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Abstract: For positive integers n, let rðnÞ ¼ #fðx; y; zÞ 2 Z3 : x2 þ y2 þ z2 ¼ ng. Let g be

a positive integer, and let A mod M be any congruence class containing a squarefree integer. We

show that there are infinitely many squarefree positive integers n � A mod M for which g

divides rðnÞ. This generalizes a result of Cho.
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1. Introduction. For each positive integer

n, let rðnÞ denote the number of ways of writing n

as a sum of three squares, i.e., rðnÞ ¼ #fðx; y; zÞ 2
Z3 : x2 þ y2 þ z2 ¼ ng. Recently, Cho established

the following result concerning values of rðnÞ
divisible by a fixed integer [2, Theorem 2].

Theorem A. Let g be a positive integer.

(a) There are infinitely many squarefree n � 1

mod 4 for which 12g j rðnÞ.
(b) If g is odd, then there are infinitely many

squarefree n � 2 mod 4 for which 12g j rðnÞ.
(c) If g is odd, then there are infinitely many

squarefree n � 3 mod 8 for which 24g j rðnÞ.
In this note, we strengthen Theorem A by

proving a divisibility result valid not only for the

progressions 1; 2 mod 4 and 3 mod 8, but for any

progression A mod M compatible with the square-

free condition. Moreover, in every case we guaran-

tee divisibility by an arbitrary positive integer g.

Theorem 1. Let g be a positive integer. Let

A mod M be any congruence class containing a

squarefree integer. There are infinitely many

squarefree n � A mod M for which g j rðnÞ.
Corollary 2. Let g be a positive integer. Let

A mod M be a congruence class containing a

squarefree integer, and suppose that A mod M is

not entirely contained in the residue class 7 mod 8.

There are infinitely many squarefree n � A mod M

with rðnÞ a nonzero multiple of g.

Remark 3. It is well-known that the pro-

gression A mod M contains at least one squarefree

integer precisely when gcdðA;MÞ is squarefree, in

which case a positive proportion of the positive

integers n � A mod M are squarefree. See, for

instance, §2 of Pappalardi’s survey [9].

2. Proof of Theorem 1 and Corollary 2.

2.1. Sketch. We require two auxiliary re-

sults. The first is essentially due to Gauss [4, Art.

291] (cf. [5, Chapter 4]). In what follows, we write

hðdÞ for the class number of the quadratic field

Qð
ffiffiffi
d
p
Þ.

Proposition 4. Let n be a squarefree integer

with n > 3.

(a) If n � 1; 2 mod 4, then rðnÞ ¼ 12hð�nÞ.
(b) If n � 3 mod 8, then rðnÞ ¼ 24hð�nÞ.
(c) If n � 7 mod 8, then rðnÞ ¼ 0.

At the heart of the proof of Theorem 1 is a

divisibility result for class numbers of imaginary

quadratic fields (compare with [2, Theorem 1]).

Proposition 5. Let g be a positive integer.

Let A mod M be a congruence class containing a

squarefree integer. There are infinitely many posi-

tive squarefree integers d � A mod M for which

the class group of Qð
ffiffiffiffiffiffiffi
�d
p

Þ contains an element of

order g.

Proof of Theorem 1. Suppose d > 3 is square-

free with d � A mod M and with the class group of

Qð
ffiffiffiffiffiffiffi
�d
p

Þ containing an element of order g. Then g

divides hð�dÞ, which in turn divides rðdÞ by Propo-

sition 4. By Proposition 5, there are infinitely many

of these d, and Theorem 1 follows. �

Proof of Corollary 2. We claim we can find

an arithmetic progression contained in the inter-

section of the progression A mod M and one of

the progressions 1; 2; 3; 5; 6 mod 8, and containing a
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squarefree integer. Keeping in mind Proposition 4,

the corollary then follows from Theorem 1.

Let A0 be a squarefree integer from the residue

class A mod M. Suppose first that A0 6� 7 mod 8.

In this case A0 mod 8M is the desired progression.

Suppose now that A0 � 7 mod 8. Then 8 - M, so

that lcm½4;M� � 4 mod 8. Then A0 þ lcm½4;M� �
3 mod 8 and gcdðA0 þ lcm½4;M�; 8MÞ is squarefree.

So (keeping in mind Remark 3) the residue class

A0 þ lcm½4;M� mod 8M has the desired properties.

�

The remainder of this note is devoted to a proof

of Proposition 5.

