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Abstract: We establish some new local–global principles related with some splitting

problems for connected linear algebraic groups over infinite algebraic extensions of global fields

and give some applications to the isotropy problems. The main tools are certain new Hasse

principles established for quadratic, (skew-)hermitian forms, and homogeneous projective spaces

of reductive groups over such fields.
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1. Introduction. This paper continues our

study of arithmetic of linear algebraic groups

defined over (possibly infinite) algebraic extensions

of global fields begun in [NT1], [NT2], [NT3] via the

so-called local–global principles. In this note, we are

interested in some phenomena related with the

notion of splitting.

Let k be a global field, Vk the set of all places of

k. In [NT2] we extended some well-known local–

global principles in the case of global fields to their

infinite algebraic extensions, where one replaces the

usual completions by the so-called localization

fields. In [NT1], we discussed in detail whether or

not there is any corresponding result for algebraic

groups with a suitable notion of splitting. Recall

that (cf. [Bo, Chap. V, 15.1], [CGP, A.1.2]) for a

given field k, a connected solvable linear algebraic

k-group G is k-split if there exists a composition

series G ¼ G0 > G1 > � � � > Gn�1 > Gn ¼ f1g such

that Gi=Giþ1 ’ Ga or Gm, for all 0 � i � n� 1.

Also (cf. [Bo, Chap. V, 18.6], [CGP, A.4]), a con-

nected reductive k-group G is k-split if G has a

maximal torus which is defined and split over k.

More generally, one says that a smooth connected

affine algebraic k-group G is pseudo-k-split (or

pseudo-split over k) if G has a maximal torus which

is defined and split over k, see [CGP, Def. 2.3.1].

In [NT1] we introduced the notion of splitting which

really combines the case of solvable and reductive

groups. We say that a connected linear algebraic

k-group G is k-split, or split over k, if its unipotent

radical RuðGÞ is defined and split over k, and the

reductive quotient group G=RuðGÞ is defined and

split over k. Likewise, we say that a smooth affine

k-group G is quasi-split over k (or k-quasi-split) if

RuðGÞ is defined over k and G=RuðGÞ has a Borel

subgroup B defined over k. It is clear that this

notion is stronger than the property that G has

a Borel subgroup defined over k (just consider a

solvable algebraic group G defined over a non-

perfect field, such that RuðGÞ is not defined over k).

This paper is a sequel to our previous

papers [NT1], [NT2], which deal with the splitting

phenomena and Hasse principle for homogeneous

spaces over global fields and also with the exten-

sions of known Hasse principles over global fields to

the case of infinite global fields (cf. also expanded

version in [NT3]). By using results of [NT2], we

consider some extensions of results obtained in

[NT1] to the case of infinite global fields and also

some applications. Here we are interested in certain

local–global principles related with the splitting

property of a given reductive group defined over an

infinite algebraic extension of a global field. Our

main tools are some new Hasse principles estab-

lished for quadratic, (skew-)hermitian forms, and

homogeneous projective spaces of reductive groups

over infinite algebraic extensions of global fields.

Full details will appear elsewhere.

Notation and convention. For a field k with a

place v, we denote by kv the completion of k at v,
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Ov the ring of v-integers of kv. A k-variety always

means a geometrically reduced, integral and sepa-

rated scheme of finite type over k.

2. Preliminaries.

2.1. Localization fields versus completions.

Let L be a field, k an algebraic extension of L

contained in an algebraic closure of L with the set of

all places Vk. For each place v 2 Vk, let v also denote

the restriction of v to any intermediate field L �
K � k and let Kv be the completion of K at v. We

denote by kðvÞ the direct limit of all subfields Kv,

where ½K : L� <1, all of which are considered as

subfields of kv. This field was considered for the first

time by Moriya [Mo] in the 1930’s and we call it

(after Neukirch, cf. [Ne, p. 160]) the localization field

of k at v. In the sequel, we will call infinite algebraic

extensions of local (resp. global) fields just by

infinite local (resp. global) fields for short.

We say that some algebraic objects defined

over an infinite global field k locally have a property

P if for all places v 2 Vk, considered as object over

kðvÞ, it has property P . In particular, we say that

the Hasse principle in the new sense holds for a

k-variety X, if the following implication holds

ðXðkðvÞÞ 6¼ ;; 8v 2 VkÞ ) ðXðkÞ 6¼ ;Þ:

The usual Hasse principle is then referred to as the

classical Hasse principle. One should note that if

a variety X satisfies the classical Hasse principle

then it automatically satisfies the Hasse principle

in the new sense. However, it is still a widely open

problem to see if the converse also holds.

2.2. A consequence of Hensel Lemma. Let

X be an irreducible variety defined over a global

field k. We consider the following class V k of

k-varieties. We say that X 2 V k if for almost all

places v of k, XðkvÞ 6¼ ;. The class of such varieties

is very large.

In fact, as a consequence of Hensel Lemma, it

includes also the class of all geometrically irredu-

cible varieties X defined over a global field k (cf.

[La, Remark 1.6, p. 249]).

