convenient truncation

Fmðpn=qnÞ for sufficiently large m and n. After that,

we take the advantage of the fact that our series has

much more zero coefficients than a strongly lacu-

nary series. This, together with the fact that well-

approximations come from the continued fraction,

allows us to arrive at our desired estimate. The

proof splits in two cases depending on the growth of

the denominator of the convergents of �.

2. The proof of Theorem 1.1. Let ðsnÞn�1

and F ðzÞ be defined as in the statement of Theo-

rem 1.1. Clearly, F is a transcendental entire

function and now, we shall prove that F ðLÞ � L.

Let � be an ultra-strong Liouville number and

let ðpn=qnÞn�1 be the sequence of the convergents

of its continued fraction. This means that 0 <

j� � pn=qnj < 1=qnn, for all n � 1. Set �n ¼ �nð�Þ as

the smallest positive integer k such that qn � 10k!.

We have two cases to consider:

Case 1. When �n � nk for some k � 1 and all

n � 1.

In this case, qn � 10�n! � 10n
k!. Now, consider

the truncations

FnðzÞ :¼
Xn
k¼0

�k

10k!
zk;

and the convergents

�n :¼ Fn
p2n2

q2n2

� �
:

Note that denð�nÞ � 10n!ðq2n2Þn (where denðzÞ de-

notes the denominator of a rational number z). We

shall prove that F ð�Þ is well-approximated for the

rational numbers �n in a convenient way which

ensure that it is a Liouville number. Since jF ð�Þ �
�nj � jF ð�Þ � Fnð�Þj þ jFnð�Þ � �nj, we need to esti-

mate each part in the right-hand side. For that, we

have

Fnð�Þ � �n ¼
Xn
k¼1

�k

10k!
�k �

p2n2

q2n2

� �k !
;

and it holds that

�k �
p2n2

q2n2

� �k�����
����� � � �

p2n2

q2n2

����
����Xk�1

t¼0

j�jk�t�1 p2n2

q2n2

����
����
t

� � �
p2n2

q2n2

����
���� � kð1þ j�jÞn�1;

since maxfj�j; jpn=qnjg < 1þ j�j (for all sufficiently

large n). Then

jFnð�Þ � �nj< � �
p2n2

q2n2

����
���� � ð1þ j�jÞn�1 <

ð1þ j�jÞn�1

q2n2

2n2

;

where we used that
P

k�1 k=10k! ¼ 0:1200030 . . . .

Since qm > 2ðm�4Þ!, for m � 5 (here we used that

1=ðqnqnþ1Þ ¼ jpn=qn � pnþ1=qnþ1j � j� � pn=qnj þ j� �
pnþ1=qnþ1j � 1=qn�1

n and so qnþ1 � qn�2
n yielding,

recursively, that qnþ1 > 2ðn�3Þ!), then

qn
2

2n2 > 2n
2ð2n2�4Þ! > ð1þ j�jÞn�1 � 10nn!;

for all sufficiently large n. Therefore, a straightfor-

ward calculation gives

jFnð�Þ � �nj <
1

ðdenð�nÞÞn
;ð1Þ

for all sufficiently large n.

Now, for estimating jF ð�Þ � Fnð�Þj, we shall

consider the truncation in n ¼ sj�1 satisfying
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10sj�1 > j�j. Thus, we have

jF ð�Þ � Fsj�1
ð�Þj �

2

10sj!�sj�1sj
<

1

ðdenð�sj�1
ÞÞsj�1

;ð2Þ

where we used that ð10sj�1!q
sj�1

2s2
j�1

Þsj�1 � 10sj!�sj�1sj

since s
4ðkþ2Þ
j�1 < sj for all sufficiently large j and

q2s2
j�1
< 10ð2s

2
j�1Þ

k!. By combining (1) and (2), we

obtain

jF ð�Þ � �nj <
2

ðdenð�nÞÞn
;

for all sufficiently large n. Thus, in order to prove

that F ð�Þ is a Liouville number, it suffices to prove

that jF ð�Þ � �nj > 0 for infinitely many integers n.