2.2. Proof of Proposition 5. To construct

our imaginary quadratic fields, we employ a lemma

appearing in work of Soundararajan [10, Propo-

sition 1] (compare with earlier results of Nagel

[8, S€atze IV, V], Humbert [6, Th�eor�eme 1], and

Ankeny and Chowla [1, Theorem 1]).

Lemma 6. Let g � 3 be an integer. Suppose

d � 63 is a squarefree integer satisfying

t2d ¼ mg � n2;ð1Þ

where t;m; n are positive integers with gcdðm; 2nÞ ¼
1 and mg < ðdþ 1Þ2. Then the class group of

Qð
ffiffiffiffiffiffiffi
�d
p

Þ contains an element of order g.

We will also use the following elementary result

concerning gth power residues. Below, we write

�pðgÞ for the p-adic valuation of the integer g.

Lemma 7. Let g be a positive integer. If p is

an odd prime, then every integer n � 1 mod p�pðgÞþ1

is a gth power in the ring Zp of p-adic integers. The

same holds if p ¼ 2 under the stronger hypothesis

that n � 1 mod p�pðgÞþ2.

Proof. This follows from the fact that the

usual binomial expansion for ð1þ xÞ1=g converges

p-adically for jxjp � p��pðgÞ�1 when p is odd, and

for jxjp � p��pðgÞ�2 when p ¼ 2 (see, for instance,

[3, Corollary 4.2.16, p. 216]). �

Proof of Proposition 5. The case g ¼ 1 is

trivial. Suppose g ¼ 2. By genus theory, hð�dÞ is

odd for a positive squarefree number d > 2 if and

only if d is a prime with d � 3 mod 4. Since the

primes have asymptotic density 0, it follows that

the conclusion of Proposition 5 holds for asymptoti-

cally 100% of squarefree d � A mod M. Hence-

forth, we assume that g � 3. Let A0 be a squarefree

integer with A0 � A mod M. By replacing A with

A0 and M by 4M2, we can assume that M is even,

squarefull, and that no integer congruent to A mod

M is divisible by the square of a prime dividing M.

Set
t ¼ 2

Y
pjM

p�pðgÞþ1:

We fix an integer m0 satisfying

mg
0 � 1þ t2A mod Mt2:

Such an m0 exists, since 1þ t2A is a gth power in

Zp for every prime p jMt2, by Lemma 7. If

n � 1 mod Mt2, and m � m0 mod Mt2, then mg �
n2 � t2A mod Mt2, so that t2 j mg � n2, and

d :¼
mg � n2

t2
� A mod M:ð2Þ

We now impose further conditions on m and n in

order to apply Lemma 6.

Let x be a large real number. Here ‘‘large’’

always means ‘‘sufficiently large, in a way that can

be made to depend only on the fixed parameters A,

M, and g.’’ Note that gcdðm0;Mt2Þ ¼ 1; thus, by the

prime number theorem for progressions, we may

choose a prime m � m0 mod Mt2 with 1
2 x < mg �

x. With X :¼
ffiffiffiffiffiffiffiffiffiffiffi
mg=2

p
, we look for integers n 2 ½1; X�

with n � 1 mod Mt2, gcdðm;nÞ ¼ 1 and with d, as

defined in (2), squarefree. For any such n,

x > d ¼
mg � n2

t2
�

1

2

mg

t2
>

1

4

x

t2
;

and hence d certainly exceeds 63 for large x. Also,

for large x,

ðdþ 1Þ2 >
1

16

x2

t4
> x � mg:

Thus, Lemma 6 applies, and each such n gives rise

to a squarefree d � A mod M with the class group

of Qð
ffiffiffiffiffiffiffi
�d
p

Þ having an element of order g.

The number of n as above is at least
P

1�P
2�
P

3, whereX
1
¼

X
n�X

n�1 modMt2

1;

X
2
¼

X
n�X

n�1 modMt2

mjn

1;

X
3
¼

X
n�X

n�1 modMt2

gcdðn;mÞ¼1
d not squarefree

1:

Clearly,
P

1 � X
Mt2 � 1 > 0:9 X

Mt2 , while
P

2 � X
Mmt2 þ

1 < 0:1 X
Mt2

(for large x). Now suppose n is counted
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in
P