2.3. Hasse principle for projective homoge-

neous spaces. We recall the following important

result related to the Hasse principle for homoge-

neous spaces over global fields which will be used

frequently in the sequel.

2.3.1. Theorem. Let k be a global field, X a

projective homogeneous k-space under a connected

reductive k-group G. Then the (classial) Hasse

principle holds for V , i.e., the following implication

holds

ðXðkvÞ 6¼ ;; 8v 2 VkÞ ) ðXðkÞ 6¼ ;Þ:

In the case of number fields the proof was given

by Harder [Ha] and in the case of global function

fields, it was given in [NT1].

3. A general Hasse principle for varieties

over infinite global fields. For a global field L,

recall that V L denotes the class of all irreducible

L-varieties X which have for almost all places v 2
VL local points (i.e., XðLvÞ 6¼ ; for almost all v).

Notice that we have V L � V K , if L � K. We have

the following general result regarding the Hasse

principle for varieties over infinite global fields.

3.1. Theorem. Let k be an algebraic exten-

sion of a global field L, k ¼ [nLn, where L ¼ L0 �
L1 � � � � � Li � Liþ1 � k is a tower of increasing

finite extensions of L. Let X 2 V L be an irreducible

L-variety, such that for each n, X being considered

as Ln-variety, satisfies the classical Hasse principle

over Ln. Then X also satisfies the Hasse principle

over k in the new sense.

Proof. The proof follows the same scheme as

given in [KK] while they proved the Hasse principle

in the new sense for quadratic forms in � 3 variables

which has been applied to other situations as

in [NT2]. We recall briefly the idea of the proof as

follows.

We may assume that k ¼ [Ln is the union of an

increasing tower of finite extensions of a global field

L and our variety X is defined over L. The main

point here is that by assumption, our variety X,

considered over each field Ln, locally over the fields

Ln;v, has Ln;v-points for almost all v 2 VLn . Then we

may apply the König’s Lemma to confirm that XðkÞ
is not empty. �

Theorem 3.1 implies that all those varieties 2
V L defined over a global field L, which universally

satisfy the Hasse principle, i.e., those also satisfy

the Hasse principle over any finite extension of L,

also satisfy the Hasse principle (in the new sense)

over any algebraic extension k of L.

3.2. Corollary. Let L, k be as above. Then

the following varieties satisfy the Hasse principle in

the new sense over k.

(1) Any principal homogeneous space (torsor) un-

der a connected linear algebraic group G defined

over k, which satisfies the cohomological Hasse

principle over each global subfield contained in k.
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(2) Any projective homogeneous space under a

connected linear algebraic (supposed to be reductive

if char. k > 0) group defined over k.

4. Some splitting problems. In this and

the next sections we consider some problems related

with some local–global approaches related with

splitting problems.

4.1. Let k be an infinite algebraic extension of

a global field. We consider the following problem.

4.1.1. Problem. ðaÞ Assume that a connected

smooth affine algebraic group G is Kv-split (resp.,

Kv-quasi-split) or more generally, G possesses

Kv-subgroups of some given type, for all v 2 Vk,
where Kv=kv is a Galois extension with its Galois

group �v belonging to a certain class of groups C . Is

it true that G is also split (resp. quasi-split), or more

generally, does G possess a subgroup of a given type

defined over a Galois extension K=k with its Galois

group � also belonging to C ? If not, what is the

obstruction ?

ðbÞ Similar questions where kv is replaced by kðvÞ ?

In this note we consider the last question ðbÞ in the

simplest case, where �v ¼ f1g for all v, i.e., kðvÞ are

the (quasi-)splitting fields for G for all v. In other

words, the first question we try to answer is the

following

4.1.2. Given that a smooth affine algebraic

k-group G is (quasi-)split over kðvÞ locally every-

where for all v 2 Vk. Is G already (quasi-)split over

k ? If not, what is the obstruction ?

Closely related to 4.1.2 are the following

questions

4.1.3. Given that a smooth affine algebraic

k-group G is (quasi-)split over kv locally everywhere

for all v 2 Vk. Is G already (quasi-)split over k ? If

not, what is the obstruction ?

4.1.4. Given that a smooth affine algebraic

k-group G is (quasi-)split over a quadratic (or

cyclic) extensions Kv=kv (or extension Kv=kðvÞ)
locally everywhere. Is G already (quasi-)split over a

quadratic (or cyclic) extension K=k ? If not, what is

the obstruction ?

Some other questions and applications will be

discussed later after we have given an answer to

4.1.2.

5. Local–global principle for splitting

property. In this and next section, we give an

answer to Question 4.1.2. Before going to the

general case, we consider some partial cases as

follows.

5.1. Solvable case. The first class of groups

we are considering is that of solvable algebraic

groups. By [Co], there exists a unique maximal

connected normal k-split subgroup Gsplit for a given

connected solvable k-group G. Thus G is k-split if

and only if G ¼ Gsplit .