Suppose the contrary, then �n ¼ p=q for all suffi-

ciently large integers n. By multiplying this equal-

ity by 10n!qn2n2q, we get that q2n2 divides q for

infinitely many integers n which are absurds. Thus

F ð�Þ is a Liouville number as desired.

Case 2. When �n is not bounded for nk for all

k � 1.

In this case, we have the existence of infinitely

many pairs ðnj; kjÞ 2 Z2
�1 such that

�nj � n
kj
j and �njþ1 > ðnj þ 1Þkj :

Now, define tj as the smallest integer such that

stj > �nj and define our approximants as

�j :¼ Fstj�1

pnj
qnj

 !
:

Note that denð�jÞ ¼ 10stj�1!q
stj�1

nj .

As before, we want to obtain an estimate

for jF ð�Þ � �jj � jFstj�1
ð�Þ � �jj þ jF ð�Þ � Fstj�1

ð�Þj.
First, we shall estimate jF ð�Þ � Fstj�1

ð�Þj. For that,

note that for all sufficiently large j, we have 10stj�1 >

j�j and then

jF ð�Þ � Fstj�1
ð�Þj ¼

X
k�stj

�k

10k!
�k

������
������

� 2

10stj !�stj ðstj�1Þ

�
1

10stj�1!stj�1

1

10
�nj !s

2
tj�1

�
1

10stj�1!stj�1

1

q
s2
tj�1

nj

¼
1

denð�jÞstj�1
;

where we used that 10�n! � qn and stj � maxfs3
tj�1;

�nj þ 1g, for all sufficiently large j. Then, we have

jF ð�Þ � Fstj�1
ð�Þj <

1

denð�jÞstj�1
:ð3Þ

Now, we shall estimate jFstj�1
ð�Þ � �jj. For that,

we have

Fstj�1
ð�Þ � �j ¼

Xstj�1

k¼1

�k

10k!
�k �

pnj
qnj

 !k
0
@

1
A:

As in the previous case, we get

�k �
pnj
qnj

 !k
������

������ � � �
pnj
qnj

�����
����� � k10kstj�1 ;

since maxfj�j; jpnj=qnj jg < 1þ j�j � 10stj�1 . Then

jFstj�1
ð�Þ � �jj < � �

pnj
qnj

�����
����� � 10

s2
tj�1 :

Now, we use the well-known fact that

� �
pnj
qnj

�����
����� < 1

qnjqnjþ1
:

Also, by definition, since �njþ1 > ðnj þ 1Þkj , then

qnjqnjþ1 � qnjþ1 > 10ðnjþ1Þkj !. Therefore, for all

kj � 5, we have

ðnj þ 1Þkj ! � ðnkjj þ kjn
kj�1
j Þ!

� nkjj !kjn
kjðkj�1Þ=2
j � 3n

kj
j !n

2kj
j :

Therefore

jFstj�1
ð�Þ � �jj <

1

10
3n

kj
j !n

2kj
j �s2

tj�1

:ð4Þ

Note that denð�jÞstj�1 � 10
stj�1stj�1!þ�nj !s2

tj�1 , since

10�nj ! � qnj . However, we have the inequality

stj�1stj�1!þ �nj !s2
tj�1 � 3n

kj
j !n

2kj
j � s2

tj�1;

since stj�1 � �nj � n
kj
j . The above inequality com-

bined with (4) gives

jFstj�1
ð�Þ � �jj <

1

denð�jÞstj�1
:ð5Þ

By combining (3) and (5) we obtain

jF ð�Þ � �jj <
2

denð�jÞstj�1
;

for all sufficiently large j. Since jF ð�Þ � �jj > 0 for

all sufficiently large j (by a same argument as

before), then F ð�Þ is a Liouville number as desired.

In conclusion, F ðLÞ � L.

The proof of the existence of the uncountable
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many functions F ðzÞ with this property completes

because there is a binary tree of different possibil-

ities for ðsnÞn�1 (and each choice defines a different

function F ðzÞ). For example, take sn ¼ an!
n , where

an 2 f2; 3g. �
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