3, and that the prime p is such that p2 j d. Then

n2 � mg mod p2. Since gcdðm;nÞ ¼ 1, we have

p - m. Thus, the congruence n2 � mg mod p2 puts

n in one of two residue classes modulo p2. We also

know that p - M; indeed, d � A mod M and no

integer from the residue class A mod M is divisible

by the square of a prime dividing M. Since n �
1 mod Mt2 and gcdðMt2; p2Þ ¼ 1, we see that n is in

one of two residue classes modulo Mt2p2. So for a

given p, the number of corresponding n � X is at

most 2X
Mt2p2 þ 1. Finally, we bound

P
3 by summing

on possible primes p. Note that p is odd (since M is

even) and that p2 � mg=t2 < mg=2 ¼ X2. Thus,

X
3
�
X

2<p�X

2X

Mt2p2
þ 1

� �
<

X

Mt2

X
p>2

2

p2
þ �ðXÞ:

Since

X
p>2

2

p2
<

2

9
þ 2

X
j�5

1

j2
<

2

9
þ 2

X
j�5

Z j

j�1

dt

t2
< 0:73

and �ðXÞ < 0:01 X
Mt2

for large x (as the primes have

density 0), we have
P

3 <
3
4

X
Mt2

. Collecting our

estimates, we see that the number of suitable n is

bounded below by

0:05
X

Mt2
>

0:025

Mt2
� x1=2:

Since distinct n give rise to distinct d, this is also a

lower bound on the number of d � x satisfying the

conclusion of Proposition 5. Since this lower bound

tends to infinity with x, the full collection of d

satisfying the conclusion of Proposition 5 must be

an infinite set. �

Remark 8. We have stated Proposition 5

in a qualitative form, but the result actually

established is quantitative. Namely, for fixed A,

M, and g, the number of d � x satisfying the

conclusion of Proposition 5 is � x1=2, for all large

x. Here (and in the next paragraph) the notation

suppresses the dependence of implied constants on

A;M, and g.

Without aiming for the sharpest possible lower

bound, we now describe how to do slightly better

with little effort. Suppose g � 3. At the moment

where we choose m in the above proof, we can

instead consider running the argument for all of the

	 x1=g= logx possible choices of m. We find that

if x is large, we produce � x1=2þ1=g= logx values

of d � x; the only problem is that distinct m may

yield the same values of d. By an argument of Murty

[7, bottom of p. 235], each pair of distinct m results

in an overlap of only xoð1Þ values of d (as x!1).

Hence, the total overlap is accounted for by

subtracting a term of size x2=gþoð1Þ. Since x2=gþoð1Þ

is of smaller order than x1=2þ1=g= logx, we deduce

that there are � x1=2þ1=g=log x values of d � x
satisfying the conclusion of Proposition 5.

3. Conclusion. We finish this note by re-

marking that Proposition 5 yields a short, concep-

tually simple proof of the following theorem of

Yamamoto [12, Theorem 1]:

Theorem 9. Let g be a positive integer. Let

p1; . . . ; pk be distinct primes, and for each 1 � i � k,

let �i 2 f�1; 0; 1g. There are infinitely many nega-

tive fundamental discriminants D with the class

group of Qð
ffiffiffiffi
D
p
Þ containing an element of order g

and with ðDpiÞ ¼ �i for all 1 � i � k.

Proof. It is well-known that there are infinitely

many fundamental discriminants D0 satisfying

ðD0

pi
Þ ¼ �i for all 1 � i � k. In fact, a positive

proportion of all fundamental discriminants have

this property; for rather far-reaching generaliza-

tions of these facts, see [11]. Fix any such D0.

Observe that if D is any fundamental discriminant

with D � D0 mod 4
Qk

i¼1 pi, then ðDpiÞ ¼ �i for all

1 � i � k.
Suppose that 4 divides D0. Apply Proposition

5 to the progression �D0=4 mod 4
Qk

i¼1 pi, which

contains the squarefree integer �D0=4. If d is as

in the conclusion of the Proposition, then �d �
D0=4 � 2; 3 mod 4 and so Qð

ffiffiffiffiffiffiffi
�d
p

Þ has discrimi-

nant D :¼ �4d. Then D � D0 mod 4
Qk

i¼1 pi. More-

over, Qð
ffiffiffiffi
D
p
Þ ¼ Qð

ffiffiffiffiffiffiffi
�d
p

Þ, and the class group has an

element of order g. This completes the proof of

Theorem 9 in the case when 4 j D0.

When D0 � 1 mod 4, we argue analogously,

this time applying Proposition 5 to the progression

�D0 mod 4
Qk

i¼1 pi. �
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