We prove the following

5.1.1. Theorem. Let k be an infinite global

field, G a solvable k-group. Assume that k has at least

one discrete place, if RuðGÞ 6¼ f1g. Then G is split

over k if and only if G is so over all kðvÞ, v 2 Vk.
5.1.2. Remark. One may extend the defini-

tion of isotropic torus to the case of solvable groups

as follows. For a solvable affine algebraic group G

defined over a field k, we say that G is k-isotropic if

it contains a non-trivial k-split subgroup. Then the

proof of Theorem 4.1.1 says that the following

holds.

5.1.3. Theorem. A connected solvable affine

algebraic group defined over an infinite global field k

(which is assumed to have at least one discrete

valuation if RuðGÞ 6¼ 1), is k-isotropic if and only if

it is kðvÞ-isotropic over all localizations kðvÞ of k.

We will see below (Section 6) that this is not

true any more for semisimple groups.

5.2. Reductive case. We have the following

local–global principle for the splitting and quasi-

splitting property of reductive groups.

5.2.1. Theorem. Let k be an infinite global

field, G a connected reductive k-group. Then

ð1Þ G is quasi-split over k if and only if G is so over

kðvÞ, for all v 2 Vk.
ð2Þ G is split over k if and only if G is so over kðvÞ,
for all v 2 Vk.

5.3. General case. Let k be an infinite global

field and let G be a smooth connected affine

algebraic k-group. We want to know what happens

to G if we assume that G is quasi-split (resp. split)

over kðvÞ for all places v of k. By combning the

results of Sections 5.1 and 5.2, we arrive at the

following

5.3.1. Theorem. Let k be an infinite global

field and let G be a smooth connected affine

algebraic k-group. Assume that G is quasi-split

(resp. split) over kðvÞ for all places v of k and that

k has at least one discrete valuation if G has non-

trivial unipotent radical. Then G is also quasi-split

ðresp. splitÞ over k.

5.3.2. Remark. Notice that in the case of

global fields, the proof we provided in [NT1] by
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using the reciprocity law approach due to Prasad

and Rapinchuk [PR] (char. 0 case) and [Th] (char.

p > 0 case) does not work here, simply because

we lack a lot of information provided by the class

field theory in the case of infinite global fields. It

is worthwhile to investigate this case in more

detail.

6. Some further applications.

6.1. In this section, we consider some appli-

cations related to the local–global behavior of

relative rank (i.e., the dimension of a maximal split

subtorus) of a given connected reductive group G

defined over an infinite algebraic extensions k of a

global field.

Let T be a maximal k-torus of G, Ts the

maximal k-split subtorus of T , T ¼ TaTs, an almost

direct product, where Ta is anisotropic k-subtorus of

T . Let s :¼ dimðTsÞ, a :¼ dimðTaÞ, r :¼ rankkðGÞ,
the k-rank of G, n :¼ sþ a ¼ dimðT Þ, the rank of G.

We say that T is of type ða; sÞ. It is clear that r � s.
For each place v of k, denote rv :¼ rankkðvÞðGÞ. Then

it is clear that rv � r for all v. There are natural

questions related with the behavior of rv:

6.1.1. ðaÞ Is it true that if for some non-neg-

ative integer c and for all v, we have rv ¼ c, then

r ¼ c ?

ðbÞ Is it true that if rv > 0 for all v then so is r?

ðcÞ Is it true that if k is a global field and if G has a

maximal kðvÞ-torus of type ða; sÞ over kðvÞ for all

places v of k, then so does G over k ?

ðdÞ Is it true that minv rv ¼ r ?

6.1.2. Remark. (1) It should be mentioned

that this question is closely related to questions we

considered in previous sections. Namely, if G has a

maximal torus T of type ð0; nÞ over a field k, then it

means that G is split over k. Therefore the question

has an affirmative answer in this case.

(2) If G has maximal kðvÞ-tori of type ð1; n� 1Þ for

all places, then perhaps at best we can say is that G

is isotropic over kðvÞ for all places v.

(3) If G is semisimple and it has at least two almost

simple components, then we can construct without

difficulty an example of a semisimple group G

defined over a global field k such that G is isotropic

over kðvÞ for all places v but G is anisotropic over k.

Therefore 6.1.1 truly makes sense when we restrict

ourselves to the case where G is an absolutely

almost simple k-group. We have the following local–

global principle for isotropy of almost simple

algebraic groups over infinite global fields.

6.2. Theorem. Let k be an infinite global

field, G an absolutely almost simple k-group and let c

be a non-negative integer.

ðaÞ If rv ¼ c for all v, then r ¼ c.
ðbÞ Let G be of Dynkin type different from 1An, or
1E6 (and k has a real embedding into R). For each

place v of k, denote rv :¼ rankkðvÞðGÞ. If rv > 0 for all

v, then r > 0.

ðcÞ In the remaining cases 1An or 1E6, there are

infinite global fields k and almost simple k-groups G

of the corresponding type, for which the local–global

principle for isotropy does not hold.

Here we use the notation of Tits indices as

in [Ti].

6.2.1. Remark. (1) It follows from above

that questions 6.1.1 ðcÞ, 6.1.1 ðdÞ also have negative

answers.

(2) There are many open problems to what extent

the classical local–global principles still hold for

infinite global fields. It will be our study in the

future.
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